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The infinite projected entangled-pair state (iPEPS) algorithm is one of the most efficient techniques for studying
the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here,
we show how the algorithm can be adapted to explore nearest-neighbor local Hamiltonians on the ruby and
triangle-honeycomb lattices, using the corner transfer matrix (CTM) renormalization group for 2D tensor network
contraction. Additionally, we show how the CTM method can be used to calculate the ground-state fidelity
per lattice site and the boundary density operator and entanglement entropy (EE) on an infinite cylinder. As
a benchmark, we apply the iPEPS method to the ruby model with anisotropic interactions and explore the
ground-state properties of the system. We further extract the phase diagram of the model in different regimes of
the couplings by measuring two-point correlators, ground-state fidelity, and EE on an infinite cylinder. Our phase
diagram is in agreement with previous studies of the model by exact diagonalization.
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I. INTRODUCTION

Studying different properties of quantum many-body
systems and characterizing emergent phases of matter has been
one of the biggest challenges of condensed matter physics. This
has led to developments of many efficient numerical algorithms
such as exact diagonalization (ED), quantum Monte Carlo [1],
and tensor network (TN) methods [2,3]. TNs have already
proved to provide an efficient representation for the ground
state of 1D gapped local Hamiltonians in the form of matrix
product states (MPS) [4,5], which are the root of the well-
known density matrix renormalization group (DMRG) method
[6,7]. The generalization of MPS to higher-dimensional sys-
tems has also been put forward by using projected entangled-
pair states (PEPS) [8,9]. Recent developments at both algo-
rithmic and numerical levels have made the PEPS technique
one of the most efficient and accurate numerical methods for
capturing the ground-state properties of 2D quantum lattice
models. The infinite version of the PEPS, i.e., the infinite
PEPS (or iPEPS) [10–12], has also been developed to study 2D
quantum lattice systems directly in the thermodynamic limit
and has proven very successful in the study of the ground-state
properties of many different models [13–18].

One of the problems that the iPEPS algorithm faces is
the large computational cost of the contraction of the 2D
infinite TN, and therefore approximation methods must be
used. Different approaches have already been proposed for
contraction of 2D TNs such as the boundary MPS [10], tensor
renormalization group (TRG) [19,20], and corner transfer
matrix (CTM) renormalization group [13,21], to name a few.
In practice, each of these methods has its own benefits and
problems. The recently developed iPEPS techniques [10–12]
based on CTMs have proven to be quite stable, accurate, fast,
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and reliable. However, the downside is that the CTM method is
only applied straightforwardly to the 2D square lattice, whereas
for other lattice structures this may not be obvious at all. In
any case, the method has also been successfully applied to
other cases such as the honeycomb [22] and kagome [14,23,24]
lattices.

In spite of the success of current TN algorithms for the
study of quantum many-body systems, there are still many
interesting models, which are left behind due to their com-
plicated interactions and lattice structures, thus making the
implementation challenging. The ruby [Fig. 1(a)] and star
[Fig. 1(b)] lattices are two such examples, with interesting and
rich underlying physics, especially concerning topologically
ordered (TO) phases.

It has already been shown that anisotropic Kitaev in-
teractions [25] on the star lattice result in emergence of
TO [26–29] chiral quantum spin liquids [30–32]. Besides,
antiferromagnetic Heisenberg interactions on the start lattice
produce ground states that lack magnetic order [33–36]. The
ruby model with anisotropic interactions [37,38], Hamiltonian
(21) [see also Fig. 1(a)], has also very interesting features
such as hosting the topological color code (TCC) [39] (which
is a quantum spin system aimed for the purpose of fault-
tolerant quantum computation) as the low-energy effective
theory of its gapped phase, supporting also string-net integrals
of motion (IOM) [38]. In contrast to the more conventional
trivalent lattices with anisotropic Kitaev interactions, which
are exactly solvable through Majorana fermionization [25], the
ruby model cannot be solved exactly due to the four-valence
structure of the ruby lattice, thus motivating its numerical study.
Besides, the ruby lattice has physical realizations in bismuth
ions of layered materials such as Bi14Rh3I9, with interesting
topological properties [40–42].

In this paper, we apply the iPEPS algorithm (based on
CTMs) to the family of triangle-honeycomb structures such
as ruby and star lattices. As a practical application, we study
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FIG. 1. (a) The ruby and (b) star lattices. Spin- 1
2 particles are

placed at the vertices of the lattices and the two-body interactions
are characterized by different colors. (c) Ruby lattice reshaped into
a brick-wall structure. Yellow region denotes a ruby unit cell with
six spins, with sets of three spins placed at the vertices of a triangle
and distinguished in black and white. (d) Each triangle in the brick-
wall lattice (c) is replaced with a block site with local Hilbert space
dimension 23 = 8. The resulting structure is topologically equivalent
to a honeycomb lattice. The yellow dotted lines are auxiliary bonds
with trivial interactions, which are added to the brick-wall lattice to
form a square lattice.

the ground-state properties of the ruby model in the thermody-
namic limit. In particular, we explore the low-energy properties
and phase diagram of the system in different coupling regimes.
We capture the quantum phase transitions of the ruby model
by evaluating different quantities such as nearest-neighbor
two-point correlators, entanglement entropy (EE) on an infinite
cylinder [43,44], and ground-state fidelity per lattice site [45].
Moreover, we present the details for the calculation of the
ground-state fidelity and EE on infinite cylinders using CTMs.

This work is organized as follows: In Sec. II we briefly
review the iPEPS technique and explain how to apply the
method for the ruby lattice. In Sec. III we explain how to
calculate the ground-state fidelity per lattice site using CTMs.
Details of the calculation of the EE on infinite cylinders by
means of CTMs are given in Sec. IV. Then, we apply the
method to the ruby model introduced in Sec. V and discuss its
ground-state properties and zero-temperature phase diagram
in the thermodynamic limit in Sec. VI. Finally, we present our
conclusions in Sec. VII.

II. iPEPS BASICS

In this section we briefly review the basic ideas behind the
iPEPS technique and prescribe the details of the method for the
family of triangle-honeycomb lattices. We specifically present
the method for the ruby lattice. However, the extension to the
star lattice is straightforward.

A. Generalities

Consider a 2D quantum lattice model with N sites with local
Hilbert space at each site described by Cd . The full Hilbert
space of the system is therefore given by (Cd )⊗N , whose size
grows exponentially with the size of the system. Thus, the
problem of finding the relevant eigenstates of the system is
essentially intractable even for moderate system sizes. Luckily,
it is sometimes possible to use PEPS tensors to store and
represent some area-law states that approximate ground states
of 2D local Hamiltonians. As such, these states constitute a tiny,
exponentially small, but relevant corner of the Hilbert space,
which can be parametrized efficiently. Generically, a 2D PEPS
is given by

|�〉 =
d∑

{s�ri }Ni=1

F
(
A[�r1]

s�r1
, . . . ,A[�rN ]

s�rN

)∣∣s�r1 , . . . ,s�rN

〉
, (1)

where |s�ri
〉 is the local basis of the site i at position �ri according

to the geometry of the 2D lattice and A[�ri ]
s�ri

are the local tensors.
For the case of the square lattice, one has tensors of rank five at
each site consisting of dD4 complex coefficients, where d is the
physical dimension and D is the bond dimension. Importantly,
the bond dimension D controls both the size of PEPS tensors
and the maximum amount of entanglement that can be handled
by PEPS. The operation F is a tensor trace that contracts the
bond indices of the tensors A[�ri ]

s�ri
.

In order to approximate the ground state of a given quantum
lattice Hamiltonian, one can evolve the system in imaginary
time β (similar to the time-evolving block decimation (TEBD)
method in 1D [46,47]), i.e.,

|�GS〉 = lim
β→∞

e−βH |�0〉
||e−βH |�0〉|| , (2)

with |�0〉 some appropriate initial state. Efficient numerical
algorithms have already been developed for both finite [8,9]
and infinite PEPS [10–12] based on imaginary-time evolution
of translationally invariant local Hamiltonians on the square
lattice. In particular, recent versions of the iPEPS method use
the so-called fast full update [12] for a stable and fast updating
procedure of the tensors. Moreover, it has become clear
that methods based on CTMs are particularly well suited to
approximate effective environments and estimate expectation
values of local observables for infinite 2D lattices [13].

In the next subsection, we show how to map the ruby lattice
to a brick-wall structure (the procedure for the star lattice and
other Archimedean lattices [48] is similar; see also Appendix B
for more details on the iPEPS implementation of the star
lattice), so that the iPEPS method for the square lattice [12,13]
is also applicable for the family of triangle-honeycomb lattices.

B. Ruby lattice and trotterization

Let us now consider how to adapt the iPEPS methodology to
the case of the ruby lattice. Figure 1(c) illustrates how the ruby
lattice can be shaped into a brick-wall structure, which in turn
is topologically equivalent to a honeycomb lattice of coarse-
grained sites. Each unit cell of the ruby lattice is composed of
six physical degrees of freedom [yellow region in Fig. 1(c)].
Replacing each triangle in the unit cell with an effective block
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FIG. 2. (a) Tensor network structure of a 2 × 2 unit cell of the
square lattice of block sites. (b), (c) A, B iPEPS tensors for block sites
in a ruby unit cell. Each tensor has a physical index with dimension
23 which describes the local Hilbert space of the three spins in each
block site, three bond indices with dimension D each (accounting
for the directions with interactions), and one trivial bond index with
dimension 1.

site with local Hilbert space of dimension d = 23, we end up
with a brick-wall honeycomb lattice [see Fig. 1(d)]. Next, by
associating an iPEPS tensor to each block site and introducing
trivial indices [22] as in the yellow dotted lines in Fig. 1(d), we
end up with an iPEPS on the square lattice and a 2 × 2 unit cell
specified by two tensors A and B according to a checkerboard
pattern; see Fig. 2.

In order to approximate the ground-state of the system by
imaginary time evolution, we consider the Hamiltonian of the
system to be composed of only translationally invariant local
terms with nearest-neighbor interactions, i.e.,

H =
∑
〈�r, �r ′〉

h[�r,�r ′], (3)

where the sum runs over the nearest neighbors �r and �r ′. Next,
we approximate the imaginary time evolution operator in terms
of two-body gates. To this end, we first write the Hamiltonian
of the system as the sum of four mutually commuting terms,
i.e.,

H = Hr + Hl + Hu + Hd, (4)

where (r,l,u,d) denote the (right, left, up, down) links shown
in Fig. 2(a). For the ruby model, the explicit form of the Hi ,
i ∈ (r,l,u,d), are provided in Appendix A (see also Ref. [49]).

We then decompose the time evolution operator in terms of
infinitesimal time steps δτ ≡ β/m � 1, by applying a Suzuki-
Trotter decomposition

e−βH = (e−δτH )m (5)

≈ (e−δτHr e−δτHl e−δτHue−δτHd )m. (6)

In the above expression we applied a first-order decomposition,
but higher orders are also possible and sometimes also conve-
nient. Since each term Hi is a sum of mutually commuting
terms [12], we can further write e−δτHi exactly as a product of
two-body gates, i.e.,

e−δτHi =
∏

〈�r,�r ′〉∈i

g[�r,�r ′], (7)

where g[�r,�r ′] ≡ e−δτh[�r,�r′ ]
.
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FIG. 3. (a) Reduced tensor a (b) constructed from the contraction
of the A and A∗ (B and B∗) tensors along their physical index.
(b) Approximate contraction of an infinite 2D lattice in terms of
an effective environment and a 2 × 2 unit cell of reduced tensors.
The effective environment is composed by four χ × χ corner transfer
matrices {C1,C2,C3,C4} and eight half-column/half-row χ × χ × D2

transfer matrices {Tu1 ,Tu2 ,Tr1 ,Tr2 ,Td1 ,Td2 ,Tl1 ,Tl2 }. See Ref. [13] for
more details.

The algorithm proceeds by applying these gates sequen-
tially on every type of link, and replacing their effect over
the whole lattice by translation invariance. In practice, we
use the full update technique combined with a gauge fixing
[12] to evaluate the effect of such gates in a 2 × 2 unit cell.
This procedure is repeated iteratively until some convergence
criterion is fulfilled.

C. Effective environments with CTMs

Although PEPS are a very efficient way of representing
approximations to relevant eigenstates of local Hamiltonians,
the calculation of expectation values, and even scalar products
between PEPS, is quite challenging, since the contraction of
a 2D TN is in general an �P-hard problem [50] and therefore
approximations need to be used. Here, we use the directional
CTM method introduced in Ref. [13], as well as a refined
version of it [21] in order to approximate the environment of
the iPEPS tensors around a 2 × 2 unit cell. This is important
in several scenarios, namely, for the calculation of expectation
values, in the full update procedure, and also in the calculation
of the ground-state fidelity per lattice site [45] (see Sec. III)
and the EE on a cylinder [43,44] (see Sec. IV).

The effective environment [13], also in our implementation
of the ruby lattice, is given in terms of four χ × χ corner trans-
fer matrices {C1,C2,C3,C4} and eight half-column/half-row
χ × χ × D2 transfer matrices {Tu1,Tu2 ,Tr1 ,Tr2 ,Td1 ,Td2 ,Tl1 ,Tl2}
which surround a 2 × 2 unit cell (see Fig. 3). The accuracy of
these tensors is further controlled by the bond dimension χ of
the environment.

D. Implementation details

In order to approximate the ground state of the systems
in this paper, we use the full update approach based on
imaginary-time evolution with δτ = 0.01, accompanied by a
proper choice of gauge fixing in the algorithm according to
Refs. [12,51]. In order to accelerate the simulations further, we
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FIG. 4. (a) Reduced tensor to compute the fidelity. A is the PEPS
tensor for |ψ(λ1)〉, B is the PEPS tensor for |ψ(λ2)〉. (b) Contraction
leading to Eq. (11).

first approximate the ground-state tensors by applying a simple
update [11,52] and then refine the iPEPS tensors by using the
full update (with gauge fixing) and taking care of possible
local minima. This helps to improve both the stability and the
convergence of the algorithm. In our simulations we went up
to bond dimensions D = 12 for the iPEPS and χ = 100 for
the environment.

III. GROUND-STATE FIDELITY FROM CTMs

In this section, we explain how one can compute the
fidelity per lattice site using CTMs much more efficiently
and accurately than using boundary MPS. Let us start by
reminding ourselves of few basic concepts about the fidelity
approach (see, e.g., Ref. [45]). Consider a quantum lattice
system with Hamiltonian H (λ), λ being a control parameter.
For two different values λ1 and λ2 of this control parameter,
we have ground states |�(λ1)〉 and |�(λ2)〉. The ground-state
fidelity is then given by F (λ1,λ2) = |〈�(λ2)|�(λ1)〉|, which
scales as F (λ1,λ2) ∼ d(λ1,λ2)N , with N the number of lattice
sites. One therefore defines the fidelity per lattice site as

ln d(λ1,λ2) ≡ lim
N→∞

ln F (λ1,λ2)

N
. (8)

Let us now explain how one can compute the above quantity
very efficiently using the CTM formalism. First, as was noticed
in Ref. [45], the fidelity for two ground states represented by
2D PEPS can actually be mapped to the contraction of a 2D TN,
amounting to the calculation of a classical partition function
(the fidelity per site being the analog of a free energy). Let us
assume, for the sake of simplicity, that both PEPS have a 1-site
unit cell. Then we have that

F (λ1,λ2) = |tr(T Lx )|, (9)

with Lx the horizontal number of sites of the PEPS, and T the
1D transfer matrix shown in Fig. 4(b). For Lx � 1, one has
that

F (λ1,λ2) ∼ ∣∣μLx

0

∣∣ (10)

FIG. 5. Contraction leading to Eq. (14).

with μ0 the dominant eigenvalue of transfer matrix T . In terms
of the dominant left and right eigenvectors of T , this means
that

F (λ1,λ2) ∼
∣∣∣∣ 〈
L|T |
R〉

〈
L|
R〉
∣∣∣∣
Lx

, (11)

with |
L〉 and |
R〉 the dominant left and right eigenvectors
of T , respectively, which we assume to be not necessarily
normalized (hence the denominator in the above equation).
The expression in Eq. (11) corresponds to the tensor network
diagram in Fig. 4(b).

Let us now focus on the numerator of Eq. (11). Forgetting
about the Lx exponent, the term 〈
L|T |
R〉 can be understood,
as shown in Fig. 4(b), as the overlap between two MPS and a
matrix product operator for the 1D transfer matrix T . Thus we
have the equation

〈
L|T |
R〉 = tr(ELy ), (12)

with E the 0D transfer matrix in Fig. 5. Thus, in the limit
Ly � 1 we have

〈
L|T |
R〉 ∼ ν
Ly

0 , (13)

with ν0 the dominant eigenvalue of the transfer matrix E. In
terms of the left- and right-dominant eigenvectors of E one
finds that

〈
L|T |
R〉 ∼
( 〈�U |E|�D〉

〈�U |�D〉
)Ly

, (14)

with |�U 〉 and |�D〉 the dominant left and right eigenvectors of
E, respectively, which again we assume to be not necessarily
normalized. This is shown in the tensor network diagram of
Fig. 5.

Now, let us focus on the denominator of Eq. (11). Following
a similar procedure as for the numerator, we realize that it is

FIG. 6. Contraction leading to Eq. (17).
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FIG. 7. Contraction providing d(λ1,λ2), expressed in terms of the
four CTMs C1,C2,C3, and C4, and the half-row and half-column
transfer matrices Tu,Tr ,Td , and Tl .

the product of two MPS, as shown in Fig. 4. We have then that

〈
L|
R〉 = tr(KLy ), (15)

with K the 0D MPS transfer matrix shown in Fig. 6. In the
limit Ly � 1 we have then

〈
L|
R〉 ∼ θ
Ly

0 , (16)

with θ0 the dominant eigenvalue of transfer matrix K . In terms
of the dominant left and right eigenvectors of K , this can be
written as

〈
L|
R〉 ∼
( 〈�U |K|�D〉

〈�U |�D〉
)Ly

, (17)

with |�U 〉 and |�D〉 the dominant left and right eigenvectors of
K , respectively, which again we assume to be not necessarily
normalized. This is shown in the tensor network diagram of
Fig. 6.

Putting everything together, we get the equation

F (λ1,λ2) ∼
∣∣∣∣ 〈�U |E|�D〉〈�U |�D〉
〈�U |�D〉〈�U |K|�D〉

∣∣∣∣
LxLy

, (18)

which implies that

d(λ1,λ2) =
∣∣∣∣ 〈�U |E|�D〉〈�U |�D〉
〈�U |�D〉〈�U |K|�D〉

∣∣∣∣. (19)

The equation above is our main expression for the fidelity
scaling variable d(λ1,λ2), from which it is easy to extract the

fidelity per site. The reason why Eq. (19) is important is that it
admits an immediate interpretation in terms of CTMs, which
we show in Fig. 7. Notice that from the TN point of view,
this is a very neat and clean expression, where we used the
fact that all the dominant eigenvectors in Eq. (19) can in fact
be written, asymptotically and for an infinite lattice, in terms
of the CTMs C1,C2,C3, and C4 as well as the half-row and
half-column transfer matrices Tu,Tr ,Td , and Tl . Therefore, if
one has a CTM algorithm at hand, one can also use it readily
to compute Eq. (19) as in Fig. 7 in order to get the fidelity per
lattice site.

IV. BOUNDARY DENSITY OPERATOR FROM CORNER
TRANSFER MATRICES

For the tensors obtained from the iPEPS algorithm, it is
indeed possible to wrap them around an Nh × Nv cylinder
and compute the entanglement entropy of half a cylinder in
the limit Nh → ∞. This is done using similar techniques to
those in the calculation of the entanglement spectrum of PEPS;
see Refs. [43,53–56]. Here we wish to revise the essential
ingredients of this calculation, and to show that it is indeed
possible to do it using the tensors obtained from the CTM
technique when contracting an infinite 2D lattice.

Consider a 2D PEPS wrapped around a cylinder of circum-
ference Nv , as in Fig. 8(a), which we take to be infinitely long.
As shown in the figure, we split the cylinder in two parts (call
them L for “left” and R for “right”). As explained in Ref. [43],
the reduced density matrix of half an infinite cylinder, e.g., for
L, is given by

ρ = U

√
σT

L σR

√
σT

L U †, (20)

with σL/R the reduced density operators in L/R for the virtual
spaces across the bipartition, and U an isometry obtained from
the contraction of the PEPS tensors. Mathematically, σL/R

corresponds to the dominant left/right eigenvectors of the PEPS
transfer matrix formed by the reduced tensors around the cir-
cumference of the cylinder. Using the above equation it is easy
to see that ρ has the same eigenvalues as

√
σT

L σR

√
σT

L , because
the two operators are related by an isometry, thus leaving
the eigenvalue spectrum invariant. Additionally,

√
σT

L σR

√
σT

L

turns out to have the same spectrum as σT
L σR [55]. In order to

Tl

Tl

Tl

Tl

Tl

Tl
1       2     ...       Nh      Nh+1       ...         Nh

1

2

...

Nv Nh   

Tr

Tr

Tr

Tr

Tr

Tr

(a)                                                                                                (b)

1
2

...

Nv

2 2
2 2

FIG. 8. (a) Nh × Nv cylinder, split into two halves by a blue dotted line. (b) The dominant left and right eigenvectors σL (left) and σR (right)
of the PEPS transfer matrix on the cylinder.
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compute the entanglement entropy of ρ, we can then focus on
the eigenvalues of σT

L σR exclusively.
The dominant eigenvectors σL/R are in fact easy to compute

using CTM methods. As shown in Fig. 8(b), these can be
written entirely in terms of the half-row transfer matrix tensors
Tl andTr that are computed when approximating effective envi-
ronments with CTMs. These tensors are then wrapped around
a circle of length Nv , and constitute our approximated σL/R .
This approach is very efficient and provides accurate results.
The diagonalization of σT

L σR then proceeds as usual, namely,
using Krylov-subspace methods (e.g., Lanczos) which rely on
matrix-vector multiplications. In our case such multiplications
can be done very efficiently by exploiting the TN structure of
σT

L σR . From the approximated eigenvalues, the approximation
to the EE just follows.

V. RUBY MODEL

The ruby model, also known as two-body color-code model,
was first introduced in Ref. [37] as the first instance of a local
Hamiltonian with two-body interactions, which reproduces
the topological color-code model in the low-energy sector
of its gapped phase. The model supports string-net integrals
of motion and respects the local and global Z2 × Z2 gauge
symmetry in all of its limiting cases. The Hamiltonian of the
ruby model [see Fig. 1(a)] is defined as

HR = −
∑

α=x,y,z

Jα

∑
α−links

σα
i σ α

j , (21)

where the first sum runs over α links (α = x,y,z) labeled by red
(r), green (g), and blue (b) colors, respectively, and the second
sum runs over the two-body interactions acting on sites i and j

of the α links, with σα being the Pauli matrices. Without loss
of generality, here we set Jα > 0.

Due to the four-valence structure of the ruby lattice, the
ruby model is not exactly solvable and therefore an exact
characterization of the underlying phases of the model is
unavailable. Recently, an exact diagonalization (ED) study of
the model on the 18 and 24 site ruby clusters detected three
separate phases for the model in the Jx + Jy + Jz = 2 plane,
one of which is already known to be a robust [57–59] gapped
and topologically ordered [37,38] phase and the two others
were conjectured to be new gapless spin-liquid phases. The
low-energy effective theory of the gapless phases are further
given by a local Hamiltonian on the triangular lattice [60] with
three-spin interactions. Since the effective Hamiltonians of the
gapless phases are not exactly solvable, the characterization of
the phases was performed with ED on finite clusters, which
needs to be further explored.

In the following, we use the iPEPS method revisited in the
previous sections for the triangle-honeycomb lattices in order
to study the ruby model on an infinite 2D lattice, and extract its
zero-temperature phase diagram directly in the thermodynamic
limit.

VI. NUMERICAL RESULTS

In this section, we elaborate on the phase diagram of the ruby
model and its possible quantum phase transitions by analyzing

FIG. 9. Scaling of the iPEPS ground-state energy with respect
to inverse bond dimension D. Left: Scaling of the energy for (1,1,1)
couplings compared to the ED results for N = 24 sites. Right: Scaling
of the energy at the multicritical point, Jc = (0.8,0.8,0.4), compared
to the ED results for N = 24 sites.

the ground-state properties of the system in different coupling
regimes (Jx,Jy,Jz).

Before we start with the phase transitions, let us first
benchmark the iPEPS energies with the best available ED
results (for 24 sites) [60] at (1,1,1) couplings. Figure 9 (left)
shows the scaling of the ground-state energy per site, ε0, for
different bond dimensions D compared to the ED result. As
we can see, there is a very good agreement between the iPEPS
energies for D � 4 and the ED energy εED

0 = −1.12672. In
fact our best iPEPS energy, ε0 = −1.125069 for D = 12 (χ =
100), is pretty close to that of the ED on finite ruby cluster with
N = 24 sites. We restricted the analysis of the phase diagram of
the ruby model up to DMax = 8. We further observed that going

FIG. 10. Phase diagram of the ruby model on an infinite 2D
lattice obtained with the iPEPS technique. The phase diagram is
composed of three distinct phases,A1,A2, andA3, which are separated
from each other by second-order phase transition lines meeting at a
multicritical point Jc = (0.8,0.8,0.4). The phase diagram confirms
previous findings with ED on finite-size clusters [60].
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FIG. 11. (a) Two-point correlators 〈σx
i σ x

j 〉 and 〈σ y

i σ
y

j 〉 on red and green links, respectively, and (b) SV N on a cylinder with Nh = ∞,Nv = 6
obtained with simple update, along the 1D line Jx + Jy = 2 − Jz for fixed Jz = 0.1 and varying Jx,Jy . We show this line by J . The results are
for D = 8 and χ = 80. We observed that (in contrast to conventional systems such as Ising models) EE in the ruby model is highly sensitive
to the iPEPS minimization algorithm and initial conditions of the tensors. The inset in (b) depicts the EE obtained with full update algorithm
for D = 3 and different initial condition for iPEPS tensors which is more consistent with the nature of A2, A3 phases which are identical up
to the interchange of Jx , Jy couplings and therefore should have the same EE.

to higher bond dimensions would not change our findings,
particularly away from the phase transitions.

We also calculated the ground-state energy at the multicrit-
ical point, Jc = (0.8,0.8,0.4), for different bond dimension D.
Figure 9 (right) depicts the scaling of energy per site versus
inverse bond dimension compared to the ED (N = 24). In
contrast to the isotropic case (1,1,1), the best energy obtained
with iPEPS (D = 12) is still higher than the one obtained
by ED on a 24-site cluster. This may be due to the large
amount of correlations present at this point, which affect, at
the same time but in different ways, both the ED and iPEPS
calculations, leading to a difference between both energies
of around 2%–3%. Our best variational iPEPS energy in
this case is ε0 = −0.59861 for D = 12 (χ = 100), which
is slightly higher than the one obtained by ED for 24 sites,
εED

0 = −0.61285.
In order to study the phase diagram of the ruby model

and capture the possible phase transitions, we restricted the
couplings to the Jx + Jy + Jz = 2 plane and approximated the
ground state of the model on the parameter linesJx + Jy = 2 −
Jz with fixed Jz throughout the whole plane for 0 � Jz � 2.
These parameter lines are labeled with J in the forthcoming
figures. We captured possible phase transitions by evaluating
different observables such as the nearest-neighbor correlators
〈σα

i σ α
j 〉 (α = x,y,z), the ground-state fidelity F (λ1,λ2) =

|〈�(λ2)|�(λ1)〉|, and the EE on an infinite cylinder.
The computed phase diagram of the ruby model on the

Jx + Jy + Jz = 2 plane is shown in Fig. 10. This is composed
of three distinct phases A1, A2, and A3 which are separated
from each other by second-order phase transition lines that
meet at a multicritical point Jc = (0.8,0.8,0.4). In order to
capture the phase transitions, we scanned the plane along
the fixed Jz lines starting from Jz = 0 and pinpointed the
transition points by evaluating different observables. Figure 11
shows the correlators 〈σx

i σ x
j 〉 and 〈σy

i σ
y

j 〉 on red and green

links, respectively, as well as the von Neumann EE (SV N )
of half an infinite cylinder for Jz = 0.1. As we can see, the
smooth change of correlation between zero and one signals a
continuous phase transition at the Jx = Jy point which proves
the existence of two distinct phases, i.e., A2 and A3. This is
further confirmed by the surface plot of the ground-state fidelity
which, independently of the nature of the underlying phases, is
a powerful probe for capturing the phase transition. Figure 12
depicts the ground-state fidelity for the ruby model for Jz =
0.1. The points on the fidelity surface plot were calculated
as an overlap between the ground-state wave function for

0
1.9

0.2

0.4

1.425 1.9

0.6

d(
J 1,J

2)

0.8

1.425

J
2

0.95

1

J
1

0.95

1.2

0.475 0.475
0 0

FIG. 12. 3D surface plot of the ground-state fidelity per lattice
site, d(J1,J2), along the 1D line Jx + Jy = 2 − Jz for fixed Jz = 0.1
and varying Jx,Jy . We show this line by J . J1 and J2 denote different
points on the parameter line J .
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)b()a(

FIG. 13. (a) Two-point correlator 〈σ z
i σ z

j 〉 and 〈σ x
i σ x

j 〉 (inset) on green links. (b) SV N on a cylinder with (Nh = ∞,Nv = 6) along the 1D
line Jx + Jy = 2 − Jz for fixed Jz = 0.5 and varying Jx,Jy . We show this line by J . The results are for D = 8 and χ = 80.

two different couplings J1,J2 located on the parameter line
J (see definition for J in previous paragraph). The continuous
change of fidelity surface plot at J1 ≈ 1 is a signature of a
second-order phase transition [45] between A2 and A3 phases.
Let us further note that the results obtained for small bond
dimensions, D, shows discontinuities in both correlations and
fidelity. However, by increasing the bond dimension the curves
become continuous and the results are indeed in favor of a
second-order phase transition in the D → ∞ limit.

This behavior continues until Jz = 0.4, above which we
start to capture two phase transitions, thus signaling the
existence of three distinct phases. Figure 13 shows different
local observables along the parameter line with Jz = 0.5. As
we can see from entropy and two-point correlators on different
links, there are two discontinuities in the figures: the left one
confirms the transition from the A2 phase into A1, and the
right one the transition from the A1 phase into A3. These two
transition points are also captured for 0.4 � Jz � 0.65.

By increasing Jz � 0.65, the discontinuities in the local
observables disappear and we no longer detect any phase
transition. This means that we are inside the same phase,
i.e., the A1 phase, in the whole range of couplings with
Jz � 0.65. Figure 14 shows 〈σx

i σ x
j 〉 on the green links and

SV N for Jz = 0.9. The plots certify that no phase transition
is detected and the system remains in the A1 phase. This is
further confirmed by calculations of the ground-state fidelity
(not shown), whose diagram turns into a flat surface indicating
no change in the ground state of the system for different Jx and
Jy couplings.

In order to cross-check the existence of no other phase
transitions for Jz � 0.65, which is a large region of the
Jx + Jy + Jz = 2 plane, and to further locate the multicritical
point more accurately, we scanned the phase plane along the
line Jz = 2 − Jx − Jy with Jx = Jy and calculated different
quantities. Figure 15 demonstrates the 〈σx

i σ x
j 〉 and 〈σ z

i σ z
j 〉 on

red and blue links, respectively, as well as SV N for N = 6

FIG. 14. (a) Two-point correlator 〈σx
i σ x

j 〉 on green links and (b) SV N on a cylinder with Nh = ∞,Nv = 6 along the 1D line Jx + Jy = 2 − Jz

for fixed Jz = 0.9 and varying Jx,Jy . We show this line by J . The results are for D = 8 and χ = 80.
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FIG. 15. Two-point correlator 〈σ x
i σ x

j 〉 and 〈σ z
i σ z

j 〉 on red and blue
links, respectively as well as SV N for N = 6 (inset) along the 1D
line Jz = 2 − Jx − Jy with Jx = Jy . The results are for D = 8 and
χ = 80.

(inset) along this scan line. Our results once again confirm that,
for a large region corresponding to the A1 phase, we capture
no phase transition until we reach the multicritical point at
(0.8,0.8,0.4). The 3D fidelity surface plot along this scan line,
Fig. 16, also confirms that there is no phase transition for a
large region inside the A1 phase (see the large plateau for large
Jz couplings).

To conclude this section, let us mention that the resulting
phase diagram from the iPEPS technique in the thermody-
namic limit confirms previous findings with ED on finite-size
clusters [60].

0
0

0.2

0.4

0.5 0

0.6

d(
Jz

1,Jz
2) 0.8

0.5

Jz2

1

1

Jz1

1

1.2

1.5 1.5
2 2

FIG. 16. Surface plot of the ground-state fidelity per lattice site,
d(Jz1 ,Jz2 ), along the 1D line Jz = 2 − Jx − Jy with Jx = Jy . Jz1 and
Jz2 denote different points on the parameter line with varying Jz.

VII. DISCUSSION AND CONCLUSION

In this paper, we have developed the machinery of the iPEPS
algorithm with CTMs in order to apply it to the family of
triangle-honeycomb structures, such as ruby and star lattices.
We prescribed how the local Hilbert space of the triangles
on the lattice can be replaced with block sites, and how one
can implement the iPEPS method with the CTM algorithm
accordingly. Furthermore, we showed how the CTM method
can be used to calculate the ground-state fidelity per lattice site
and the boundary density operator on infinite cylinders, which
are powerful probes to be used for studying the ground-state
properties of a given system and for capturing quantum phase
transitions.

In order to examine the efficiency and accuracy of our
iPEPS algorithm, we applied the method to the ruby model
and investigated the phase diagram of the model in different
coupling regimes in the thermodynamic limit. We found that
the phase diagram of the ruby model on the Jx + Jy + Jz =
2 plane is composed of three distinct phases, i.e., the A1,
A2, and A3 phases which are separated from each other by
continuous phase transition points meeting at a multicritical
point Jc = (0.8,0.8,0.4). The phase boundaries were captured
by analyzing two-point correlators, ground-state fidelity, and
entanglement entropy of half an infinite cylinder. The A1

phase is already known to be a gapped topological phase,
whose low-energy physics is given by the effective topological
color-code on the honeycomb lattice. The A2 and A3 phases
are new phases which were first detected with ED on finite-size
lattices with 18 and 24 sites [60] and predicted to be gapless
spin liquids.

The new iPEPS phase diagram is in full agreement with our
previous findings in Ref. [60]. However, we were not success-
ful in capturing topological characteristics of the underlying
phases of the model such as topological entropy [61,62], γ ,
and modular matrices [63], containing the anyonic statistics of
quasiparticles, even for the A1 phase which is already known
to be Z2 × Z2 topologically ordered with γ = 2 and abelian
statistics. [64,65]. The reason for this is that the detection
of topological order from scratch (i.e. without some previous
knowledge of the underlying gauge symmetry) is quite difficult
in the context of current iPEPS techniques. As such, the current
iPEPS algorithm does not a priori respect any gauge symmetry,
and therefore has a hard time capturing any emergent gauge
symmetry in the low-energy sector of a Hamiltonian. This,
in turn, implies that information regarding the topological
invariants may be lost in the optimization procedure, in spite of
getting a very accurate description of the ground state energy
as well as other local observables. We believe, however, that
such a gauge-invariant optimization may indeed be possible,
and therefore leave the door open for further developments in
this respect.
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APPENDIX A: iPEPS IMPLEMENTATION
OF THE RUBY HAMILTONIAN

In this section, we explain how to map the nearest-neighbor
interactions on the ruby lattice, Hamiltonian (21), to the
nearest-neighbor interactions on the square lattice (see also
Ref. [49] for the kagome lattice). In the main text, we pointed
out how one can reduce the ruby lattice to a brick-wall
honeycomb lattice by grouping the spins on the vertices of
each blue triangles in the ruby unit cell into two distinct block
sites A, B [see Fig. 1(c)]. Labeling the spins in the block site
A (B) by A1, A2, A3 (B1, B2, B3) according to Fig. 17, the
local Hilbert space of the a ruby unit cell (or equivalently two
neighboring block sites) is given by

Hcell = HA ⊗ HB, (A1)

HA = HA1 ⊗ HA2 ⊗ HA3 , (A2)

HB = HB1 ⊗ HB2 ⊗ HB3 , (A3)

where the local physical dimension of HA and HB is 23 =
8. The ruby model can therefore be represented in terms of
local and nearest-neighbor interactions among the block sites
as follows

HR =
∑

i

Hi +
∑
〈i,j〉

Hx
i,j +

∑
〈i,j〉

H
y

i,j , (A4)

where

Hi = hiA + hiB, (A5)

Hx
i,j = hx

iA,jB + hx
iB,jA, (A6)

H
y

i,j = h
y

iA,jB + h
y

iB,jA, (A7)

HrA1

A2

A3

B1

B2

B3

Hl

A1

A2

A3

B1

B2

B3

Hu

A1A2 A3

B1
B2B3

Hd

B1
B2B3

A1
A2

A3

(b)                           (c)              (d)

(a)

FIG. 17. Two-body local terms of the ruby model which act on
nearest-neighbor block sites, and are further used in updating the
(l,r,u,d) bond indices of the A, B iPEPS tensors. (a) Hr , which acts
on two nearest-neighbor block sites along the x direction. (b) Hl ,
which acts trivially, i.e., as identity, on two nearest-neighbor block
sites along the x direction. (c) Hu, which is a summation of two
local terms which act individually on each of the block sites as well
as nearest-neighbor terms along the y direction. (d) Hd , which is a
summation of two local terms which act individually on each of the
block sites as well as nearest-neighbor terms along the y direction.
See also Appendix A for the explicit operator form of the Hi terms.

with local terms

hiA = σ z
A1

σ z
A2

+ σ z
A1

σ z
A3

+ σ z
A2

σ z
A3

, (A8)

hiB = σ z
B1

σ z
B2

+ σ z
B1

σ z
B3

+ σ z
B2

σ z
B3

, (A9)

and nearest-neighbor interactions in the x direction

Hx
i,j = hx

iA,jB + hx
iB,jA, (A10)

hx
iA,jB = σx

A1
σx

B1
+ σ

y

A3
σ

y

B3
, (A11)

hx
iB,jA = I, (A12)

where I is the identity operator. Besides, the nearest-neighbor
interactions in the y-direction are given by

H
y

i,j = h
y

iA,jB + h
y

iB,jA, (A13)

h
y

iA,jB = σx
A3

σx
B2

+ σ
y

A2
σ

y

B1
, (A14)

h
y

iB,jA = σx
B3

σx
A2

+ σ
y

B2
σ

y

A1
. (A15)

Eventually, the local two-body terms Hi , i ∈ (r,l,u,d) which
are used in the imaginary time evolution process in iPEPS are
given in terms of interactions between block sites as

Hr = hx
iA,jB, (A16)

Hl = hx
iB,jA, (A17)

Hu = 1
2 (hiA + hiB) + h

y

iA,jB, (A18)

Hd = 1
2 (hiB + hiA) + h

y

iB,jA. (A19)

The explicit definition of Hi terms have also depicted in
Fig. 17.

APPENDIX B: BLOCK STRUCTURE OF THE STAR
LATTICE

In this section, we briefly describe the tensor network
implementation of the star lattice for general spin models in
the framework of square lattice iPEPS.

Similarly to the ruby lattice, the star lattice can be reshaped
to the brick-wall structure [see Fig. 18(a)] which is topolog-
ically equivalent to the star lattice represented in Fig. 1(b).

(a)                                         (b)

FIG. 18. (a) Star lattice with brick-wall structure. (b) Tensor
network structure of a 2 × 2 unit cell of the square lattice with block
sites. Each triangle of the star lattice forms a block site with physical
dimension d = 23 for spin- 1

2 models. Yellow dotted lines represent
trivial bonds with D = 1.
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Then by replacing each triangle of the star lattice with a
block site with physical Hilbert space d3, where d is local
basis of a single site, we end up with a honeycomb lattice
of block sites. Associating a tensor to each block site and
linking the empty edges with trivial bond dimensionD = 1, the
tensor network structure of the system on the square lattice is

obtained. Figure 18(b) illustrates a 2 × 2 unit cell of the square
lattice with block sites for general models on the star lattice
and independent of the underlying Hamiltonian. The iPEPS
implementation of the model Hamiltonian on the star lattice
is problem dependent and is quite similar to the procedure
described in Appendix A.
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