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Theory of a quantum spin liquid in the hydrogen-intercalated honeycomb iridate H3LiIr2O6

Kevin Slagle,1 Wonjune Choi,1 Li Ern Chern,1 and Yong Baek Kim1,2

1Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
2Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada

(Received 26 October 2017; revised manuscript received 15 March 2018; published 28 March 2018)

We propose a theoretical model for a gapless spin liquid phase that may have been observed in a recent
experiment on H3LiIr2O6. Despite the insulating and nonmagnetic nature of the material, the specific heat
coefficient C/T ∼ 1/

√
T in zero magnetic field and C/T ∼ T/B3/2 with finite magnetic field B have been

observed. In addition, the NMR relaxation rate shows 1/(T1T ) ∼ (C/T )2. Motivated by the fact that the
interlayer/in-plane lattice parameters are reduced/elongated by the hydrogen intercalation of the parent compound
Li2IrO3, we consider four layers of the Kitaev honeycomb lattice model with additional interlayer exchange
interactions. It is shown that the resulting spin liquid excitations reside mostly in the top and bottom layers of
such a layered structure and possess a quartic dispersion. In an applied magnetic field, each quartic mode is split
into four Majorana cones with the velocity v ∼ B3/4. We suggest that the spin liquid phase in these “defect” layers,
placed between different stacking patterns of the honeycomb layers, can explain the major phenomenology of the
experiment, which can be taken as evidence that the Kitaev interaction plays the primary role in the formation of
a quantum spin liquid in this material.

DOI: 10.1103/PhysRevB.97.115159

The honeycomb iridates A2IrO3 (A = Na, Li) [1–3] have
gained much attention [4–18] as quantum spin liquid (QSL)
candidate realizations of Kitaev’s exactly solvable honeycomb
lattice model [19–21]. Due to crystal field splitting and spin-
orbit coupling, the strongly correlated 5d electrons residing on
the iridium ions can be described by an effective jeff = 1

2 spin,
and the bond-dependent Ising interactions of the Kitaev model
can be realized due to a superexchange path through edge-
shared oxygen octahedra [22]. Although the Kitaev model has
a spin liquid ground state, Kitaev materials such as Na2IrO3

or α-Li2IrO3 are magnetically ordered at low temperatures
[15,23,24]. This occurs because an additional exchange path
from a direct overlap of iridium orbitals introduces additional
Heisenberg [25] and anisotropic off-diagonal exchange (�)
[26] interactions, which favor a magnetically ordered ground
state.

In a recent experiment, Takagi and his colleagues have
synthesized a new spin liquid candidate material, H3LiIr2O6,
by substituting the interlayer lithium ions of α-Li2IrO3 by
hydrogen. This insulating material shows no sign of magnetic
order down to low temperatures in the magnetic susceptibility,
specific heat, and NMR measurements [27,28], raising the
hope for discovery of a quantum spin liquid. The x-ray
powder diffraction pattern suggests a heavily stacking-faulted
crystal structure with an enlarged in-plane bond length and
reduced interlayer distance. The longer in-plane bond length
can be expected to suppress the Heisenberg and anisotropic
off-diagonal exchange (�) interactions since the contribution
from direct exchange is greatly reduced, which can allow the
Kitaev interaction to dominate the physics.

The experiment is especially significant since the material
may be the first material that is a Kitaev-like spin liquid, the
first to be engineered to be a spin liquid, and the first where
strong interlayer coupling stabilizes a spin liquid. Furthermore,

given the close connection to Kitaev’s exact solution, the
candidate spin liquid has a strong theoretical foundation.
This also suggests that when a magnetic field is applied, the
material could be in an Ising topologically ordered phase with
non-Abelian anyons [19] relevant to fault-tolerant quantum
computation [29].

However, the NMR spin relaxation rate 1/T1 and the
specific heat C disagree with thermodynamic properties of
a pure Kitaev spin liquid with Majorana cones (for which
C/T ∼ T ). Instead, it is found that

(T1T )−1/2 ∼ C/T ∼ T −1/2 (1)

at low temperatures (0.06 K < T < 2 K), which implies an
abundant density of states at low energies. But in the presence
of an external magnetic field B (with 1 Tesla � B � 8 Tesla
and temperature 0.1 K � T � 1 K),

(T1T )−1/2 ∼ C/T ∼ B−3/2T . (2)

In the experiment, the magnetic entropy obtained by integrat-
ing the specific heat data suggests that only a few percent of
the local moments contribute to the singular specific heat. This
suggest that the specific heat may be dominated by unusual
“defects” in the material [28].

In this paper, we propose a theoretical model for a gapless
spin liquid that may explain these experiments. Because the in-
terlayer distance is shortened, we expect interlayer interactions
to play important roles. Thus, in addition to the Kitaev in-plane
interaction, we introduce interlayer exchange interactions to
couple the Kitaev honeycomb layers. We assume that there is
a small fraction of ABCA-type stacked layers in the crystal (to
be generalized later); e.g., the complete sequence could contain
(. . . B[ABCA]C . . . ). Since the lattice and the stacking patterns
are very likely distorted from the ideal structure, we consider
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the distortion effect via further neighbor exchange interactions
instead of taking into account the distortion of the lattice itself.

Similar to ABC-stacked multilayered graphene [30,31], we
show that a coupled ABCA-stack of Kitaev spin liquids has
Majorana excitations with a quartic dispersion [32]. As shown
later, these soft modes are mostly localized in the top and
bottom layers and hence represent two-dimensional states.
The density of states due to this four-layer “defect” stacking
pattern is given by D(E) ∼ E−1/2, which explains the spin
relaxation rate and specific heat (before magnetic fields are
applied) in Eq. (1). With only a small number of ABCA-type
stacking between different stacking patterns, the magnetic
entropy due to these “defect” layers contributes only a small
fraction of the total entropy, as seen in the experiment. In the
presence of a magnetic field, each quartic mode is split into
four Majorana cones in our model. The momentum shift (from
the quartic touching point) k0 of the Majorana cones scales
as k0 ∼ B1/4 since the energy shift is �E ∼ k4

0 ∼ B with
the Zeeman coupling. Therefore the velocity of the Majorana
fermions is v ∼ k3

0 ∼ B3/4, and the Majorana cones (in two
spatial dimensions) have a density of states [33]

D(E) ∼ E/v2 ∼ B−3/2E (3)

which produces the scaling in Eq. (2). Similar to Kitaev’s
exactly solvable model [19], a small gap E0 ∼ 10−3 meV can
be expected [34], which may only be observable at significantly
lower temperatures (∼0.01 K).

I. MODEL

The Hamiltonian that we consider consists of an ABCA-
type stacking of N = 4 honeycomb lattices. Each honeycomb
layer hosts a Kitaev honeycomb model [19] described by HK ,
and the layers are coupled together by a Heisenberg interaction
(Hg) (Fig. 1). We will also consider additional in-plane (Hλ)
and interlayer (Hλ′) interactions.

H = HK + Hg + Hλ + Hλ′ (4)

HK = K

N∑
�=1

∑
μ=x,y,z

∑
〈i,j〉∈μ

σ
μ

�,iσ
μ

�,j , N = 4

Hg = g

N−1∑
�=1

AB̄∑
〈i,j〉

�σ�+1,i · �σ�,j

Hλ = λ
∑

�=1,N

⎛
⎝ AAx∑

〈〈i,j〉〉
σx

�,iσ
x
�,j +

BBy∑
〈〈i,j〉〉

σ
y

�,iσ
y

�,j

⎞
⎠

Hλ′ = λ′ ∑
�=1,N−1

⎛
⎝ AĀx∑

〈〈i,j〉〉
σx

�+1,iσ
x
�,j +

BB̄y∑
〈〈i,j〉〉

σ
y

�+1,iσ
y

�,j

⎞
⎠ (5)

The summations
∑

〈i,j〉∈μ,
∑AB̄

〈i,j〉, and
∑···

〈〈i,j〉〉 sum over the
pairs of lattice sites indicated in Fig. 1(a). The magnitude of
K and g are not known, but K is likely to be similar to the
value for its parent material α-Li2IrO3 [4], and g could be
similar: −K ∼ g ∼ 10 meV. We will also couple the model

FIG. 1. (a) Two of the four layers in our model [Eq. (4)]. Red and
blue vertices denote the A and B sublattices, respectively. The red,
green, and blue links correspond to σxσ x , σ yσ y , and σ zσ z couplings,
respectively. The solid colored links denote Kitaev couplings in HK

and are summed over by
∑

〈i,j 〉∈μ. The black links denote interlayer

Heisenberg couplings in Hg and are summed by
∑AB̄

〈i,j 〉. The dotted red
and green links denote the σ xσ x and σ yσ y couplings, respectively,
that appear in in Hλ and Hλ′ . Note that the dotted couplings are highly
anisotropic; all of the dotted couplings for one unit cell have been
drawn. (A unit cell has two sites per layer. For drawing clarity, some
of the λ and λ′ couplings have been translated into neighboring unit
cells.) (b) A hexagon from each of the four layers (� = 1,2,3,4) when
viewed directly from above, which demonstrates what is meant by
ABCA stacking.

to a magnetic field Bμ

HB = −
∑
�,i,μ

Bμσ
μ

�,i . (6)

See Fig. 2 for a mean-field phase diagram for this model.
Notice that Hλ is a next-nearest neighbor, bond and sublat-

tice dependent, intralayer, Ising coupling. For our purposes, it

FIG. 2. Phase diagram of our model [Eq. (4)]. (red) When g/K

is small and B = 0, our model is in the same phase as four decoupled
layers of Kitaev’s QSL honeycomb model [19], where each layer
can be described by two gapless Majorana cones coupled to a Z2

gauge field [35]. (yellow) However, a magnetic field (B) opens up
a small gap and the resulting phase is four copies of a chiral QSL
[34]. (green) According to mean-field theory, for intermediate g/K

and B = 0, our model is described by two Majorana modes with
quartic dispersion [32] coupled to a Z2 gauge field. (green → blue)
When a small magnetic field (B) is applied, each of the two Majorana
modes with quartic dispersion split into four Majorana cones (eight in
total) with linear dispersion [Fig. 3(a)]. However, our model actually
predicts a very small gap [see Fig. 3(b)] for these Majorana cones
[36]. (white) Contents of the white region are unknown.
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will be sufficient to consider this interaction on the boundary
layers, but it could also be present in every layer. Hλ′ is similar,
except it is an interlayer coupling. Later, we show that without
Hλ or Hλ′ , our mean field model would result in a nongeneric
magnetic field dependence of the density of states [Eq. (3)]. Hλ

or Hλ′ are just two possible examples of how to obtain the ob-
served generic magnetic field dependence (in Appendix A we
consider more general possibilities); either alone is sufficient.
The underlying lattice distortion may render the magnitude of
their coupling constants (λ, λ′) as large as the nearest neighbor
coupling g. On the other hand, Eq. (3) will only hold for
sufficiently small magnetic fields: B � Bmax � max(λ,λ′).

II. MEAN-FIELD THEORY

We now study our model using mean-field theory. We follow
Kitaev and decompose the spins into four Majorana fermions
[19]: σ

μ

�i = i bμ

�ic�i . The physical states (|ψ〉) must obey the
following Hilbert space constraint: bx

�ib
y

�ib
z
�ic�i |ψ〉 = |ψ〉.

After decomposing the spins, all of the terms in our Hamil-
tonian become products of four Majorana fermions. We will
apply mean-field theory in order to obtain a solvable quadratic
Hamiltonian. For HK and Hg , we will use the mean-field
decomposition:

σ
μ

�iσ
μ

�′j
MF≈ −〈

i bμ

�ib
μ

�′j
〉
i c�ic�′j − 〈i c�ic�′j 〉i bμ

�ib
μ

�′j

+ 〈
i bμ

�ib
μ

�′j
〉〈i c�ic�′j 〉. (7)

If we only consider the Kitaev’s honeycomb model HK , then
this approximation is exact since it reproduces Kitaev’s exact
solution [19]. The approximation is also exact if we consider
only the Heisenberg Hamiltonian Hg in the sense that it
results in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into the
physical Hilbert space. Thus, we expect this decomposition to
be accurate in the colored regions of our phase diagram (Fig. 2).

After inserting the mean-field decompositions, we Fourier
transform the Majorana fermions:(

ck�α

b
μ

k�α

)
=

∑
i∈α

e−i (K+k)·i
(

c�i

b
μ

�i

)
, (8)

where α (=A,B) is the sublattice of site i [37]. ±K are the
locations of the gapless points [Fig. 3(a)] so that k is the
momentum displacement from these points. Since we are only
interested in the low energy physics, we will expand about
small k. Finally, we rotate the phase of the c and b fermions
on the B and A sublattices in order to cancel out factors of i in
H MF; i.e., ck�B → ick�B and b

μ

k�A → −ibμ

k�A.
The mean-field Hamiltonian (which is depicted in Fig. 4)

then takes the form of H MF = ∫
k
H MF

k where:

H MF
k = Kbb

N∑
�=1

(kx + iky)c†k�Ack�B + gbb

N−1∑
�=1

c
†
k,�+1,Ack�B

−Kcc

∑
�,μ

eiφμb
μ†
k�Ab

μ

k�B + gcc

∑
�,μ

b
μ†
k,�+1,Ab

μ

k�B (9)

−
∑
�,i,μ

Bμi bμ†
k�ick�i + H.c.

+H MF
λ;k (φx,φy,φz) = (−1,1,3) π i/3. (10)

FIG. 3. (a)Before a magnetic field (B) is applied, our model has
two gapless Majorana modes with quartic dispersion (green curve)
at the ±K points (red and blue dots). (Note that in the Brillouin
zone, the three red dots are equivalent points.) After a B field is
applied, the quartic mode splits into four Majorana cones (blue cones)
which are displaced by momentum |k0|. (b) The dispersion of the
Majorana fermions along one of the gray arrows in (a). (green)
Quartic dispersion before a magnetic field (B) is applied. (blue)
Majorana cone after a B field is applied. �E ∼ B, |k0| ∼ B1/4,
and E0 ∼ B3 [34]. See Fig. 5 in the appendix for more detailed
plots.

For simplicity, we absorbed the mean-field amplitudes into the
coupling constants (e.g., Kbb ≡ K〈i bμ

�ib
μ

�j 〉). We will ignore
H MF

λ;k until later.
Since H MF is quadratic and translation invariant, each mo-

mentum component decouples. H MF
k is composed of 4×(N =

4)×2 = 32 (complex) fermion operators, each denoted by a

FIG. 4. Picture of our mean-field Hamiltonian [Eq. (9)]. The
single-particle Hamiltonian of the c fermions at a given momentum
k resembles a fermion SPT chain [38] with low-energy modes at
the ends of the chain (corresponding to the top and bottom layers).
When the momentum k is shifted away from the gapless points
[Fig. 3(a)], the correlation length of the SPT chain increases and
the energy of the edge modes is kN , where N (=4 above) is the
length of the chain. Please see paragraphs below Eq. (9) for further
explanation.

115159-3



SLAGLE, CHOI, CHERN, AND KIM PHYSICAL REVIEW B 97, 115159 (2018)

B = 0 Bµ = 1/16

FIG. 5. Example low energy band structure in units where K = g = 1 and with λ = λ′ = 1/4 near a K point in the Brillouin zone. The left
column is for no magnetic field, while the right column includes a small magnetic field Bμ = 1/16 for μ = x,y,z. The bottom row is a contour
plot of log10 E, where E is the band energy. In the above plots, we are not including the extra terms that Kitaev generated via perturbation
theory in the presence of a magnetic field [34], which is why no gap is present in the above plots.

black dot in Fig. 4: The four flavors (c,bx,by,bz) are positioned
along the rows while the N = 4 layers (�) and two (α = A,B)
sublattices form the columns. Thus, for a given momentum k,
we can picture H MF

k as four chains of complex fermions. The
gcc and gbb terms in H MF

k couple the fermions connected by
the solid black lines, and Kcc couples b fermions connected
by the dashed black lines. We will consider gcc ∼ gbb ∼
Kcc ∼ Kbb ∼ 1. With only these terms (i.e., k = B = 0), the c

fermions at the ends of the chain (� and �) are decoupled and
form zero energy eigenstates. When a small k is introduced,
a small (kx + iky)Kbb term couples the c fermions across
the dotted pink lines. The c fermion chain then resembles a
fermion chain symmetry protected topological (SPT) model
[38], where the edge modes have a gap that is exponentially
small in the length (2N ) of the chain: E ∼ kN . Since N = 4,
we see that H MF

k has a quartic dispersion, which leads to the
specific heat in Eq. (1).

A magnetic field B couples the c and b fermions: i.e., Bμ

couples each c fermion to the bμ above it in Fig. 4. Four
examples of Bμ are shown in Fig. 4 as dotted gray lines.
Although the c fermion chain is an SPT with a very short
correlation length (when k is small), the b fermion chain is
gapped with a correlation length comparable to the length
of the chain (when gcc ∼ Kcc). Thus, a small magnetic field

perturbation will couple the c fermion edge modes (� and
�) at second order in perturbation theory since a fermion at
� will have to hop across two magnetic field perturbations
(and across the four ♦ or � in Fig. 4) in order to get to �.
An effective Hamiltonian describing the low energy c fermion
edge modes will thus include a term with energy coefficient
∼B2. When we back out of the spin chain picture and think
about what happens to the quartic dispersion, we find that it
actually spits into N = 4 Dirac cones, shifted by momenta
|k0| ∼ B1/2 with the velocity v ∼ |k0|3 ∼ B3/2 and density
of states D(E) ∼ E/v2 ∼ B−3E. However, this scaling is not
generic; it occurs because the magnetic field only contributed
at second order in perturbation theory, which resulted because
our mean-field model was fine tuned such that the c and b

fermions do not mix.
In order to mix the c and b fermions, we need to introduce

an additional term in our Hamiltonian. As an example of how
this mixing could occur, we consider Hλ and Hλ′ [Eq. (5)] with
the following mean-field decomposition:

σ
μ

�iσ
μ

�′j
MF≈ + 〈

i bμ

�ic�′j
〉
i c�ib

μ

�′j + 〈
i c�ib

μ

�′j
〉
i bμ

�ic�′j

− 〈
i bμ

�ic�′j
〉〈

i c�ib
μ

�′j
〉
. (11)

115159-4



THEORY OF A QUANTUM SPIN LIQUID IN THE … PHYSICAL REVIEW B 97, 115159 (2018)

This results in the following terms in the mean-field Hamilto-
nian [Eq. (9)]:

H MF
λ;k = λcb

∑
�=1,N

(
b

x†
k�Ack�A − b

y†
k�Bck�B

)

+ λ′
cb

∑
L=1,N−1

[
eiφx

(
b

x†
k,�+1,Ack�A + c

†
k,�+1,Abx

k�A

)

+ eiφy
(
b

y†
k,�+1,Bck�B + c

†
k,�+1,Bb

y

k�B

)]
. (12)

These terms couple the c fermions on the A sublattice to
the bx fermions, and the c fermions on the B sublattice
to the by fermions. A few examples of these couplings are
drawn in Fig. 4. If λcb = 0, then the by fermions and the c

fermion at � form a chain of length 9, and the eigenvector
with � now also includes contributions from � with ampli-
tude ψ0 ∼ max(λcb,λ

′
cb) [when max(λcb,λ

′
cb) � gcc ∼ Kcc ∼

1]. This eigenstate is still a zero mode since the length of the
chain is odd. The physics is the same if we consider λ′ terms
instead. Similarly, the� eigenstate includes contributions from
♦ with the same amplitude ψ0. This is important since now the
two zero modes (with support over �♦ or ��) are directly
coupled by the magnetic field B (via the dotted gray lines
shown in Fig. 4). Thus, following the logic of the previous
paragraph, the B field now enters at first order in perturbation
theory and introduces a term with energy coefficient �E ∼ B

to the effective Hamiltonian describing the low energy modes.
The B field now splits the quartic mode into N = 4 Dirac
cones shifted by momenta k0 ∼ B1/4, with velocity v ∼ B3/4

and density of states D(E) ∼ B−3/2E. This is precisely the
scaling seen in the experiment [33].

III. DISCUSSION

Motivated by a recent experiment on H3LiIr2O6 [27,28], we
have proposed a model for a quantum spin liquid in coupled
layers of Kitaev spin liquids. We use an example of ABCA-type
stacked-layers of the Kitaev spin liquid with the nearest and
next-nearest interlayer interactions, which were used to mimic
the effect of lattice distortion in real material. In the mean-field
theory, we show that the scaling of the specific heat and NMR
relaxation rate seen in the experiment can be explained by the
underlying gapless Majorana fermions, which are localized
near the top and bottom layers of the coupled-layer system.

On phenomenological ground, we are assuming that the
ABCA-type stacking pattern makes up a small fraction of
the possible stacking patterns that may exist in H3LiIr2O6.
The singular specific heat contribution from such “defect”
patterns will be a small portion of the total magnetic entropy,
which is consistent with the specific heat data. While the spin
susceptibility in the presence of strong spin-orbit coupling does
not simply reflect the density of states of spinful excitations,
the bulk susceptibility, which includes the contributions from
the “defect” layers, is related to the specific heat via a
thermodynamic relation. This is clearly demonstrated in the
experiment [27,28]. In contrast, the Knight shift shows very
little temperature dependence at low temperatures, which may
be consistent with the expectation that the Knight shift is
relatively insensitive to those “defects.” Going beyond mean-
field theory, a small magnetic field opens a small mass gap for

the Majorana cones [34]. However, it may be difficult to see
such a small gap in the experimental regime of T ∼ 0.1–1 K
and B ∼ 1–8 T, where the characteristic scalings of 1/T1 and
C/T were observed; smaller temperatures and larger magnetic
fields may be needed. As shown in the case of stacked graphene
layers [30,31], there exist other multilayer stacking patterns
where soft modes with quartic dispersion exists (e.g., ABCAC
or ABCACB) (along with other less-soft modes), or cubic k3

(ABC) or quintic k5 (ABCAB). As such, other H3LiIr2O6

samples could also exhibit different dispersions which are
dominated by various kinds of stacking sequences. Further
experiments on the distribution of the stacking patterns could
be helpful.
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APPENDIX A: OTHER λ TERMS

In Eq. (5) we considered a simple possible example for Hλ

and Hλ′ . Here, we will explain a more general example:

Hλ =
∑
�αμ

∑
〈〈i∈(�,α),j∈(�,α)〉〉⊥μ

λ�αμνσ
ν
�iσ

ν
�j

Hλ′ =
∑
�αμ

∑
〈〈i∈(�,α),j∈(�+1,α)〉〉∈μ

λ′
�αμνσ

ν
�+1,iσ

ν
�j . (A1)

∑
〈〈i∈(�,α),j∈(�,α)〉〉⊥μ sums over all pairs of sites (i,j ) where i is

on layer � and sublattice α, and similarly j ∈ (�,α), and where
μ specifies the direction of the (i,j ) bond.

This choice contributes to H MF
k [Eq. (9)] as follows:

H MF
k =

∑
�αν

(
Bν +

∑
μ

λ�αμν

)
b

ν†
k�αck�α

−
(∑

μ

λ′
�αμν eiφμ

)(
b

ν†
k,�+1,αck�α − c

†
k,�+1,αbν

k�α

)
+ H.c. + · · · , (A2)

where φμ was defined in Eq. (10). We see that λ′ must depend
on the bond direction μ or else it cancels out above.

However, there are other constraints that must be imposed
on λ and λ′, which can be understood from Fig. 4. In particular,
if the A sublattice has a σ νσ ν coupling, then the B sublattice
must not also have this coupling. That is,

if λ�Aμν = 0 or λ′
�Aμν = 0,

then λ�Bμν ≈ λ′
�Bμν ≈ 0 (A3)

and similar for A ↔ B. If the above is not true, e.g., if λ�αμν =
λ′

�αμν = 1, then even before a magnetic field is applied, the zero
modes (� and �) would be coupled to each other, which would
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split the quartic dispersion into Majorana cones. However,
in a material, all of these λ terms can be expected to be
nonzero. But most of them will probably be very small; and

as long as Eq. (A3) is at least approximately obeyed, a quartic
dispersion will be observed in the specific heat until a very low
temperature, which has not been observed yet.
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