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Spin-selective electronic reconstruction in quantum ferromagnets:
A view from the spin-asymmetric Hubbard model
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Using the tight-binding treatment for the spin-asymmetric Hubbard model we explore the effect of electronic
interactions in the ferromagnetic, partially filled Lieb lattice. As a key result we demonstrate the formation of
correlation satellites in the minority spin channel. In addition, we consider the role played by transverse-field
spin fluctuations in metallic ferromagnets. We quantify the degree of electronic demagnetization, showing that
the half-metallic state is rather robust to local spin flips. Not being restricted to the case of a partially filled Lieb
lattice, our findings are expected to advance the general understanding of spin-selective electronic reconstruction
in strongly correlated quantum ferromagnets.
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I. INTRODUCTION

Metallic ferromagnetism results from the existence of
permanent magnetic moments in correlated electron bands
[1]. Historical examples in this class of metallic quantum
systems are three-dimensional, monoatomic chains of ele-
mental transition-metal ferromagnets like iron, cobalt, and
nickel [2]. The microscopic mechanism underlying band fer-
romagnetism is known to be one of the most fundamental
many-particle problems in condensed matter physics [3]. It
is believed to be due to the interplay between Coulomb,
Hund, or double-exchange interactions and kinetic energy as
determined by the Pauli principle. In other words, itinerant
quantum ferromagnetism results from a nontrivial interplay
between the kinetic energy of itinerant electrons and many-
body interactions (on-site and intersite components) as well
as disorder in the solid [4]. Microscopic many-particle models
for understanding the origin of itinerant ferromagnetism have
been proposed independently by Hubbard [5], Kanamori [6],
and Gutzwiller [7] but this remains a major unsolved and open
debate problem [1]. On general grounds, ferromagnetic ground
states might occur if one of the several bands of the Coulomb
correlated model is dispersionless, determining the so-called
Lieb (or flat-band) ferromagnetism [8,9].

The Hubbard model is known to be the canonical description
of strongly correlated electron systems. It was introduced to
explain ferromagnetism in transition metals [5], and since
then, it has been considered a model for antiferromagnetism,
unconventional superconductivity, and fractionalized phases
of quantum matter. In spite of its apparent simple form, the
Hubbard model encodes nontrivial many-body physics that
can only be treated exactly at particular one-dimensional
[10] and high-lattice-dimensional [11] limits. Importantly, this
model is now considered to be one of the most fundamental
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among various microscopic theories for understanding hidden
properties of correlated electron systems, including as shown
here the formation of Hubbard satellites in fully polarized one-
band ferromagnets. However, even for this one-band model
Hamiltonian, a comprehensive picture of the mechanism that
drives ferromagnetic order is still missing [12]. The difficulty
in understanding the origin of itinerant or half-metallic ferro-
magnetism [13] is mainly due to the fact that the ordering
and the formation of local moments are a strong-coupling,
multiorbital [14,15] phenomenon and thus in general the
ferromagnetic magnetic ground state is not easily described
by purely perturbative techniques. Nonetheless, some exactly
known results for the Hubbard model have been used as a
test frame for approximate theories. The Nagaoka theorem
[16], for example, states that a saturated ferromagnetic order
is the ground state for the U = ∞ Hubbard model when one
hole/electron is introduced into the half-filled band for the
simple cubic lattice in three dimensions. The Mermin-Wagner
theorem [17], on the other hand, rules out at finite temperatures
both the ferromagnetic and the antiferromagnetic ordered state
in the one-band Hubbard model below two dimensions [18].
Moreover, in addition to many-particle interaction effects,
important details of the noninteracting electronic structure
induced by lattice topologies, e.g., the asymmetry of the
local density of states (DOS) [19] as well the existence of
van Hove singularities near the Fermi energy, EF , must be
considered in some cases [20]. Thus, based on extant studies,
it seems that two main ingredients favor ferromagnetism in the
Hubbard model: an asymmetric DOS with singularities near
EF (e.g., the f cc DOS) [21] and nonbipartite lattices with
frustration in the antiferromagnetic correlations, which can
be generated by introducing next-nearest-neighbor hopping
terms [20]. In this work we focus our attention on the effect of
electron-electron interactions on the partially filled Lieb lattice,
which, in addition to the two cases above, possesses intrinsic
flat-band ferromagnetism [8]. It is noteworthy, however, that
our theory and results are not restricted to the Lieb lattice and
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FIG. 1. Two-dimensional Lieb lattice. Its unit cell, which contains
three atoms (A, B, C), is shown as the dashed line. The corresponding
density of states for the noninteracting case can be found, for example,
in Refs. [25] and [26].

are expected to be generally applicable to understanding the
correlated electronic structure of itinerant and half-metallic
one-band ferromagnets [22] within the dynamical mean-field
theory (DMFT) approximation.

The two-dimensional Lieb lattice, or the line-centered
square lattice, has been studied with considerable interest
due to specific properties induced by its topology [23–26]
as well as to understanding the interplay between on-site
electronic interactions [27] and orbital degrees of freedom
[27,28]. In recent years, Lieb lattices have been realized in
photonic crystals [29,30] as well as in cold-atom systems [31].
Additionally, artificial Lieb lattices have been designed on the
metallic copper surface [32]. The lattice is characterized by
a unit cell containing three atoms (see Fig. 1) [9,23,25] and
a one-particle energy spectrum showing two fully polarized
(with particle-hole symmetry) bands and a dispersionless band
[25,26,30]. Thus, for a lattice system, the three energy bands
touch one another at the center of the spectrum (usually
taken as the zero energy), and the low-energy spectrum
exhibits a V -shaped Dirac cone near EF at half-filling. In
this decorated square lattice [25], when the flat band is at
the Fermi energy, magnetic phase transitions can occur even
with infinitesimally small electron interactions because the
DOS at EF is extremely high. Although theoretical studies on
correlated quantum magnetism in the Lieb lattice have been
performed in recent years [33], the role played by dynamical
electron-electron interactions in the ferromagnetic state for
the one-band Hubbard model remains unclear. Indeed, the
general consensus dictates that dynamical correlations induced
by the local Coulomb interaction U is irrelevant since the
majority spin sector (spin ↑) is not scattered by the fully
polarized minority spin channel. In this work we show that
this understanding holds true for itinerant (spin-↑) electrons,

however, the spin-↓ channel is shown to be strongly affected
by U within the tight-binding treatment of the Hubbard model
in infinite dimensions [34].

II. THEORY AND DISCUSSION

The spin-asymmetric (also known as mass-imbalanced)
[36] Hubbard model on a d-dimensional lattice is described
by the Hamiltonian

H =
∑
kσ

εkσ c
†
kσ ckσ + U

∑
i

ni↑ni↓ +
∑
iσ

(
ε0
σ − μ

)
niσ , (1)

where c
†
i,σ are the creation operators for electrons with spin

σ (= ↑,↓) at site i and niσ = c
†
iσ ciσ . In Eq. (1) εkσ describes

a ferromagnetic, spin-dependent [14,35] electron band dis-
persion relation for the two spin channels, ε0

σ (here chosen
to be spin independent [36] and equal to −U/2) is the on-
site energy level of the localized one-band states, μ is the
chemical potential of the system, and U is the on-site Coulomb
interaction.

For the sake of simplicity let us focus our attention on
the scattering correction approximation of the tight-binding
treatment in the large-d limit [34], which allows us to treat
Eq. (1) self-consistently. This approximation is known to
provide the exact solution [11] for the conduction electrons
of the simplified Hubbard model (usually dubbed the spinless
Falicov-Kimball model) [37] and it is formally identical to
that obtained in Ref. [38]. For problems of local disorder the
set of equations described below corresponds to the coherent
potential approximation, which is the exact solution of the
Anderson localization problem [39] within the large-d limit
[40]. While an extended description of technical aspects
related to the tight-binding (or linked cluster) treatment for
the Hubbard Hamiltonian can be found in Refs. [41] and [42],
below we briefly describe the self-consistent formalism [34]
used here to study Eq. (1) and to understand the role played
by electron-electron interactions and one-particle spin-flip
fluctuations induced by a local transverse field [43] in itinerant
quantum ferromagnets within DMFT.

The linked cluster expansion (or the tight-binding treat-
ment) for the Hubbard model [34,41,42] starts by assuming that
the local part of the unperturbed Hamiltonian is given by the
last two terms in Eq. (1). The solution of the local unperturbed
Hamiltonian provides a basis of two coupled spin subspaces,
and the corresponding zero-order retarded Green’s functions
are given by G0

σ (ω) = 1−〈nσ̄ 〉
ω−ε0

σ +μ
+ 〈nσ̄ 〉

ω−(ε0
σ +U )+μ

, where ω ≡ ω +
0+ and 〈nσ̄ 〉 are the fully renormalized on-site occupancies
(or the average electronic density) for the σ̄ electrons, which
encodes the probability of finding a σ̄ electron at a given
site on the lattice. Next we consider the full limit of Eq. (1),
where the hopping terms are explicitly taken into account.
At any lattice dimension d, an approximate solution to this
many-particle problem can be obtained by means of a tight-
binding treatment around the atomic limit [42]. Using G0

σ (ω)
above the single-particle Green’s function within the Hubbard I
approximation [5] reads [Gkσ (ω)]−1 = [G0

σ (ω)]−1 − εkσ . The
next step towards a self-consistent treatment of the Hubbard
Hamiltonian is achieved by adding high-order, on-site and
intersite corrections to the atomic one-particle Green’s function
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G0
σ (ω) which are encoded in the irreducible nonlocal prop-

agator Gkσ (ω) [41,42]. It is noteworthy that this propagator,
which in the general case gives the momentum and frequency
dependence for the many-particle self-energy �kσ (ω) ≡ ω −
G−1

kσ (ω), is irreducible in the sense that it cannot be divided into
two pieces by cutting a single hopping line [42]. However, as
shown in Ref. [34], in the limit of infinite spatial dimensions the
self-energy loses its k dependence and only the site-diagonal
part of the irreducible propagator survives in the large-d limit.
Thus, since the k dependence in this limit is restricted to the
tight-binding energies εkσ , the sum over k can be directly
performed, and the single-particle Green’s function at site i

for the σ channel is given by

Giiσ (ω) = 1

N

∑
k

1

[Gσ (ω)]−1 − εkσ

. (2)

In the high-dimensional limit [40], one can write the
irreducible propagators in terms of the single-site one-particle
Green’s functions and the dynamical (Weiss) mean field using
the relation [34]

Aσ (ω) = [Gσ (ω)]−1 − [Giiσ (ω)]−1. (3)

It is worth mentioning here that Aσ (ω) describes the motion of
an electron through the surrounding medium of a site i, i.e., the
rest of the lattice [34]. Its effect can be viewed as equivalent to
that of a time-dependent (effective) field coupling the lattice
site i to two reservoirs, one for each spin direction. We recall
here that the basic principle behind the DMFT treatment is to
replace the lattice problem with a self-consistently embedded
(Anderson) impurity problem [40] and the self-consistency
condition requiring the local impurity Green’s function to be
equal to the local Green’s function for the lattice, which, in the
tight-binding formalism, reads [34,44]

Giiσ (ω) = 1

N

∑
k

1

[Giiσ (ω)]−1 + Aσ (ω) − εkσ

. (4)

Finally, in order to have the complete set of equations
for the relevant one-particle Green’s functions as well as the
dynamical Weiss fields, an explicit solution of the single-
site problem for each spin channel must be obtained. The
tight-binding perturbation treatment around the atomic limit
provides a direct way of solving the single-site problem by
means of a perturbative expansion in the dynamical field Aσ

[34]. Starting from the unperturbed local Green’s functions,
G0

σ (ω), two perturbation treatments in the local fields can be
summed exactly if local contributions due to spin fluctuations
induced by many-particle Coulomb scattering processes are
not taken into account [34,38] and in this regime the local
one-particle Green’s function for both spin channels is given
by

Giiσ (ω) = 1 − 〈nσ̄ 〉
ω − ε0

σ + μ − Aσ (ω)

+ 〈nσ̄ 〉
ω − ε0

σ − U + μ − Aσ (ω)
, (5)

which has exactly the same form as that obtained from the
scattering correction term of the Hubbard III approximation
for the Hubbard model [38].
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FIG. 2. Uncorrelated density of states for two spin polarization
channels at quarter-filling. While the spectral density of the majority
(spin-↑) carriers are almost half-filled and span the Fermi energy
EF (= ω = 0), the spin-↓ electron band is completely empty in case
2 as discussed in the text.

Equations (4) and (5) constitute a closed system of equations
for the Hubbard Hamiltonian. The self-consistent solution of
Eqs. (4) and (5) can be performed numerically for different lat-
tices both in the paramagnetic and for correlated ferromagnetic
systems in the full frequency (energy) range. In what follows,
we consider the case of a ferromagnetic, quarter-filled Hubbard
model in the spin-split Lieb lattice. We focus our attention on
the lowest-energy dispersive band and ignore the multiband
contributions [9,23] coming from the flat and the dispersive
conduction bands. In the partial band filling considered here
(quarter-filling in the case of the one-band Hubbard model) the
higher-energy conduction band states will form fully empty
band dispersions with vanishing Coulomb correlation effects,
while the flat bands not explicitly included in our theory will
give rise to localized magnetic moments responsible for the
ferromagnetic ground state as guaranteed by the Lieb theorem
[8]. The dispersion relations we use to describe a (nearly)
half-metallic ferromagnetic state for the 2d Lieb lattice [9]
are written as

εkσ = �σ − 2
√

t2
x cos2(kx/2) + t2

y cos2(ky/2), (6)

where kx (ky) is the momentum component along the x (y)
direction, tx = ty = 0.5, and �σ are the spin-dependent band
shifts needed to describe a ferromagnetic ground state [22]
with free electron band dispersions as in Fig. 2. Thus, generally
speaking and similarly to Ref. [22], where an external magnetic
spin splitting � was added to the one-band Hubbard Hami-
lation to mimic the local Hund’s polarization present in real
multiorbital systems, the constrained (quarter-filled) regime
considered here for the spin-asymmetric Hubbard model is
characterized by an almost-half-filled majority (spin-↑) elec-
tron band and two distinct regimes for the minority (↓) spin
channel, with a partially filled (case 1) or fully spin-polarized
(case 2) electron band. The electronic states displayed in Fig. 2
are obtained assuming �↑ = 1.04, �↓ = 1.29 (case 1) and
�↑ = 1.0, �↓ = 1.5 (case 2). In the following we present
our analysis of the frequency dependence of the spin-resolved
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FIG. 3. Effect of electron-electron interactions in the spin-
asymmetric Hubbard model. Note the large transfer of spectral weight
and the emergence of Hubbard satellites in the minority spin channel
with increasing U .

one-particle spectral functions, showing the high-energy Mott
counterpart of spin-selective Kondo [45] localization in corre-
lated ferromagnets.

A. Role of on-site Coulomb interaction

In Fig. 2 we display the uncorrelated DOS for the two
cases described above. As shown the majority (↑-spin) band at
quarter-filling spans the Fermi energy (EF = ω = 0), however,
for the minority spin channel, only in case 1 do electronic states
set in at EF . While in this regime the van Hove singularity is
found above EF , for �↑ = 1.0 (case 2) it appears exactly at EF

for the majority spin channel. Interestingly, case 2 represents
a fully polarized ferromagnet, also referred to as a saturated
ferromagnet [14], where the minority spin channel is empty
and the electronic states reside only in the conduction band.
This saturated scenario is applicable to half-metallic systems
like CrO2, a multiorbital system without minority electronic
states crossing EF [46].

Let us now turn our attention to the self-consistent (DMFT)
results in Figs. 3 and 4, where the effect of on-site electron-
electron interaction in the two cases introduced above is shown
for both spin channels. As expected for one-band itinerant
ferromagnets, our results in Figs. 3 and 4 show that the
majority spin (↑) channel is weakly renormalized by the on-site
Coulomb interaction U . This is linked to the strong polarization
of the minority carriers or the low on-site occupancy, 〈n↓〉,
self-consistently computed using Eqs. (4) and (5). The main
effect shown in the upper panel in Fig. 3 is the appearance of
an incipient upper Hubbard band at energies ω = 0.75 above
EF in case 1. On the other hand, electrons in the minority
spin channel are strongly scattered by the itinerant carriers,
with the concomitant appearance of two prominent Hubbard
satellites with increasing U . In strongly correlated electron
systems the presence of correlation satellites are known to be
the precursor of the Mott-Hubbard band splitting, which here is
a manifestation of spin-selective high-energy electronic recon-
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↑
FIG. 4. Local Coulomb correlation effects in the fully polar-

ized, spin-asymmetric Hubbard model. While the majority band
is protected against strong electron interactions, a large dynamical
transfer of spectral weight is visible in the minority spin channel with
increasing U .

struction in quantum ferromagnets. Interestingly, our results
imply that the spin-up electronic configuration (with half-filled
conduction band states) causes satellites in the minority spin
channel upon the addition or removal of an itinerant electron
at each site on the lattice. It is worth mentioning as well that
the line shape of the Hubbard satellites and the emergence of a
high-energy incoherent electronic structure in the conduction
band are many-particle fingerprints of strong electron-electron
interactions within DMFT [34,40,42]. However, as expected
within the linked cluster framework, we do not observe
a first-order electronic reconstruction in the minority spin
channel; instead, correlation satellites are accompanied by
smooth crossover with increasing U . Taken together, these
results imply a nontrivial rearrangement of the conduction band
electronic structure which could be tested in future experiments
on correlated quantum ferromangnets.

B. Role of local transverse spin-flip fluctuations

Our results above are important for understanding the
dynamical nature of high-energy electronic reconstruction and
the emergence of Hubbard satellites in the minority electronic
states as well as intrinsic low-energy and higher-energy spec-
tral features probed in inverse-photoemission spectroscopy in
itinerant ferromagnets like CrO2 [47]. However, it remains to
be understood how robust these results are against local spin
fluctuations induced, for example, by spin-orbit interactions in
Coulomb interacting ferromagnets [48]. To provide an answer
to this fundamental problem we now investigate the role played
by local transverse-field spin flips in our strongly correlated
DMFT (U = 1) results.

For one-band systems the local transverse-field Hamilto-
nian can be written as Hλ = λ

∑
i(c

†
i↑ci↓ + H.c.) [43]. Here, λ

is a k-independent (or local) spin-flip term, which is taken as
an additional model parameter in our description. Physically,
Hλ acts as a transverse magnetic field and locally mixes the
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FIG. 5. Effect of transverse-field-induced local spin fluctuations
in the spin-asymmetric Hubbard model. Note the substantial changes
in the correlated spectral functions of the spin-polarized charge
carriers. Interesting is the enhancement of the upper Hubbard band
in the majority channel and the changes in spectral weight of the
spin-↓ valence band upon increasing the local transverse field λ. Inset:
Monotonic reduction of the total magnetization, m, due to electronic
depopulation of the majority spin channel.

two spin states described in Eq. (1). As shown in Ref. [43], the
formal exact solution of the complete problem, i.e., H̄ = H +
Hλ, can be obtained by performing a perturbative treatment on
the transverse field (or the spin-dependent hybridization) term.
The single-particle Green’s function in a transverse field reads

Giiσ (ω) = 1

N

∑
k

1

[Gσ (ω)]−1 − εkσ − λ2Gσ̄ (ω)
. (7)

The DMFT self-consistent solution of these spin-coupled,
single-site Green’s functions together with Eqs. (3) and (5) pro-
vides a direct scheme to describe transverse spin fluctuations
of correlated electron systems, including, as shown here, the
monotonic switching of ferromagnetic aligned spins in metallic
ferromagnets.

With this in mind, in Fig. 5 we display the effect of the local
transverse field on the correlated (U = 1) spectral function.
In the top panel the transverse-field-induced transfer of the
spectral weights is visible from low energies to the upper
Hubbard band above ω = 1. Though not too pronounced the
spectral weight transfer is not rigid in nature. Interesting as
well is the fact that the high-energy electronic structure found
in the majority spin channel remains nearly the same with
increasing λ. On the other hand, the correlated one-particle
band gap of the minority carriers shrinks as λ is increased. This
high-energy incoherent response is shown in the bottom panel
in Fig. 5, where we demonstrate that a strong enough transverse
field can induce spectral weight transfer over large energy
scales as well as the formation of a pseudogap in the minority

spin electron band near EF . Noteworthily, while the spin-↓
electrons remain metallic up to higher λ values, their electron
occupation increases with λ. This result implies a reduction
in the electronic polarization of the ferromagnetic state. The
overall change in the magnetic behavior with fixed U is
illustrated in the inset in Fig. 5 (top panel), where the transverse
field leads to decreasing magnetization, m(≡ 〈n↑〉 − 〈n↓〉), as
〈n↓〉 grows monotonically at the expense of 〈n↑〉. This weak
suppression of ferromagnetism is reflected by a reduction in
the polarized [14], P = (〈n↑〉 − 〈n↓〉)/(〈n↑〉 + 〈n↓〉), magnet-
ically ordered state due to transverse-field-induced electronic
depopulation of the majority spin channel. Our results thus
suggest that small changes in the spin-selective band fillings
will influence the line shape of correlated electronic states of
strongly spin-polarized spin-orbit systems. Nevertheless, the
net magnetization m remains finite for realistic (or not too
large) λ values and this behavior serves as a proof that the
ferromagnetic ground state is rather robust to local spin-flip
fluctuations. Future work is needed to identify these specific
changes in real spin-orbit ferromagnets.

III. CONCLUSION

In conclusion, we have used the dynamical mean-field
theory method to study spin-selective electronic reconstruction
in the spin-asymmetric Hubbard model. While our results are
expected to be generally applicable to correlated ferromagnetic
lattice systems [49], we have discussed them in the context
of a partially filled Lieb lattice with spin-dependent electron
band dispersions. Electron-electron interactions are shown to
induce the emergence of Hubbard satellites in the minority
spin channel and high-energy band gaps in the correlated
spectral functions at large U . Our model is appropriate for
understanding correlation effects in quantum ferromagnets,
since it explains why the majority (spin-↑) channel has a
noninteracting spectrum while the spin-↓ electrons are shown
to be strongly scattered via a local Coulomb repulsion mecha-
nism. Moreover, by investigating the influence of a transverse
(magnetic) field, we find that the ferromagnetic properties
are sensitive to local spin-flip fluctuations. Finite transverse
field (or spin-orbit) effects depolarize the spin-split electron
states, with a degree of spectral weight transfer which depends
on intrinsic dynamical correlation effects induced by the on-
site Coulomb interaction U . Our results are expected to be
important for understanding correlation and spin-orbit effects
in electronic states at the LaAlO3/SrTiO3 interface, where
the splitting of t2g orbital degeneracy at the polar interface
between these two insulating transition-metal oxides leads to
a quarter-filled xy band (0.5 electron per Ti) in the top TiO2

ferromagnetic layer [50].
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