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The bulk-boundary correspondence, a topic of intensive research interest over the past decades, is one of
the quintessential ideas in the physics of topological quantum matter. Nevertheless, it has not been proven in
all generality and has in certain scenarios even been shown to fail, depending on the boundary profiles of the
terminated system. Here, we introduce bulk numbers that capture the exact number of in-gap modes, without
any such subtleties in one spatial dimension. Similarly, based on these 1D bulk numbers, we define a new 2D
winding number, which we call the pole winding number, that specifies the number of robust metallic surface
bands in the gap as well as their topological character. The underlying general methodology relies on a simple
continuous extrapolation from the bulk to the boundary, while tracking the evolution of Green’s function’s poles
in the vicinity of the bulk band edges. As a main result we find that all the obtained numbers can be applied
to the known insulating phases in a unified manner regardless of the specific symmetries. Additionally, from a
computational point of view, these numbers can be effectively evaluated without any gauge fixing problems. In
particular, we directly apply our bulk-boundary correspondence construction to various systems, including 1D
examples without a traditional bulk-boundary correspondence, and predict the existence of boundary modes on
various experimentally studied graphene edges, such as open boundaries and grain boundaries. Finally, we sketch
the 3D generalization of the pole winding number by in the context of topological insulators.
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I. INTRODUCTION

Topological order has been an active theme in condensed
matter physics over the past decades. With the discovery [1]
of the quantum Hall effect (QHE), in particular, it became
apparent that topological concepts are needed for the descrip-
tion of certain quantum orders [2–4] in addition to the usual
symmetry-based classification schemes. The corresponding
QHE invariant then plays a role analogous to conventional
order parameters and corresponds to a physical observable,
being the quantized Hall conductance [2]. This integer is in turn
related to the number of protected chiral edge states by virtue
of the system being a free-electron insulator in the bulk. More
recently, topological considerations were revived in the context
of band structures [5,6]. That is, it was found that the concepts
of symmetry and topology can be combined, resulting in
(nearly) free fermions states that feature a topological invariant
as a result of the presence of a symmetry [7–18]. Following
the prediction and experimental discovery of many time-
reversal protected Z2 topological band insulators [19–27], the
active investigation of such symmetry protected topologically
ordered states and their associated physical consequences has
in fact also been driven by the identification of many actual
material candidates.

While the impact of the topological entity can be traced
from a bulk perspective [28–36], a highlight of topological
order is formed by the presence of signature edge states via a
bulk-boundary correspondence (BBC) similar to the QHE case.
These edge states have both direct experimental and theoretical
consequences [24–27,37–40]. Indeed, edge states can di-

rectly be experimentally verified using ARPES measurements,
whereas the halving of the degrees of freedom lies at the basis
of new theoretical proposals including the notable possibility
of excitations having fractional charges and statistics [23]. For
example, in a topological insulator, each spatially separated
edge hosts a single Dirac cone. However, a general relation
between the bulk and boundary modes is yet to be established
and thus forces one to case-by-case evaluations. In case of a
topological phase that is, e.g., solely protected by crystalline
symmetries, the termination that results in the boundary has
to at least respect the protecting symmetry [41–43]. More
generally, one can note that, by the incompressible nature of the
bulk topology, the bulk system features a robustness that is set
by the bulk band gap, whereas the edge states can in principle
immediately be gapped by a symmetry breaking perturbation
[44–47]. Furthermore, in 1D reflection symmetric insulators,
the Zak phase’s [48] (or Berry phase’s) BBC requires the
commensurability between a certain choice of the bulk unit
cell and the terminated system, while the finite system should
also remain insulating [41,49]. Since the latter condition cannot
be checked from the bulk perspective, the Zak phase misses the
complete prediction of the number of in-gap boundary modes.
This can be exemplified in many specific models including
a coupled Su-Schrieffer-Heeger (SSH) model that we will
employ later.

Although BBCs were considered as early as the 1930’s
[50–62], we here universally address the role of the BBC. That
is, we identify direct measures to predict the appearance of
midgap states between two bands in the presence of a general
boundary. In particular, starting from a construction that can
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directly be linked to Green’s functions, we define simple
quantities calculated from bulk wave functions that directly
convey the number of modes in the gap of 1D insulators. As
a next step, we then lift these ideas to 2D, culminating in
the concept of the pole winding number, which is completely
distinguished from the usual definitions of winding number
based on the TKNN number. Specifically, we find that the
trajectories of the poles of the Green’s function and their
chiralities relate to the presence of a topological invariant in
the bulk. Although this winding number is obtained from bulk
wave functions, it predicts the number of in-gap surface bands.
Moreover, evaluating the winding of the poles in detail also
discerns whether these bands have a topological status in the
sense that it conveys whether they connect the valence and
conduction bands. The resulting number can be evaluated in a
unified way regardless of underlying symmetries of the system.
After elucidating all these notions with specific examples,
including well-known models such as the Kane-Mele model
[20] and experimentally studied graphene grain boundaries
[63–68], we finally also sketch the applications of our ideas
to 3D.

The rest of this paper is organized as follows. In Sec. II,
we set the stage and introduce some essential concepts as well
as the underlying idea of why an evaluation of the poles of
the Green’s functions relates to the topological bulk invariant
and therefore sheds light on the BBC of the system. This
then leads to the identification of robust numbers that convey
the number of in-gap modes and their topological character.
Subsequently, in Sec. III, we then link the previous notions
to systems having a topological Z2 classification. Then, we
apply our general machinery to numerous specific examples
in Sec. IV to elucidate the more formal preceding sections. In
Sec. V, we show that this strategy naturally leads to the pole
winding number. This number can similarly be used to predict
the number of edge states as well as their topological character
in 2D, whereas the generalization to 3D is implicitly evident.

II. OBTAINING THE NUMBER OF IN-GAP MODES FROM
BULK PROPERTIES

We first explain the method of obtaining the number of
in-gap modes for the case of one spatial dimension and consider
a general translationally invariant system with an arbitrary
number of bands. With periodic boundary conditions, such
systems can be described on a ring geometry with N unit
cells, which we refer to as the bulk. Various terminations of
the bulk, as well as junctions between two different bulks, are
generally realized by adding a local operator Vb to the bulk
Hamiltonian H0. Consequently, we study a system described
by a Hamiltonian

H = H0 + Vb. (2.1)

For instance, for an open boundary, Vb consists of hopping
terms that cancel all the hopping terms of the bulk Hamiltonian
that cross the boundary between two neighboring unit cells, as
illustrated in Fig. 1(a). Similarly, for a junction between two
distinct bulks, we can modify two independent ring geometries
into two finite systems with open boundaries, following the
above prescription, and then apply additional hopping terms
to Vb that connect the two terminated systems, as depicted in

(a)

(b)

connected 
to A1

n.n. hopping
n.n.n. hopping

connected 
to A1

left edge

right edge

left edgeright edge

left edgeright edge

junction
connected 

to A1

connected 
to A1

FIG. 1. Schematic description of the use of local potentials for
making open boundaries and junctions by considering tight-binding
models with nearest-neighbor (n.n) and next-nearest-neighbor (n.n.n.)
hopping processes. (a) We prepare two bulk systems represented
by two ring geometries. To make open boundaries (red zigzag line)
between A2 and B2 in the upper chain, we add a local potential that
cancels all the hopping processes (yellow and blue curves) crossing
this red line. The same applies to the lower chain. (b) Given two chains
with open boundaries, we add another local potential that makes a
connection (brown line) between A2 and B′

2 which completes the
junction between the upper and lower chains.

Fig. 1(b). Higher dimensional systems can similarly be studied
by constructing an effective 1D Hamiltonian for each fixed
transverse momentum.

Next, we lift this construction to a parameter family of
Hamiltonians

Hβ = H0 + βVb, (2.2)

where β, varying from 0 to 1, extrapolates between the periodic
bulk and the terminated system. To obtain a bulk criteria for
the existence of in-gap localized modes of the system with an
edge, Hβ=1, we simply count the net number of states that are
transferred from the bulk band continuum into the band gap.
Note that we may presume those in-gap modes to be localized
as they result from a local potential Vb that cannot affect the
bulk wave functions far away from the local region.

The number of modes M in the gap between the valence
and conduction-band edges is generally given by

M = − 1

π
Im

∫ εc

εv

dεTrG1(ε), (2.3)

where Gβ(ε) = (ε − Hβ + iη)−1 is the retarded Green’s func-
tion for Hβ . From now on, we refer to the retarded Green’s
function simply as the Green’s function. Here, εc and εv

are equipotentials infinitesimally shifted from the conduction
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and valence-band edges into the gap, called the conduction
and valence band portals. The infinitesimal shift allows us
to assume there are no boundary modes between the portal
and the bulk continuum. Our strategy is to evaluate the
integral in Eq. (2.3), assuming that the eigenenergies εn,k and
eigenfunctions |n,k〉 of the bulk Hamiltonian H0 are known,
by studying the behavior of poles of Gβ(ε) as a function of β.

The evaluation of M is done by specifying the poles ofG1(ε)
in the gap. This is equivalent to the number of roots of Aβ=1(ε),
where

Aβ(ε) = det{1 − βG0(ε)Vb} ≡ detAβ(ε), (2.4)

since Gβ(ε) = [1 − βG0(ε)Vb]−1G0(ε) and G0(ε) has no poles
in the gap. We refer to Aβ(ε) and Aβ(ε) as the pole-matrix
and the pole-determinant in the remainder. Calculating the
pole-matrix, the bulk eigenenergies and eigenfunctions are
employed in such a way that

Aβ(ε)|ij = 〈i|1 − βG0(ε)Vb|j 〉 (2.5)

= δij − β
∑
n,k

1

ε − εn,k

〈i|n,k〉〈n,k|Vb|j 〉, (2.6)

where i and j are the indices for the eigenvectors of Vb.
Due to Vb, which takes the role of projection to the Hilbert
space consisting of its eigenvalues, the matrix representation
of 1 − βG0(ε)Vb in this reduced Hilbert space yields the same
pole-determinant obtained from the full Bloch basis. Let us
clarify the definitions of the pole-matrix and pole-determinant
by considering a simple 1D chain example, which is de-
scribed by Hs.c. = t

∑
i c

†
i ci+1. If we make an open boundary

between the N th and the first sites, the local operator is
represented by a 2 × 2 matrix Vb = −tσx , and its eigenvectors
are given by |1〉 = (1 1)T

/
√

2 and |2〉 = (1 −1)T
/
√

2,
where the first (second) component of this vector means the
N th (first) site of the 1D chain, and σx is a Pauli matrix.
Noting that the Bloch phase at the N th (first) site is 1 (eik),
the elements of the pole matrix are given by As.c.

β (ε)|11 =
1 + β

∫ 2π

0 dk(1 + cos k)/(4π (ε̄ − cos k)) = 1 − β(1 − fk)/2,

As.c.
β (ε)|22 = 1 − β

∫ 2π

0 dk(1 − cos k)/(4π (ε̄ − cos k)) =
1 − β(1 − f −1

k )/2, and As.c.
β (ε)|12 = As.c.

β (ε)|21 = 0, where
fk = ((1 + ε̄)/(−1 + ε̄))1/2 with ε̄ = ε/2t . Here, we assume
that |ε̄| > 1 since we are interested in the regions out of
the bulk band continuum. Then, the pole-determinant is a
parabolic function of β evaluated as As.c.

β (ε) = 1 − gkβ +
gkβ

2/2, where gk = 1 − |ε̄|/(ε̄2 − 1)1/2.
Some remarks about the above are in order. (i) Although

Aβ(ε) is not Hermitian in general, Aβ = det(V−1
b − βG0)detVb

is real-valued because both V−1
b − βG0 and Vb are Hermitian

in the gap. Note that the G0 becomes complex in the bulk band
continuum. (ii) If the rank of Vb is NV , one can find a NV × NV
matrix representation Aβ(ε) of the operator [1 − βG0(ε)Vb]
that determines Aβ(ε). For example, for an open boundary of a
1D tight-binding simple chainHs.c.,Vb is rank 2, and we obtain
the 2 × 2 pole-matrix as shown in the previous paragraph.
(iii) For a fixed ε, Aβ(ε) is a real polynomial of β of order
NV whose coefficients are determined from the β-independent
G0(ε)Vb. (iv) Aβ(ε) is a nonsingular function becauseG0(ε) has
no singular points in the gap, and Vb is independent of ε and β.

Therefore the pole-determinant is a smooth function of ε and
β given that band dispersions are smooth.

Using the β dependence of the pole-determinant at band
portals in the above, we obtain a simple expression for M

as follows. Starting from the bulk (β = 0), some modes can
be pulled out of the bulk band continuum, and then pass
through the portal ε = εα inward or outward with increasing β,
where α = c and α = v represent the conduction and valence
bands, respectively. Let us first consider the pole-determinant
at the valence-band portal. When β = 0, the pole-determinant
is unity over the whole gap since we assumed there are
no in-gap modes before turning on Vb. We assume that the
polynomial Aβ(εv) of β has lv distinct roots between β =
0 and β = 1, which we denote βv

i . If one mode from the
bulk band continuum comes into the gap for increasing β at
β = βv

i , it passes through ε = εv as illustrated in Figs. 2(a)
and 2(b). In this case, the signs of ∂βAβv

i
(εv) and ∂εAβv

i
(εv)

are opposite. That is, the product [∂βAβv
i
(εv)][∂εAβv

i
(εv)] is

negative. In contrast, if a mode that already resides in the
gap moves out, merging eventually into the valence-band
continuum, we observe that [∂βAβv

i
(εv)][∂εAβv

i
(εv)] is positive.

Similarly, multiple degenerate modes may exit or enter the
gap simultaneously due to some symmetry. For example, if
we consider the Rice-Mele model (Sec. IV A) with two spin
copies, all the modes coming out of the bulk band continuum
as a result of the time reversal conserving Vb should be at least
doubly degenerate. One can verify that their entrance into the
gap is also signaled by negative [∂βAβv

i
(εv)][∂εAβv

i
(εv)], and

their exit from the gap by a positive product of derivatives;
however, in this case, we need to replace βv

i with βv
i + δβ

with δβ positive, because the first derivatives ∂βAβv
i
(εv) and

∂εAβv
i
(εv) vanish for multiple roots of Aβ(ε). In Figs. 2(c) and

2(d), we illustrate this schematically for a doubly degenerate
case. The degeneracy at β = βα

i , denoted by an integer pv
i ,

is manifested by Aβv
i
(ε) ∼ (ε − εv)p

v
i from the definition of

the Green’s function. On the other hand, one can also note
that Aβ(εv) ∼ (β − βv

i )p
v
i for fixed ε. This can be understood

as follows. If Aβ(εv) ∼ (β − βv
i )q , where q is an integer, we

can always find a perturbation to Vb, which slightly deforms
the pole-matrix into Aβ(εv) ∼ (β − βv

i − δβ1) · · · (β − βv
i −

δβq) with δβi �= δβj for i �= j . This means, after adding the
perturbation, q degenerate poles come into the gap through
the portal at different β ′s in turn, and the maximum number of
different entrances q should be the same as the pv

i .
Finally, since everything is the opposite at the conduction-

band portal (ε = εc), the net number of states moving into the
gap though the portal ε = εα is given by

Mα =
lα∑

i=1

mαpα
i sgn{[∂βAβα

i
(εα)][∂εAβα

i
(εα)]}, (2.7)

which leads to

M = Mc + Mv (2.8)

as the total number of in-gap modes at β = 1. Here, mv(c) =
−1(1) reflects the opposite behavior of the pole-determinant
at the conduction and valence-band portals. Note that, due to
the property (iii), analyzing Aβ(ε) as a function of β comes
with negligible additional numerical costs once one obtains
the matrix G0(ε)Vb at those portals. Also, note that the number
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FIG. 2. Plot of the pole-determinant Aβ (ε) as a function of
the energy ε for β = βv

i − δβ, βv
i and βv

i + δβ in the vicinity
of the valence-band portal (εv) when some modes (dots at Aβ (ε) = 0)
are coming into the gap from the valence-band continuum through
the valence-band portal (dashed vertical lines). While β varies from
0 (bulk) to 1 (with boundaries), those three values of β are in this
interval. The horizontal yellow arrows denote that the pole enters the
valence-band portal with increasing β. Blue vertical arrows indicate
the β-derivative of Aβ (ε) at the valence-band portal: the upward
(downward) arrow for the positive (negative) slope. Depending on
the profiles of derivatives of the pole-determinant, one can classify
how many modes are coming into or out of the gap as follows: when
one mode comes into the gap, it is signaled by (a) ∂εAβ (εv) > 0 and
∂βAβ (εv) < 0 or (b) with ∂εAβ (εv) < 0 and ∂βAβ (εv) > 0 at β = βv

i .
On the other hand, if two degenerate modes are introduced into the
gap simultaneously, we have (c) ∂εAβ (εv) < 0 and ∂βAβ (εv) > 0 or
(d) ∂εAβ (εv) > 0 and ∂βAβ (εv) < 0 at β = βv

i + δβ.

of in-gap modes introduced by Vb is determined only by the
properties of Aβ(ε) near the conduction and valence-band
edges, instead of scanning the whole gap. The formula for
M can therefore be applied to any gap in the system by simply
changing the chemical potential at which it is evaluated.

In the case of the 1D simple chain, we have ∂βAs.c.
β (ε) =

gk(β − 1). Since gk < 0 out of the bulk band continuum (|ε| >

2t) and As.c.
β (ε) = 1 at β = 0, the pole-determinant ∂βAs.c.

β (ε)
is always positive for β � 1. As a result, ∂βAs.c.

β (ε) has no
zeros out of the bulk band continuum which leads to Mα = 0,
as expected for the 1D simple chain.

Note that we can consider the above scheme as a bulk-
boundary correspondence because we predict the number of
boundary modes generated by the termination Vb from the

bulk eigenfunctions which are used for the evaluation of
the pole-determinant. While we never use the eigenfunctions
of the terminated system, the profile of the boundary under
consideration is included in the local potentialVb. This enables
us to predict correct number of boundary modes even in the
cases where the validity of the Zak phase’s BBC depends on
certain conditions for the edge profiles such as the conservation
of reflection symmetry and commensurability with the bulk
unit cell [41,42].

A further general consequence of the above discussion is
that the maximum number of in-gap modes induced by Vb is
2NV . Since the number of in-gap modes is the net amount
of incoming poles through both portals, if all the roots βα

i

of Aβ(εv) = 0 and Aβ(εc) = 0 are of incoming character, the
number of in-gap modes is equal to the number of roots βα

i in
0 � β � 1. The maximum number of roots is reached when
all the roots of two polynomials of β, Aβ(εv), and Aβ(εc),
are real-valued, and located between β = 0 and 1, which is
equal to 2NV where NV is the order of each polynomial. For
example, for a 1D nearest-neighbor tight-binding model with
a single orbital per site, the allowed maximum number of edge
modes in each gap is 4 no matter how many basis sites are in
the unit cell.

While the BBC for higher dimensions will be introduced in
the following sections, the bulk number M only applies to 1D
systems for the following reasons. First, in higher dimensions,
the rank ofVb becomes infinity which cannot be treated directly
unless the pole-matrix can be block-diagonalized. This kind of
block-diagonalization can be done by constructing an effective
1D system for given momentum perpendicular to the boundary,
returning to the 1D problem. Second, the constant band portal
ε would miss the possible generation of surface bands below
this energy in the gap.

III. EVEN-ODD PREDICTION OF THE NUMBER
OF IN-GAP MODES FROM THE BULK

In the case of 1D insulators, a simpler and more numerically
efficient formula that determines whether the number of in-gap
modes is even or odd can be obtained. To start, we note that
since a differentiable function has an even (odd) number of
roots in an interval if its sign at the two ends of the interval are
the same (opposite), we have a Z2 number of the form

P = 1

iπ
ln sgn{A1(εv)A1(εc)}. (3.1)

If A1(εα) happens to be zero, we shift εα closer to the band
edge. In this case, unlike the number M in the previous
section, we do not need to know the full β dependence of the
pole-determinant. In the case of the 1D simple chain (t > 0),
as an example, we have As.c.

1 (ε) = 1/2 + |ε̄|(ε̄2 − 1)1/2/2.
Since As.c.

1 (±∞) = 1, the Z2 number becomes P = (1/iπ )
ln sgnAs.c.

1 (2t + δε) ≈ (1/iπ ) ln sgn(t/δε)1/2 = 0 for
ε > 2t , and P = (1/iπ ) ln sgnAs.c.

1 (−2t − δε) ≈ (1/iπ )
ln sgn(t/δε)1/2 = 0 for ε < −2t , consistent with the fact that
there are no edge modes in the 1D simple chain.

If Hβ features a chiral or particle-hole symmetry for all β,
we can obtain a Z2 number Phalf for the even-oddness of the
number of in-gap modes in each half of the gap around zero
energy, [εv,0] or [0,εc]. Since we start from A0(εα) = 1 at
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β = 0, and the sign of Aβ(εα) only changes whenever an odd
number of modes enter or exit the gap through ε = εα , we have

Phalf = 1

iπ
ln sgn A1(εα). (3.2)

This number gives more information on the number of in-
gap modes than (3.1); for example, if a chiral symmetric
Hamiltonian has two in-gap modes, P cannot confirm the
existence of in-gap modes although it conveys that there are
even number of them. In contrast, Phalf predicts odd number of
in-gap modes in each half of the gap in this case which implies
the existence of the in-gap modes. Note that this number cannot
be applied to the case where we have odd number of boundary
modes at zero energy at β = 1 because one cannot bring odd
number of boundary modes into the gap from the bulk with
maintaining chiral or particle-hole symmetries through whole
β from 0 to 1.

Our Z2 numbers P and Phalf are fundamentally different
from the conventional Z2 topological number of 1D band insu-
lators like the Zak phase[48] γ = i

∑
occ.

∫
BZ dk〈un,k|∂k|un,k〉

from which we know there exist edge states when γ = π .
However, for the BBC of the Zak phase, the finite system should
conserve the bulk’s symmetry as well as be commensurate
with the bulk’s unit cell [41,69]. For our bulk numbers P and
Phalf , on the other hand, this dependence on the edge profile
is naturally incorporated by the local operator Vb although we
only exploited bulk wave functions. Unlike P , Phalf is similar
to the Zak phase in that both numbers predict the number of
edge modes in some part of the gap. When the system has a
chiral or particle-hole symmetry, those two numbers should
yield the same BBC, and we provide an example for this in
Sec. IV A.

One can use the fact εα can be as close as possible to the
band edge to analyze the properties of Aβ(εα) in more detail.
Let us denote by δε the distance between the band edge and the
nearby band portal. We assume there are N∗ number of band
edges for the valence or conduction band at k∗

l (1 � l � N∗)
with energy ε∗ = εmax for α = v and ε∗ = εmin for α = c. We
represent the ith eigenvector and eigenvalue of Vb as |vi〉 and
vi , where 1 � i � NV . Then, in the basis of Vb, Aβ(εα) can be
expressed as

Aβ(εα) = I + mα

δε
βD(1)

α − βD(2)
α , (3.3)

where I is the NV × NV identity matrix,

D(1)
α |ij =

∑
l

〈vi |α,k∗
l 〉〈α,k∗

l |Vb|vj 〉 (3.4)

and

D(2)
α |ij =

′∑
n,k

〈vi |n,k〉〈n,k|Vb|vj 〉
ε∗ − εn,k

. (3.5)

Note that we have separated out the sum over the band edge
states in D(1)

α by introducing the primed sum in D(2)
α that does

not include them.
A general consequence of the above equations is that the

Z2 numbers P and Phalf are determined only from the bulk
eigenstates at the bulk band edges if detD(1)

α �= 0 for the
following reason: while D(2)

α is dominated by the momentum
sum around k∗

l
′s, it is proportional to the number of unit cells N

if the dispersion around k∗
l is quadratic and 〈vi |α,k∗

l 〉〈α,k∗
l |vj 〉

is nonzero. As a result, ifD(1)
α is invertible, that is, detD(1)

α �= 0,
we have A1(εα) ≈ [(−1)α/δε]NV detD(1)

α for δε � 1/Nr with
r > 1. On the other hand, if detD(1)

α = 0, which happens when
the dimension of the set of band edge state {|α,k∗

l 〉} is smaller
than the rank ofV(N∗ < NV ), we need all bulk states to analyze
A1(εα) in general.

Again, these formal definitions can be readily understood
in particular instances. For the simplest case, when NV = 2,
we have explicit formulas as follows. First, when detD(1)

α = 0,
we have

A1(εα) ≈ (−1)α

δε

(
〈Vb〉∗ −

∑
n,k

′ ∑
l

d
n,k
α,k∗

l

ε∗ − εn,k

)
, (3.6)

where 〈Vb〉∗ = ∑
l〈α,k∗

l |Vb|α,k∗
l 〉, and d

n1,k1
n2,k2

=∏
i=1,2〈ni,ki |Vb|ni,ki〉 − |〈n1,k1|Vb|n2,k2〉|2. If there is

only one band extremum(N∗ = 1), (3.6) always applies.
Since d

n1,k1
n2,k2

= d
n2,k2
n1,k1

and d
n,k
n,k = 0, we have at least

d
α,k1
α,k∗ ∼ (k1 − k∗)2 so that the sum in (3.6) is converging

for the quadratic band dispersion near k∗. On the other hand,
if detD(1)

α �= 0, which is possible for N∗ � NV , it becomes

A1(εα) ≈ 1

2δε2

∑
l1

∑
l2

d
α,k∗

l1
α,k∗

l2
. (3.7)

From the sign of (3.6) or (3.7), one can calculate the Z2 numbers
P and Phalf for the NV = 2 case.

While we have assumed that the valence or conduction
band is nondegenerate, the generalization to degenerate cases
is straightforward: we need one more summation over the
band index for the bands with the valence-band maxima or
conduction-band minima in addition to the sum over k∗

l . Details
of the derivation of (3.6) and (3.7) are given in Appendix A.

IV. EXAMPLES FOR APPLICATIONS OF M, P, AND Phalf

To elucidate the above discussion, we directly apply these
notions in the context of specific examples. Apart from the
well-known standard symmetry protected topological models,
the above general evaluations of the numbers M , P , and
Phalf also apply directly to graphene edges as well as grain
boundaries.

A. Rice-Mele model

In this example, we show that our bulk numbers predict
the correct number of in-gap modes independent of the edge
profile. This is in contrast to the Zak phase, which is the
conventional topological invariant for 1D reflection symmetric
insulators, as its BBC is sensitive to whether the finite system
is commensurate with the bulk unit cell or not [41].

Consider in this regard the Rice-Mele model [70]. This
model entails a 1D tight-binding model consisting of two sites
in the unit cell with a single orbital per site. The left (right)
site in the unit cell, denoted with A(B), has the onsite energy
�(−�). The hopping between the nearest-neighbor sites in
the same (different) unit cell is −t − δ(−t + δ). Concretely,

115143-5



RHIM, BARDARSON, AND SLAGER PHYSICAL REVIEW B 97, 115143 (2018)

−3 −2 −1 0 1 2 3

−2

−1

0

1

2
Bulk band continuum

Bulk band continuum(a)
−3 −2 −1 0 1 2 3

0

1

2

(b)

Bu
lk

 n
um

be
r

Edge mode

FIG. 3. (a) The band structure of the finite Rice-Mele chain with 1000 unit cells as a function of δ/t . Here, �/t = 0.3. Gray regions are
bulk band continua. When δ/t < 0, we have two edge modes at E/t = ±� represented be red solid lines. (b) A plot of the exact number M

and the Z2 number Phalf of the in-gap boundary modes as a function of δ/t . These two bulk numbers are completely consistent with the results
of finite size system in (a).

the Hamiltonian is given by

HRM(k) =
(

� s(k)e−iφk

s(k)eiφk −�

)
, (4.1)

where s(k) =
√

2(t2 + δ2) + 2(t2 − δ2) cos k and eiφk =
−2(t cos k/2 − iδ sin k/2)/s(k). The energies are given
by εn,k = (−1)n[s(k)2 + �2]1/2, where n = 1 and n = 2
represent the lower and upper bands, respectively.

First, let us consider the number of edge modes when the
terminated system is commensurate with the bulk unit cell, i.e.,
the total number of sites is even. In this case, one can check that
the number of edge states in the gap is two for δ/t < 0, and
zero for δ/t > 0 as shown in Fig. 3(a). The edge states in the
region where δ/t < 0 can disappear when they touch the bulk
band edge at δ/t = 0 although the bulk gap is never closed
for finite �. Based on Sec. II, one can readily determine the
integer valued number M , the exact number of in-gap boundary
modes. This confirms that the outlined procedure predicts the
number of edge modes correctly as detailed in Fig. 3(b) by the
black lines.

On the other hand, the Z2 number Phalf is evaluated analyt-
ically as

Phalf = 1

iπ
ln sgn(tδ). (4.2)

Hence, if tδ < 0 (tδ > 0), we have an odd (even) number of
edge modes in each of the upper and lower half of the gap. This
is again consistent with the results for the finite-size system
calculations. The derivation of the above formula is detailed in
Appendix B.

For the reflection symmetric case � = 0, where the Rice-
Mele model reduces to the SSH model [71], one can see that our
Z2 number reduces to the Zak phase [48] in this commensurate
case, which is the topological invariant for the 1D reflection
symmetric insulators. Since the wave function of the lower
band reduces to 1/

√
2(−1 eiφk )

T
, the parity of the wave

function is ξ−(0) = t/|t | at k = 0, and ξ−(π ) = δ/|δ| at k = π ,
where ξ−(k) is the parity eigenvalue at k of the lower band. As

a result, the Z2 number is rewritten as

Phalf = 1

iπ
ln sgn(ξ−(0)ξ−(π )). (4.3)

Since the Zak phase [48] γ = i
∑

occ.

∫
BZ dk〈un,k|∂k|un,k〉,

where un,k is the cell-periodic part of the Bloch wave func-
tion and the summation is over the occupied bands, can be
represented as eiγ = ∏

occ. ξn(0)ξn(π ) for reflection symmetric
insulators [72], we arrive at

Phalf = γ /π. (4.4)

As a next step, we consider incommensurate terminations
where the finite chain consists of an odd number of sites. This
ensures that there is no bulk unit cell commensurate with the
terminated system. The corresponding termination is realized
by applying an infinite onsite potential at one site given by

Vb = lim
V0→∞

V0a
†
1a1 or lim

V0→∞
V0b

†
1b1, (4.5)

where a
†
1 and b

†
1 are the creation operators at the A and B site in

the first unit cell. This makes all orbitals at those sites irrelevant
to the states within the bulk band bandwidth by placing them
at infinite energy, which effectively removes the A or B site.
Then, the pole-determinant is given by

Aβ(ε) = 1 − βV0

∑
n,k

|〈i|n,k〉|2
ε − εn,k

, (4.6)

where |i〉 is a
†
i |0〉 or b

†
i |0〉. Note that the coefficient of β in

(4.6) is positively (negatively) divergent near the conduction
(valence) band since |〈i|n,k〉|2 is positive. Therefore one
cannot have zeros for Aβ(εc) at the conduction-band portal,
and M in (2.8) has contributions only from the valence
band (α = v). Since ∂εAβ(ε) = βV0

∑ |〈i|n,k〉|2/(ε − εn,k)2

is positive, we have M = P = 1 for any values of tight-binding
parameters. This is precisely consistent with the finite-size
system calculations where we always find a single edge mode
in the gap for finite gap. We emphasize that this cannot be
predicted from the conventional bulk number, i.e., the Zak
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FIG. 4. (a) The band structure of the finite double SSH chain with 1000 unit cells as a function of t ′/t where t ′ is the inter-chain coupling.
Here, δ/t = 0.2, and ε0/t = 0.3. The geometry of the double SSH chain is described in the inset of (b) where the dashed box is the unit cell.
Gray regions are bulk band continua, and red solid curves are doubly degenerate edge states. As increasing t ′, edge modes start to appear from
t ′/t ≈ 0.1 while the Zak phase is always nontrivial regardless of the value of it. (b) The bulk number M for the exact number of in-gap boundary
modes in the central gap as a function of t ′/t , which explains the sudden appearance of the edge states in (a). In (c) and (d), we plot the band
structures for t ′/t = 0 and 0.2 cases. When t ′/t = 0, the upper and lower SSH chains in the inset of (b) are decoupled and their bands are drawn
by blue and yellow curves in (c). Finally, the parity of the wave function at k = 0 and π by (±) is marked. In both cases of (c) and (d), the Zak
phase equals π .

phase. While one has different Zak phases depending on the
relative sign between t and δ, one can find the valid BBC
only for the commensurate cases as in the first case in the
above. In addition, the Zak phase’s BBC can only be applied
to reflection-symmetric cases (� = 0). On the other hand, M

and P can be applied to arbitrary insulators without any of the
symmetry restrictions or the commensurability issues.

B. Double Su-Schrieffer-Heeger model

We may accordingly examine another 1D example, where
the Zak phase’s BBC fails even though the finite system is
commensurate with the bulk unit cell. This is because the
system becomes metallic as a result of the termination [41,49].
Nonetheless, the above defined bulk numbers once again are
fully compatible.

Specifically, consider two coupled SSH chains as illustrated
in the inset of Fig. 4(b). The hopping parameter is −t − δ

between neighboring sites in the same unit cell, and −t + δ

between those in the different unit cell for the lower chain,
and vice versa for the upper chain. The interchain coupling is
represented by t ′, and those two chains have different onsite
potentials, ±ε0.

One can immediately note that, when t ′ = 0, there are no
edge modes for sufficiently large onsite potentials even though
the Zak phase is nontrivial. In this case, the lower SSH chain
is trivial (γ = 0), while the upper one is nontrivial (γ = π )
when δ/t is positive as shown in the previous section. The
full band structure for this case is plotted in Fig. 4(c) where
red (blue) curves come from the trivial (nontrivial) chain.
For commensurate finite systems, two edge modes will be
generated between two nontrivial bands from the upper chain.
However, those edge modes fall into the lower bulk band of the
lower chain if the onsite energy difference is not small enough.
As a result, one does not have in-gap modes in the central
gap of the whole double chain system as plotted in Fig. 4(a)
although the Zak phase is nontrivial as clear from the parity
configurations at reflection symmetric momenta in Figs. 4(c)
and 4(d). This situation remains up to a critical interchain
coupling and, above it, the conventional Zak phase’s BBC starts
to hold. The reason for this mismatch lies in fact that the system
turns metallic after the termination, while both the bulk and the
finite system should be insulating for the application of the Zak
phase’s BBC.

The Z2 number P for the band gap between the second and
third bands can readily be determined to be even. Although
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this is consistent with the finite size system calculations, we
cannot completely determine the existence of the edge modes
with only this number. Since the double SSH model does
not have chiral symmetry, as manifested by the edge mode’s
spectrum in Fig. 4(a), one cannot apply the chiral Z2 number
Phalf . However, our number M exactly predicts the number
of edge modes in the central gap precisely as presented in
Fig. 4(b).

C. Graphene nanoribbons

In this section, we show that our bulk number M predicts
the exact number of edge modes of graphene nanoribbons
(GNRs) as a function of the preserved momentum. Previously,
Delplace et al. demonstrated that the Zak phase γ can serve
as a good bulk number, with γ = 0 and γ = π corresponding
to the nonexistence and existence of edge modes, respectively
[73]. However, this evaluation has only been made explicit
for the zigzag GNR. While it works correctly due to the
Z2 nature of the Zak phase, one can, however, not confirm
the nonexistence of the edge modes when γ = 0 a priori.
Similarly, this correspondence cannot be applied to the mixed
edges such as the GNR with zigzag edge on the left and
the bearded edge on the right edges. In contrast, the bulk
number M predicts precisely the number of edge modes of
GNRs with arbitrary cutting direction and edge profiles. These
findings are particularly interesting from an experimental point
of view because the existence of edge states usually gives
rise to the magnetic order which might lead to the spintronics
applications. Indeed, due to the ready availability of graphene,
there exist experimental studies on the edge states of graphene
[74–76].

Recall that in graphene the three nearest-neighbor vectors
from A to B sites are given by δ1 = a/

√
3(1/2,

√
3/2), δ2 =

a/
√

3(−1,0), and δ3 = a/
√

3(1/2, − √
3/2), where a is the

lattice constant. The Hamiltonian reads

Hgraphene =
(

0 f (kx,ky)

f (kx,ky)∗ 0

)
, (4.7)

where f (kx,ky) = ∑
i e

ik·δi = −2 cos(aky/2)eiakx/2
√

3 −
e−iakx/

√
3.

Let us first consider the zigzag GNR where the atoms at
the left edge belong to the A sublattice and those at the right
edge are belong to B sublattice. For given ky , f (kx,ky) can be
interpreted as a Hamiltonian matrix’s element of a fictitious
1D chain which contains two sites in the unit cell. The phase
factors e−iakx/2

√
3 and e−iakx/

√
3 can be interpreted as the Bloch

phase difference for the intracell and the intercell hoppings
of this 1D chain model along the x axis with corresponding
hopping parameters −2 cos aky/2 and −1. If we consider a
finite version of this 1D model, it is identical to the commen-
surately terminated SSH model with −t − δ = −2 cos aky/2
and −t + δ = −1. Thus we can apply the bulk numbers of the
SSH model to this effective 1D model of the zigzag GNR. This
leads to the following criterion for the existence of edge modes
for a given ky .: (

2 cos
aky

2

)2

− 1 < 0. (4.8)

Accordingly, we conclude that there are two edge modes when
−π < aky < −2π/3 and 2π/3 < aky < π for the zigzag
GNR as is consistent with previous studies [77,78].

As another kind of the termination, we consider the bearded
GNR along the y direction. In this case, the position of
the above A and B sites are reversed, so that the intracell
and intercell hoppings now become −t + δ = −2 cos aky/2
and −t − δ = −1. As a result, we have two edge states
when −2π/3 < aky < 2π/3, which is again consistent with
previous work [78].
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FIG. 5. (a) The lattice structure of graphene with lattice vectors �a1 and �a2. We consider the GNR with the lattice vector �T along the y axis.
The boundary is represented by the thick green line. In the outlined procedure, one considers the enlarged unit cell(the red solid box), containing
28 sites. For a given ky , we have an effective 1D system along the x axis as represented by the infinite yellow region. (b) Plot of the band
structure of the GNR with 1680 sites in the GNR’s unit cell. The red dashed line represents the position of the Dirac point at ky = 2π/3

√
7. (c)

The two bulk numbers M and Phalf for the exact and even-odd numbers of in-gap boundary modes are plotted as a function of ky . Again direct
correspondence is retrieved.
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We can also deal with a GNR having a zigzag edge on
one side and a bearded edge on the other side. In this case,
the effective finite 1D system for given ky is equivalent to the
incommensurately terminated SSH chain in Sec. IV A. Hence
there exists a single edge mode in the gap regardless of the
tight-binding parameters as long as the effective 1D system
for given ky is insulating.

For the armchair GNR, the effective 1D Hamiltonian for
given kx consists of four basis sites in the unit cell. Using
standard numerical means, we find all the bulk numbers M ,
P , and Phalf are zero for all momenta, which is consistent with
the absence of edge modes in the armchair GNR [77,78], see
Appendix C for details.

Finally, our bulk numbers M and Phalf can be calculated for
arbitrary directions with arbitrary edge profiles. As an example,

we consider a GNR with an edge shape shown in Fig. 5(a). That
is, the lattice vector is �T = 2�a1 − 3�a2. To study this GNR, we
assume the enlarged unit cell for graphene as represented by the
red solid box in Fig. 5(a), which contains 28 sites. For given
momentum k along ŷ, we have an effective 1D system with
this unit cell. The yellow region is a part of this 1D system
in which the dashed and the solid boxes are the (m − 1)th
and the mth unit cells of it. In this effective 1D model, we
calculate M and Phalf to predict the number of edge modes in
the central gap when the GNR is terminated as in Fig. 5(a)
by the thick green line. We obtain M = 2, Phalf = 1 when
−π/

√
7 < ak < −2π/3

√
7 and 2π/3

√
7 < ak < π

√
7, and

M = Phalf = 0 otherwise. See Appendix D for details. This is
once more consistent with the band structure of this GNR [see
Fig. 5(b)].
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FIG. 6. (a) Structure of the “55” grain boundary of graphene characterized by the Burgers vector b. The effective 1D model for given ky is
represented be the yellow stripe. The two sublattices are labeled by A (filled circle) and B (open circle). In (b) and (c), we present two different
ways of making the effective “55” grain boundary. In (b), one first imagines preparing two 1D effective chains (upper and lower ones) for
graphene. Then, the bonds along A2B2 as well as B̃1Ã2 are disconnected and the B2 site is removed by applying a large onsite potential. Finally,
the upper and lower chains are reconnected by the red vertical bond between A2 and Ã2, which correspond to the red bonds in (a). In this case,
one retrieves zigzag edges at the outer boundaries. On the other hand, as described in (c), one can also make the “55” grain boundary without
additional zigzag edges. To this end, one starts from a single 1D effective chain. Then, three sites between A1 and A3 are removed by applying
a large onsite potential. Finally, one creates a bond between A1 and A3 as indicated by the red solid curve. Since the left and right ends of this
1D effective chain are connected in the ring geometry, the systems does not have any edges other than the “55” grain boundary in the middle.
(d) The band structure of the GNR with the grain boundary in the middle and two zigzag edges at the ends. k1 is the Dirac point and k2 entails
the momentum at which one bulk state starts coming into the central gap. (e) The four describing bulk numbers in the central gap are plotted
as a function of ky . The green and black ones comprise the exact number of edge modes M for terminations (b) and (c). The Z2 number P is
the same for both cases. As before the retrieved bulk numbers are in direct correspondence.
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D. Graphene’s “55” grain boundary

One can also apply our bulk numbers to predict the number
of localized modes around a junction between two systems
by choosing an appropriate local operator Vb. This is, not in
the least place, directly relevant in the context of experiments.
Indeed, quite some recent works have found surface states
at graphene defects, including graphene grain boundaries
[63–68]. As an example, let us consider the “55” grain
boundary in graphene, which is characterized by the Burgers
vector b = a/

√
3x̂ as shown in Fig. 6(a) [68]. Since we cut the

system in the zigzag direction, we thus first obtain the same
effective 1D effective chain of the zigzag GNR detailed in the
previous section. One can then realize the grain boundary (GB)
in two ways as follows.

The first one corresponds to Fig. 6(b). The system is in
this case prepared using two identical SSH-like models on two
ring geometries. The bonds between the A sites [the red bond
in Fig. 6(a)] are obtained by eliminating connections between
A2, B2 in one chain and B̃1,Ã2 in the other chain. The two
dangling sites A2 and Ã2 are then reconnected. While the B2

and B̃1 sites correspond to opposite edges, we remove the B2

site by putting a large potential V0 on it. The local operator is
thus given by

Vb =
(

2 cos
ky

2
c
†
A2cB2 + c

†
B̃1

cÃ2 − c
†
A2cÃ2 + H.c.

)

+ lim
V0→∞

V0c
†
B2cB2. (4.9)

This junction represents the finite GNR with the “55” grain
boundary in the middle and zigzag edges at outer boundaries.

The second manner of creating the “55” GB departs from
a single SSH chain as shown in Fig. 6(c). In this case, the red
bonds between the A sites are realized by getting rid of the B1,
A2, and B2 sites. This is done by means of putting large onsite
potentials on them. As a next step, the two dangling sites A1

and A3 are then reconnected. The local operator in this case
reads

Vb = lim
V0→∞

V0(c†B1cB1 + c
†
A2cA2 + c

†
B2cB2)

− (c†A1cA3 + c
†
A3cA1). (4.10)

Since we are dealing with a ring geometry, the grain boundary
made in this way is the only boundary, and there no outer
boundaries.

The band structure of the finite width GNR with such a grain
boundary is plotted in Fig. 6(d). Firstly, we note that we have a
different number of in-gap surface bands depending on ky ; (i)
for 0 � ky � k1, there is only one surface band, whose states
are localized at the grain boundary; (ii) for k1 � ky � k2, there
are three zero-energy flat surface bands. The corresponding
wave functions of two of them are localized at outer zigzag
edges, whereas the wave function of the remaining one is
localized at the grain boundary; (iii) for k2 � ky � π , we
retrieve four surface bands. The profiles of the three flat ones
are the same as those of (ii), and the remnant dispersive
one has wave functions localized around the grain boundary.
These features are directly consistent with our bulk numbers
as detailed in Fig. 6(e). With the configuration in Fig. 6(b),
the bulk number M counts the total number of in-gap modes

correctly as drawn by the green lines in Fig. 6(e). On the
other hand, M of another termination [Fig. 6(c)] predicts only
the number of surface modes localized at the grain boundary
accurately as shown by the black lines in Fig. 6(e). The Z2

number P , which is the same for both terminations, finally
also yields the correct even-odd prediction of the number of
in-gap modes as presented by the red curves in Fig. 6(e).

V. POLE WINDING NUMBER AND CHIRALITY
FOR HIGHER DIMENSIONS

We can also apply the numbers for 1D insulators in the
previous sections to higher dimensions by defining an effective
1D Hamiltonian obtained by performing the Fourier transfor-
mation only along the directions parallel to the edge or surface
to be made like the graphene examples in the previous section.
The effective 1D Hamiltonian is characterized by the momen-
tum parallel to the edge or surface, and we can investigate
the number of in-gap modes by scanning the whole parallel
momenta. However, in higher dimensions, it is desired to know
the existence of the chirality or helicity of boundary modes
which traverse the gap from the valence band to the conduction
band without disconnections. To this end, in this section, we
define a winding number, which we call the pole winding
number, for 2D from bulk wave functions by analyzing the
behavior of poles of the Green’s function near the band edges.
Then, we discuss how to apply this number to 3D insulators.

A. Effective periodic process

To define this winding number, let us first introduce an
effective periodic process, which is depicted in Fig. 7. Dealing
with 2D insulators with an arbitrary number of orbitals per site,
this chain geometry in Fig. 7 represents its effective 1D system
obtained by fixing a momentum parallel to the edge we are
interested in. We denote this momentum as ky without loss of

left edgeright edge

right edge left edge

FIG. 7. A cartoon for the effective pole winding periodic process.
We apply local potentials β1V1 and β2V2 in turn where V1 makes an
open boundary between the sites B1 and A2, and V2 is and onsite
potential on the sites A2 and B2. Starting from β1 = 1 and β2 = 0
(the open boundary between B1 and A2), the same system at β2 = ∞
is obtained in the thermodynamic limit except for the irrelevant states
in the yellow box that have infinite energy as β2 = ∞. One can deal
in this setup with general cases with arbitrary number of orbitals and
basis sites in the same way.
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generality. Next, we consider two kinds of local operators β1V1

and β2V2, where 0 � β1 � 1, and 0 � β2 < ∞. Physically,
V1 removes all the hopping processes across the boundary (red
line) between B1 and A2, andV2 is the onsite potential for all the
orbitals in the unit cell on the right-hand side of the boundary
as shown by the yellow box in Fig. 7. Here, for concreteness,
we specified V2 to be operating on the right-hand side unit
cell to analyze edge modes localized to the left edge of the
terminated system. Starting from the bulk Hamiltonian H0,
first, we make open boundaries at B1(right edge) and A2(left
edge) by setting β1 = 1. Then, an effective periodic process is
obtained by controlling β2 from 0 to ∞. This simply moves
the left edge from A2 to A3, which in the thermodynamic
limit is exactly the same system obtained by the first operation
(β1 = 1) except the existence of the orbitals in the sites between
two new boundaries. However, those orbitals are at infinite
potential and irrelevant to the in-gap surface modes we are
focusing on, and this is why we call the second process an
effective periodic process.

B. Pole winding number and chirality

Let us set a portal in the gap around the valence band similar
to the 1D case in the previous sections. This becomes a line in
the 2D case as illustrated by the red dashed line in the inset of
Fig. 8(a), and we call it the valence or conduction-band portal
line. We can now show that the topology of the in-gap surface
modes localized at the left edge is encoded in the evolution
of the Green’s function’s pole along the valence-band portal
line during the effective periodic process. This evolution can
be represented by a parameterized curve in the 2D space of ky

and β2, the pole-curve plotted by solid curves in Fig. 8. The
pole-curve is obtained from

0 = det
{
1 − G0

(
εv
ky

)
V1 − β2G0

(
εv
ky

)
V2

}
, (5.1)

where εv
ky

= εv
ky

+ δε is the valence-band portal line with εv
ky

the valence band’s edge and δε is an infinitesimal positive
value. Since ky = 0 and ky = 2π are identified in the Brillouin
zone (BZ), one can represent this 2D space as a surface of a
semi-infinite cylinder with unit radius as illustrates in Fig. 8.
While the pole-curves exhibited in Fig. 8 are obtained from a
specific model, the Kane-Mele model, we discuss the general
classification of the pole-curves referring to this model.

While the pole’s momenta at β2 = 0 and β2 = ∞ should
be equal due to the effective periodic process, one can classify
pole-curves into trivial and nontrivial cases as follows. First,
we denote the poles on the portal at β2 = 0 as the starting
pole such as the P ′

i s and Q′
is in Fig. 8. If we represent one of

the momenta of starting poles by k0, the pole-curve starting
from it is nontrivial if it connects two points (ky,β2) = (k0,0)
and (k0,∞) by winding the cylinder one or more times, being
differentiable. The two pole-curves starting from P1 and P2,
colored by blue and yellow in Fig. 8(a), are nontrivial since
they wind the cylinder once and it is differentiable through the
whole curve. This curve can be described by p = ρ̂ + ϕϕ̂ +
β2(ϕ)ẑ with the polar angle ϕ as a parameter. ϕ runs from k0

to k0 + 2πnp during the effective periodic process where we
call the integer np the pole winding number. The pole winding
number determines how many times the edge band winds the
Brillouin zone before it traverses the band gap completely.

FIG. 8. (a) Poles’ evolutions for the topologically nontrivial phase
of the Kane-Mele model in the kyβ2 space portrayed as a cylindrical
surface. Here we set λv = 0.1t , λSO = −0.06t , and λR = 0.05t . We
assume that ẑ is downward. ky is the momentum parallel to the edge
of the 2D system. P ′

i s are the starting poles, and the nontrivial phase
of the Kane-Mele model is characterized by the existence of the pole-
curves (solid curves) that wind the cylinder completely as β2 goes to
infinity. In the inset, we denote the valence-band portal line by the
red dashed curve, and the starting pole at k0 when β2 = 0. (b) Pole’s
evolutions for the topologically trivial phase when λv = 0.4t . Q′

is
are the starting poles, and all the pole-curves from them do not wind
the cylinder completely, which signals the absence of the edge bands
connecting the conduction and valence bands robustly.

Then, we define the chirality of the pole-curve as

� = np

|np| (5.2)

for np �= 0, and � = 0 for np = 0. If the pole winding number
is nonzero and the chirality is positive(negative), we have one
surface band connecting the valence and conduction bands with
positive(negative) average velocity. Note that the discussions
so far correspond to only one edge as we consider one choice
of the effective periodic process such as the one described in
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FIG. 9. Band spectra of the Kane-Mele model for varying β2. The upper panels comprise topologically nontrivial cases having parameters
λv = 0.1t , λSO = −0.06t , and λR = 0.05t . The lower panels depict trivial cases with λv = 0.4t , λSO = −0.06t , and λR = 0.05t . The valence-
band portals are represented by red dashed curves right above the valence-band edges. In (a) and (f), the P ′

i s and Q′
is indicate the starting poles,

which are denoted by the same markers as in Figs. 8(b) and 8(c). From (b) to (e), the poles connecting P ′
i s are similarly marked. On the other

hand, poles connected from the Qi points disappear in to the valence-band continuum at β2 = 0.57, and we have no poles at the valence-band
portal at β2 = 0.82 as shown in (g). Above β2 = 2, new poles are generated by the surface bands pulled out from the conduction-band continuum
as illustrated from (h) to (j). In both cases, the band structures at large β2 return to original ones at β2 = 0. The pole windings unambiguously
discern the topological nature of the band structure.

Fig. 7. If we consider another effective periodic process where
the local potential V2 is applied to A1 and B1 sites, the pole
winding number and chirality calculated from it characterize
the in-gap modes localized to the opposite edge.

In contrast, the pole-curve is trivial in the following cases. (i)
If the pole-curve connects two poles at β2 = 0 such as Q1 and
Q3 or Q2 and Q3 in Fig. 8(b), both ends of the corresponding
surface band are connected to the valence-band continuum and
not considered robust. (ii) If the pole-curve is a straight line that
does not wind the cylinder; this corresponds to the edge state
localized to the opposite edge of what we are interested in, and
we consider it trivial with respect to the interested edge. This is
because both edges are separated from each other for β1 = 1,
and the local operator V2 cannot affect surface modes localized
at this side. As a result, the corresponding poles do not respond
to the increase of β2 and the pole-curve from these poles is just
a straight line along β̂2 and cannot wind the cylinder.

Usually, we have several poles on the portal line at β1 =
1 and β2 = 0, and pole-curves starting from them. One can
readily evaluate the pole winding number and the chirality for
each of them. From those topological numbers, one can analyze
the structures of the in-gap modes. If the sum of the chiralities
is nonzero, the gap hosts chiral edge states as in the case of
the quantum anomalous Hall effect. Even if the total chirality
vanishes, if there is a pole-curve with nonzero chirality, the
system exhibits helical edge states like in the quantum spin Hall
effect. To further determine whether the winding number and
chirality is robust against a certain symmetry breaking (e.g.,
time-reversal symmetry for the quantum spin Hall effect), we
should evaluate different pole winding numbers and chiralities
with the replacement of V2 by another potential that breaks the
symmetry. This new local potential would open the symmetry
protected band crossings which is reflected in disconnected
pole-curves.

While the above analysis on the topological characters
makes the application of the formalism insightful, one can
gain a more concrete understanding by observing evolutions of
in-gap surface bands of the model with zigzag open boundaries
as follows. First, the pole winding for the nontrivial case is
described from Figs. 9(a) to 9(e). At β2 = 0, which is the
starting point of the effective periodic process, there are four
starting poles P ′

i s. Wave functions in surface bands starting
from P1 and P2 are localized on the left edge while those
from P3 and P4 are localized on the right edge. Since V2

operates only on the left edge, and the two opposite edges
are detached for β1 = 1, surface bands connected to P3 and P4

do not respond to the increase of β2 as shown in Fig. 9(a)
to 9(e). As a result, pole-curves starting from them never
wind the cylinder in Fig. 8. Since we are investigating pole
winding numbers for the left edge, we can neglect them and
only consider pole-curves starting from P1 and P2. Surface
bands connected to P1 and P2 move down as β2 grows, and
the poles for those bands also traverse along the valence-band
portal. If we plot those poles in the kyβ2 plane, as portrayed on
the cylindrical surface in Fig. 8(b), they travel the whole BZ
once in opposite direction. In other words, the pole winding
numbers for the pole-curves starting from P1 and P2 are 1 and
−1. This is because bands cannot be disconnected abruptly at
a certain momentum, and the poles should come back to their
original position at β2 = ∞.

On the other hand, for the trivial phase, described in
lower panels of Fig. 9, there are no surface bands connecting
the valence and conduction bands. As a result, any of the
starting poles Q′

is, which are all left edge localized, cannot
be continuously connected from the poles at β2 > 2. To return
to the band structure started with, new surface bands come
down from the conduction band as shown in Fig. 9(h), and it
generates new pole curves independent of those in Fig. 9(f).
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Those poles from the new surface bands, marked by purple and
brown circles from Figs. 9(h) to 9(j), make pole-curves with the
same colors in Fig. 8(b). Consequently, no poles starting from
Q′

is can wind the BZ completely which means pole winding
numbers are all zero.

C. 3D applications of the pole winding number

The pole winding number can also be applied to 3D cases.
Let us consider the BBC for the surface perpendicular to ẑ

so that the surface BZ is the kxky plane. In 3D, the valence-
band portal should be a 2D curved surface described by E =
S(kx,ky), which is the surface slightly above the valence-band
edge. If we fix kx(ky), we have an effective valence-band
portal line on a 1D sub-BZ along ky(kx). Along this portal
line we can evaluate pole winding numbers as in the previous
subsection. When β1 = 1 and β2 = 0, the starting poles on
the valence-band portal usually consist of lines because they
are just the intersection of two surfaces, E = S(kx,ky) and
the surface bands in the gap. We investigate the surface band
structure by considering the pole winding numbers for the
distinct cases of how the effective valence-band portal lines
touch the starting pole lines in the surface BZ. In the following,
we show how this could be done for 3D TIs as an example.

First, for the strong or TRS protected TI, we usually have a
Dirac cone as a surface band in the gap. In this case, the starting
poles form a circle enclosing the Dirac cone as presented in
Fig. 10(a). In Fig. 10, the starting pole lines, the black solid
curves, are projected onto the kxky plane, and the black dots
at the high symmetry points are the Dirac points. For the case
of the strong TI, only two effective valence-band portal lines,
S(π,ky) and S(kx,π ) offer nontrivial pole winding numbers
because the protected surface bands’ crossings along them [at
k = (π,π )] would be manifested as this number. On the torus
manifold of the 2D BZ in Fig. 10(a), the poles starting from
P1(P3) and P2(P4) wind the surface of the torus following the
noncontractible loops along the toroidal (poloidal) direction
with opposite chiralities to each other. This is the unique
feature of the Dirac surface band from the pole winding,
and if one observe the odd number of starting poles with
the positive chirality and the same number of ones with the
negative chirality for both toroidal and poloidal directions in
all surfaces of the TRS insulator, this phase is the strong TI.

On the other hand, for a weak TI [79] which has even
number of Dirac cones in the surface BZ, the starting pole
lines appear to be traversing the 1D sub-BZ as shown by the
black curves in Figs. 10(b) and 10(c). We can then define
weak invariants ν0; (ν1,ν2,ν3). For ν0; (ν1,ν2,ν3) = 0; (011),
there are two effective valence-band portal lines, S(kx,0) and
S(kx,π ), that carry the nontrivial pole winding along the
toroidal direction, and we have two starting poles R1 and
R3 with the negative chirality, and the other two R2 and R4

with the positive chirality as shown in Fig. 10(b). For another
kind of weak TI with ν0; (ν1,ν2,ν3) = 0; (111), one can find
nontrivial pole windings along four effective valence-band
portal lines S(kx,0), S(kx,π ), S(0,ky), and S(π,ky). We have
positive chirality for the pole windings starting from Q′

2n−1s,
and negative for Q′

2ns where n is an integer from 1 to 4. In
conclusion, if the TRS insulator has even number of starting
poles with the positive chirality and the same number of

FIG. 10. Pole windings on the 2D torus BZ for various TRS TIs
with ν0; (ν1,ν2,ν3) = 1; (111), 0; (011), and 0; (111). In the left panels,
black solid curves are the starting pole lines projected onto the 2D BZ,
and Pi , Ri , and Qi are the starting poles that yield nontrivial winding
numbers. Dirac points are marked by black dots. In the right panels,
we show how the poles starting from those starting poles wind the BZ
torus during the effective periodic process.

ones with the negative chirality for both toroidal and poloidal
directions in all surfaces, this phase belongs to weak TI.

While one can readily obtain correspondences between
these kinds of pole winding number structures and possible
surface bands’ topologies of general 3D insulators, we leave
the general classification of 3D BBCs for upcoming future
work. This classification will of course also depend on the
underlying lattice symmetries, as weak insulates can only be
viewed as a stacking of 2D quantum spin Hall systems when
the space group allows for it [12].

VI. CONCLUSIONS

While the bulk-boundary correspondence is a hallmark
in the analysis of topological matter, it has never been
constructed on general grounds. Indeed, there already exist
counterexamples for, e.g., the 1D Berry phase’s bulk-boundary
correspondence even though this entails a noninteracting
system. In addition, one should consider different kinds
of topological invariants for each specific BBC under
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consideration, which depends on the underlying symmetries
of the symmetry protected topological (SPT) phase. Finally,
there are also practical issues, like gauge fixing problems, in
terms of direct numerical computation.

We have here developed a new way to extract the profiles
of in-gap modes from bulk wave functions in a unified manner
for each dimension. In 1D, we have obtained bulk numbers
for the exact and even-odd predictions of in-gap boundary
modes when the bulk Hamiltonian has boundaries such as open
boundaries, and junctions. This is done by connecting the bulk
Hamiltonian to the one with boundaries continuously via a
control parameter β. As β increases, a number of modes come
out of the bulk band continua into the gap. We have shown
that the net number of such in-gap modes is determined by
considering the pole determinant in the vicinity of the valence
and conduction-band edges. From this, we can derive explicit
formulas for the numbers for the bulk-boundary correspon-
dence. Unlike higher dimensions, the edge states in 1D band
insulators have inherent fragility because they are separated
from bulk bands except those protected by chiral symmetry.
This is why one can find many counterexamples for the con-
ventional BBC particularly in 1D, such as the incommensurate
SSH model and the double SSH chain. Also, there exist edge
states whose bulk does not have any topological invariants like
the Rice-Mele model without reflection symmetry. Our bulk
numbers can be applied to all those cases without exception.
However, when electron-electron interactions are considered,
even within the mean-field scheme where bands are well-
defined, our BBC cannot be applied in general since further
self-consistent process should be done regarding the Coulomb
interaction in addition to the termination process by Vb.

Since varying β requires a tiny numerical cost, one can
accordingly calculate those bulk numbers with a computational
expense that is similar to that of a Berry phase or a Wilson loop
calculation [35,80,81], provided that the interorbital overlaps
are short-ranged. This is much more efficient in capturing the
topological status of boundary modes than the other existing
Green’s function formalisms for the surface spectra, which
scan the whole gap to track the Green’s function’s poles
[58,59]. Furthermore, there is no gauge fixing problem in
evaluating our bulk numbers since they are obtained from
the pole structure of the Green’s function while we have this
problem in calculating many known topological invariants, and
it has been a crucial issue to resolve this obstacle [22,82–86].

More specifically, we have also shown that those numbers
work well in various concrete models. In particular, our
numbers even hold in case of “counterexamples,” in which
the Berry phase’s bulk-boundary correspondence does not
hold, such as the incommensurate SSH model and the double
SSH model. Moreover, we showed that our bulk numbers
can be successfully applied in the experimentally motivated
study of the bulk-boundary correspondence of graphene for
various kinds of boundaries, such as the open boundaries along
arbitrary directions and grain boundaries.

In 2D, on the other hand, one is mainly interested in how
many surface bands connect the valence and conduction
bands. The metallicity of those kind of surface bands is
namely topologically protected against symmetry-protecting
perturbations. We have shown that topological structure of
the surface bands is naturally encoded in the pole’s evolutions
along the valence or conduction-band portals during the effec-
tive periodic process that shifts one of the edges by a unit cell
while leaving the electronic structure in the gap invariant. We
have defined a different kind of the winding number, the pole
winding number, and according chirality for each pole that can
predict the topological characters of each surface band in the
gap. These invariants also can be applied to the bulk-boundary
correspondence for arbitrary 2D insulators regardless of their
underlying symmetries. Finally, in 3D, one can extract profiles
of surface bands by evaluating the pole winding numbers in all
the possible sub-BZs. While one then has more diverse types
of surface bands than in the 2D case, we have shown that 3D
TBIs, for example, naturally fit within this scheme. Although
it is clear that the full classification of all possible surface
band types find a natural correspondence to the pole winding
numbers, we will pursuit the explicit evaluation in upcoming
future work. In this regard it would also be interesting to find
a connection to the found quantities in the context of Floquet
system, where similar BBC evaluations have been performed
recently.
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APPENDIX A: NV = 2 CASE

When NV = 2, one can derive a simple formula for the pole-determinant Aβ(ε) at β = 1 near the band edge as follows. The
pole-matrix for this case is given by

A1(εα) ≈ (−1)α

δε

(
D(1)

α

∣∣
1,1 D(1)

α

∣∣
1,2

D(1)
α

∣∣
2,1 D(1)

α

∣∣
2,2

)
+

(
1 − D(2)

α

∣∣
1,1 −D(2)

α

∣∣
1,2

−D(2)
α

∣∣
1,1 1 − D(2)

α

∣∣
1,2

)
, (A1)

where D(q)
α |i,j is the i,j th element of D(q)

α . Recall that εc = εmin − δε and εv = εmax + δε, where εmin and εmax are the energies
of the conduction-band minima and the valence-band maxima, and δε is an infinitesimal positive number. We consider the two
cases, det D(1)

α = 0 and det D(1)
α �= 0, separately. First, when det D(1)

α = 0, the pole-determinant is written as

A1(εα) ≈mα

δε

(
D(1)

α

∣∣
1,1 + D(1)

α

∣∣
2,2 − D(2)

α

∣∣
2,2D

(1)
α

∣∣
1,1 + D(2)

α

∣∣
2,1D

(1)
α

∣∣
1,2 − D(2)

α

∣∣
1,1D

(1)
α

∣∣
2,2 + D(2)

α

∣∣
1,2D

(1)
α

∣∣
2,1

)
. (A2)
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From (3.4) and (3.5), we have

D(2)
α

∣∣
2,2D

(1)
α

∣∣
1,1 − D(2)

α

∣∣
2,1D

(1)
α

∣∣
1,2 =

∑
n′,k′

′ N∗∑
l=1

〈v2|n′,k′〉〈n′,k′|Vb|v2〉〈v1|α,k∗
l 〉〈α,k∗

l |Vb|v1〉
ε∗ − εn′,k′

−
∑
n′,k′

′ N∗∑
l=1

〈v2|n′,k′〉〈n′,k′|Vb|v1〉〈v1|α,k∗
l 〉〈α,k∗

l |Vb|v2〉
ε∗ − εn′,k′

, (A3)

D(2)
α

∣∣
1,1D

(1)
α

∣∣
2,2 − D(2)

α

∣∣
1,2D

(1)
α

∣∣
2,1 =

∑
n′,k′

′ N∗∑
l=1

〈v1|n′,k′〉〈n′,k′|Vb|v1〉〈v2|α,k∗
l 〉〈α,k∗

l |Vb|v2〉
ε∗ − εn′,k′

−
∑
n′,k′

′ N∗∑
l=1

〈v1|n′,k′〉〈n′,k′|Vb|v2〉〈v2|α,k∗
l 〉〈α,k∗

l |Vb|v1〉
ε∗ − εn′,k′

(A4)

for the last four terms in (A2), and

2∑
i=1

D(1)
α

∣∣
i,i

=
2∑

i=1

〈vi |
N∗∑
l=1

|α,k∗
l 〉〈α,k∗

l |Vb|vj 〉 (A5)

=
N∗∑
l=1

〈α,k∗
l |Vb|α,k∗

l 〉 (A6)

≡ 〈Vb〉∗ (A7)

for the first two terms (A2). Taking into account the identity,

C1 = 〈n,k|Vb|n,k〉〈α,k∗
l |Vb|α,k∗

l 〉 − 〈n,k|Vb|α,k∗
l 〉〈α,k∗

l |Vb|n,k〉 (A8)

= 〈n,k|Vb|v1〉〈v1|n,k〉〈α,k∗
l |Vb|v2〉〈v2|α,k∗

l 〉
+ 〈n,k|Vb|v2〉〈v2|n,k〉〈α,k∗

l |Vb|v1〉〈v1|α,k∗
l 〉〈n,k|Vb|v1〉〈v1|α,k∗

l 〉〈α,k∗
l |Vb|v2〉〈v2|n,k〉

− 〈n,k|Vb|v2〉〈v2|α,k∗
l 〉〈α,k∗

l |Vb|v1〉〈v1|n,k〉, (A9)

we have

(A3) + (A4) =
∑
n′,k′

′ N∗∑
l=1

〈n′,k′|Vb|n′,k′〉〈α,k∗
l |Vb|α,k∗

l 〉 − 〈n′,k′|Vb|α,k∗
l 〉〈α,k∗

l |Vb|n′,k′〉
ε∗ − εn′,k′

(A10)

≡
∑
n′,k′

′ N∗∑
l=1

d
n′,k′
α,k∗

l

ε∗ − εn′,k′
. (A11)

Substituting (A7) and (A11) into (A2), we obtain

A1(εα) ≈ mα

δε

(
〈Vb〉∗ −

∑
n′,k′

′ N∗∑
l=1

d
n′,k′
α,k∗

ε∗ − εn,k

)
(A12)

for det D(1)
n,α = 0.

On the other hand, when det D(1)
α �= 0, only the first term of (A1) is important. In this case, the pole-determinant becomes

A1(εα) ≈ 1

δε2
detD(1)

α . (A13)

From (3.4), we have

detD(1)
α = 〈v1|

N∗∑
l1=1

|α,k∗
l1
〉〈α,k∗

l1
|Vb|v1〉〈v2|

N∗∑
l2=1

|α,k∗
l2
〉〈α,k∗

l2
|Vb|v2〉

−〈v1|
N∗∑

l1=1

|α,k∗
l1
〉〈α,k∗

l1
|Vb|v2〉〈v2|

N∗∑
l2=1

|α,k∗
l2
〉〈α,k∗

l2
|Vb|v1〉 (A14)
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= 1

2

N∗∑
l1=1

N∗∑
l2=1

〈α,k∗
l1
|Vb

2∑
i=1

|vi〉〈vi |α,k∗
l1

1〉〈α,k∗
l2
|Vb

2∑
j=1

|vj 〉〈vj |α,k∗
l2
〉

−1

2

N∗∑
l1=1

N∗∑
l2=1

〈α,k∗
l1
|Vb

2∑
i=1

|vi〉〈vi |α,k∗
l2
〉〈α,k∗

l2
|Vb

2∑
j=1

|vj 〉〈vj |α,k∗
l1
〉 (A15)

= 1

2

N∗∑
l1=1

N∗∑
l2=1

d
α,k∗

l1
α,k∗

l2
, (A16)

which leads to

A1(εα) ≈ 1

2δε2

∑
l1

∑
l2

d
α,k∗

l1
α,k∗

l2
. (A17)

APPENDIX B: RICE-MELE MODEL

The eigenenergy and eigenvectors of Rice-Mele Hamilto-
nian (4.1) are given by

εn,k = (−1)n
√

s(k)2 + �2 (B1)

and

|1〉 =
(

vA
1,k

vB
1,k

)
=

⎛
⎝ −

√
1
2 + �

2ε1,k√
1
2 + �

2ε2,k
eiφk

⎞
⎠, (B2)

|2〉 =
(

vA
2,k

vB
2,k

)
=

⎛
⎝

√
1
2 + �

2ε2,k√
1
2 + �

2ε1,k
eiφk

⎞
⎠, (B3)

where the first and second rows represent A and B sites
each. Here, s(k) =

√
2(t2 + δ2) + 2(t2 − δ2) cos k and eiφk =

−2(t cos k/2 − iδ sin k/2)/s(k). The corresponding Bloch
wave functions are represented as

|n,k〉 = 1√
N

∑
i

(
vA

n,ke
ikxA,i |ai〉 + vB

n,ke
ikxB,i |bi〉

)
, (B4)

where xA,i and xB,i are the positions of the A and B sites in the
ith unit cell, and N → ∞ is the total number of unit cells. Here,
|ai〉 and |bi〉 are the local orbitals at A and B sites in the ith
unit cell. Also, note that the valence band shows its maximum
at k = π when |t | > |δ|, and at k = 0 when |t | < |δ|.

To make a commensurate termination, we apply a local op-
erator which cancels out all the hoppings across the boundary
between the first and second unit cells. This operator is given

by

Vb = (t − δ)(a†
2b1 + b

†
1a2), (B5)

which yields the matrix element

〈n,k|Vb|n′,k′〉 = t − δ

N

(
vA∗

n,kv
B
n′,k′e

−ikxA,2eik′xB,1

+ vB∗
n,kv

A
n′,k′e

−ikxB,1eik′xA,2
)
. (B6)

Let us calculate 〈Vb〉∗. Here, we only consider the |t | > |δ|
case since we have the same result for |t | < |δ| case. In
this case, the band edge is located at k∗ = π with energies
ε∗
v = ε1,π = −√

4δ2 + �2 and ε∗
c = ε2,π = √

4δ2 + �2 for
the valence and conduction bands each. Then, we have

〈Vb〉∗ = 〈1,k∗|Vb|1,k∗〉 (B7)

= −2
t − δ

N

δ

|δ|

√
1

2
+ �

2ε1,k

√
1

2
+ �

2ε2,k

(B8)

= − 2

N

δ(t − δ)√
4δ2 + �2

(B9)

for the valence band and

〈Vb〉∗ = 〈2,k∗|Vb|2,k∗〉 = 2

N

δ(t − δ)√
4δ2 + �2

(B10)

for the conduction band because eiφπ = iδ/|δ| and
eik∗(xB,1−xA,2) = −i.

Now, we evaluate (A11) for |t | > |δ| case. From (A11) and
(B6), the denominator of the summand of (A11) is evaluated
as

d
n,k
m,k∗ = (−1)m+1 (t − δ)2

N2

{
−1

2
− (−1)n�2

2ε1,kε1,k∗
− (−1)n

2

√
1 − �2

ε2
1,k

√
1 − �2

ε2
1,k∗

cos

(
φk − k

2
+ π

2

(
1 − δ

|δ|
))}

, (B11)

where m and n are the band indices. From this, we obtain

∑
n,k

′ d
n,k
m,k∗

ε∗ − εn,k

=
∑

k

′
(−1)m+1 (t − δ)2

N2

�2 − ε2
1,k∗ +

√
ε2

1,k − �2
√

ε2
1,k∗ − �2 cos

(
φk − k

2 + π
2

(
1 − δ

|δ|
))

ε1,k∗
(
ε2

1,k∗ − ε2
1,k

) (B12)

=
∑

k

′
(−1)m+1 (t − δ)2

N2

−s(k∗)2 + δ
|δ| s(k∗)

√
ε2

1,k − �2
(
cos φk cos k

2 + sin φk sin k
2

)
ε1,k∗

(
ε2

1,k∗ − ε2
1,k

) (B13)
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=
∑

k

′
(−1)m+1 (t − δ)2

N2

−s(k∗)2 + δ
|δ| s(k∗)

(−2t cos2 k
2 + 2δ sin2 k

2

)
ε1,k∗

(
ε2

1,k∗ − ε2
1,k

) (B14)

= (−1)m

N

δ(t − δ)√
4δ2 + �2

(B15)

because s(k∗) = 2|δ| when |t | > |δ|. As a result, the pole-
determinant becomes

A1(εc) = A1(εv) = 1

δεN

δ(t − δ)√
4δ2 + �2

, (B16)

where we applied m = 1 around the valence-band edge
(A1(εv)), and m = 2 around the valence-band edge (A1(εc))
in (B15). Finally, we obtain

A1(εα)

|A1(εα)| = sgn(tδ) (B17)

because |t | > |δ|.
APPENDIX C: ARMCHAIR GRAPHENE NANORIBBON

To deal with the armchair GNR, let us consider the four-site
unit cell for graphene as presented in Fig. 11. Within the basis
ck = (cA,k cB,k cÃ,k cB̃,k)T, the Hamiltonian’s matrix is given
by

HAGNR =

⎛
⎜⎜⎝

0 f ∗
1 (k) 0 f2(k)

f1(k) 0 f ∗
2 (k) 0

0 f2(k) 0 f ∗
1 (k)

f ∗
2 (k) 0 f1(k) 0

⎞
⎟⎟⎠, (C1)

where f1(k)=−eiakx/
√

3, and f2(k)= − 2 cos(aky/2)eiakx/2
√

3.
Let us assume a = 1. The energy spectrum of HAGNR is given
by

ε
η1,η2
kx ,ky

= η1

√
3 + 2 cos ky + 4η2 cos

√
3ky

2
cos

kx

2
, (C2)

where ηi = ±.
If we fix kx , HAGNR is the Hamiltonian describing the

effective 1D system along y direction with hopping parameters
−e±ikx/

√
3 and −e±ikx/2

√
3. The local operator, which makes

edges between two neighboring unit cells, is given by

Vb =

⎛
⎜⎜⎜⎜⎝

0 0 0 e
i kx

2
√

3

0 0 e
−i kx

2
√

3 0

0 e
i kx

2
√

3 0 0

e
−i kx

2
√

3 0 0 0

⎞
⎟⎟⎟⎟⎠ (C3)

in the basis cV = (cm,A cm,B cm+1,Ã cm+1,B̃ )T, where m

is the index of the unit cell of the effective 1D system.
From these, the pole-matrix is evaluated as

Aβ(ε)|ij = δij − β

2π

∑
η1,η2

∫ π

−π

dky

〈
i
∣∣εη1,η2

kx ,ky

〉〈
ε

η1,η2
kx ,ky

∣∣Vb

∣∣j 〉
ε − ε

η1,η2
kx ,ky

,

(C4)

where i and j run over all four elements of cV . Note that |εη1,η2
kx ,ky

〉
is the real-space form of the Bloch wave function, not just the
eigenvector of HAGNR.

While we are interested in the behavior of the pole-
determinant in the vicinity of the conduction and valence-band
edges, εα = −mα(| sin

√
3kx/2| − δε), we have Aβ(εc) =

Aβ(εv) due to chiral symmetry. Here, mc(v) = −1(1). There-
fore we only plot Aβ(εv) as a function of β for various values of
kx in Fig. 11(b). We accordingly find that the pole-determinant
of the armchair GNR is always positive in 0 � β � 1 at any
kx , which means both M , P , and Phalf are zero, and there is no
in-gap mode.

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.6

0.7

0.8

0.9

1

0.5

(m+1)

(m+2)

(m)

(m-1)

(m-2)

Effective 1D
 system

Armchair edge

(a)

(b)

FIG. 11. (a) The lattice structure of graphene. Along the green
solid line, the open boundary with the armchair shape is made.
The effective 1D system perpendicular to this edge for given kx is
illustrated by the red dashed lines where the red solid box stands for
the mth unit cell of this 1D model. The four basis sites are labeled
by A, B, Ã, and B̃. (b) For various k′

xs, the pole-determinant is
plotted as a function of β. In the armchair graphene nanoribbon,
the pole-determinant has no zeros for 0 < β � 1, which implies the
absence of the edge states.

115143-17



RHIM, BARDARSON, AND SLAGER PHYSICAL REVIEW B 97, 115143 (2018)
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FIG. 12. (a) The pole-determinant of the graphene nanoribbon
with the edge along �T = 2�a1 − 3�a2 as described in Fig. 5(a).

APPENDIX D: POLE STRUCTURE OF GENERAL
GRAPHENE NANORIBBON

The pole structure of a graphene nanoribbon with the
edge shape given in Fig. 5(a) is plotted in Fig. 12. The
pole-determinants at ky = 0.4 and ky = 1 are considered as
representatives for two regions in the band structure in Fig. 5(b)

where one is without the zero energy edge modes and the
other with them. Since the pole-determinant at the conduction
and valence bands are identical to each other due to the
chiral symmetry, we only show one at the valence band.
At ky = 0.4, the pole-determinant has no zeros from β = 0
to β = 1 which means M = Phalf = 0. On the other hand,
at ky = 1, the pole-determinant vanishes at β = βv

1 . At this
point, we numerically check that the energy dependence of
the pole-determinant is linear and its derivative with respect to
the energy is positive while β derivative is negative as shown
in Fig. 12. Since mv = −1, the formula (2.7) yields Mv = 1,
and the chiral symmetry ensures Mc = 1 too. As a result, we
obtain M = 2 which states there are two edge modes in the
gap. Finally, Phalf = 1 at ky = 1 because the pole-determinant
at β = 1 is negative.

APPENDIX E: POLE STRUCTURE OF GRAPHENE’S “55”
GRAIN BOUNDARY

The behavior of pole-determinant of graphene with “55”
grain boundary is analyzed in Fig. 13. First, we consider
the pole-determinant with the zigzag open edges [Fig. 6(c)].
At ky = 0.5 [Fig. 13(a)], only one mode is passing by the
valence-band portal (εv) as represented by the root of the
pole-determinant Aβ(εv) at β = βv

1 (0.5). Here, the momentum
dependence is reflected as an argument of βα

i (ky) while it
is neglected in the figure. Since ∂εAβv

1
(εv) > 0 (checked

numerically), the negativeness of ∂εAβv
1
(εv)∂βAβv

1
(εv) implies

one mode comes into the gap, and M = 1. This is consistent
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FIG. 13. The pole-determinants of graphene with “55” grain boundary are drawn as a function of β at the conduction and valence-band
edges of graphene. Upper panels correspond to the geometry in Fig. 6(b) where the zigzag edges are included, and lower ones correspond to the
termination in Fig. 6(c) where the zigzag open edges are excluded. For each case, three different momenta ky = 0.5, 2.2, and 3 are examined.
The regions where β � 1 are highlighted in the insets. While βα

i is a function of the momentum ky , we omit this dependence for simplicity.
That is, βα

i
′s are different for each window.
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with the band structure in Fig. 6(d) where we have a single edge
mode in the middle at this momentum. At ky = 2.2 [Fig. 13(b)],
the pole-determinant at the valence-band portal has two roots at
βv

1 and βv
2 while one at the conduction-band portal has a single

root at βc
1 . One may check numerically that all are of incoming

character, which leads toM = 3. Finally, at ky = 3 [Fig. 13(c)],
the pole-determinant has three zeros at the valence-band portal
and one root for the conduction one. As in the previous case, all
those roots have incoming character, resulting in M = 4 in this
case. On the other hand, from the signs of the pole-determinants
at β = 1, one can easily note that P = 1 for ky = 0.5 and
ky = 2.2 and P = 0 for ky = 3.

Second, the lower panels of Fig. 13 exhibit the pole
structures of graphene with the same “55” grain boundary
but without the zigzag open boundaries. At ky = 0.5, we have
more complex pole structure as compared to that of (a). We
find that ∂εAβv

1
(εv) and ∂εAβc

1
(εc) are positive while ∂εAβv

2
(εv)

is negative. This indicates that the pole-determinant is of
incoming character at β = βv

1 and βv
2 , while it is of outgoing

character at βc
1 . As a result, we obtain M = 1. The same is

applied to the pole structure at ky = 2.2, and we have the
same bulk number M = 1, which is 2 less than that of the
previous geometry. This reflects the absence of the zigzag open
boundaries which host doubly degenerate zero energy edge
modes when 2π/3 < ky < π . At ky = 3, three zeros βv

1 , βv
2 ,

and βv
3 of the pole-determinant at the valence-band portal are

all incoming ones while βc
1 at the conduction-band portal is

the outgoing one. This results in M = 2, which is also 2 less
than that of the geometry with the zigzag edges with the same
reasoning of the ky = 2.2 case. Finally, from the signs of the
pole-determinant at β = 1, one can note that the Z2 number
P is just the same as that of the previous geometry with the
zigzag boundaries.

APPENDIX F: KANE-MELE MODEL

In this section, we revisit the Kane-Mele model [20] briefly.
The Kane-Mele model is given by

HKM = t
∑
〈ij〉

c
†
i cj + iλSO

∑
〈〈ij〉〉

νij c
†
i s

zcj + λv

∑
i

ξic
†
i ci

+ iλR

∑
〈ij〉

c
†
i (s × d̂ij )cj , (F1)

where the first term is the nearest-neighboring hopping process
of graphene, the second term is the intrinsic spin-orbit coupling
between the next neighboring sites, the third term is the onsite
mass term which breaks the sublattice symmetry, and the final
term is the Rashba spin-orbit coupling [20]. νij = 1(−1) if the
path from the j th site to the ith site through two bonds is coun-
terclockwise(clockwise). sz is the Pauli matrix for spin degrees
of freedom, and d̂ij is the unit vector for the direction from the
j th site to the ith site. Note that we omit labels for spins.

By performing a partial Fourier transformation along the y

direction, we obtain a 1D effective Hamiltonian for fixed ky .
This is illustrated in Fig. 8(a) in the main text. We then make
the open boundary by setting β1 = 1. As shown in Fig. 9, we
may accordingly determine the evolutions of the surface bands
as a function of β2, which controls the magnitude of the onsite
potential V2 for the orbitals in the left end unit cell. Similarly,
this also conveys how these lead to the pole winding on the
valence-band portal drawn by red dashed curves. Here, we
assume that V0 = −1 so that the left-localized states are going
down to the lower energies for increasing β2. We compare two
cases, one for the topologically nontrivial phase with λv =
0.1t , λSO = −0.06t , and λR = 0.05t , and the other for the triv-
ial insulating phase with λv = 0.4t , λSO = −0.06t , and λR =
0.05t . The nontrivial phase hosts the quantum spin Hall effect.
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