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Calculation of spin-spin zero-field splitting within periodic boundary conditions:
Towards all-electron accuracy
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For high-spin centers, one of the key spectroscopic fingerprints is the zero-field splitting (ZFS) addressable
by electron paramagnetic resonance. In this paper, an implementation of the spin-spin contribution to the ZFS
tensor within the projector augmented-wave (PAW) formalism is reported. We use a single-determinant approach
proposed by M. J. Rayson and P. R. Briddon [Phys. Rev. B 77, 035119 (2008)], and complete it by adding
a PAW reconstruction term which has not been taken into account before. We benchmark the PAW approach
against a well-established all-electron method for a series of diatomic radicals and defects in diamond and cubic
silicon carbide. While for some of the defect centers the PAW reconstruction is found to be almost negligible, in
agreement with the common assumption, we show that in general it significantly improves the calculated ZFS
towards the all-electron results.
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I. INTRODUCTION

In recent years, spin centers in semiconducting host mate-
rials have attracted exceptional attention as promising candi-
dates for quantum information processing [1,2] and nanoscale
sensing [3,4] at ambient conditions. For many quantum appli-
cations, a spin center has to be addressed on a single-defect
level. This becomes a major challenge since there are usually
many other defects present in the host material, with some
of them even being unidentified. Nowadays, identification
and processing of spin centers relies on the combination of
state-of-the-art spectroscopic techniques and first-principles
simulations, whereby one can relate certain spectroscopic
signatures of defects to their atomic-scale structure. For high-
spin (S � 1) centers, one of the key spectroscopic fingerprints
is the zero-field splitting (ZFS) parameter addressable by
electron paramagnetic resonance (EPR) [5–8].

The ZFS describes interactions between the unpaired elec-
trons in the absence of external magnetic field. Within perturba-
tion theory, the ZFS can be presented as a sum of spin-spin and
spin-orbit coupling contributions [9,10]. Ideally, both contribu-
tions have to be taken into account in order to achieve accurate
ab initio predictions. However, for a number of important sys-
tems, such as spin centers in diamond and silicon carbide, the
spin-spin part is believed to be dominant [6,11]. Therefore, this
term alone can be of practical importance for the interpretation
of the EPR spectra and identification of the spin centers.

In the last two decades, significant efforts have been made
to establish the framework for ZFS calculation within all-
electron density functional theory (DFT) routinely applied
onto finite-size molecular systems [12,13]. This methodology
is, however, not directly transferable to extended periodic
systems. Even though it is sometimes possible to approximate
the solid by an isolated cluster, finite-size effects may be
considerable, especially for systems with strongly delocalized
spin density. For point defects in semiconductors this is often
the case, so the convergence with respect to cluster size can

be unreachable with reasonable computational resources. A
better solution is provided by the supercell approach with
explicitly imposed periodic boundary conditions, which is
routinely used in computational materials science. Currently,
the most effective formalism for EPR parameter calculations
in extended periodic systems is based on Blöchl’s projector
augmented-wave (PAW) method [14]. In this method, all-
electron wave functions are substituted by smooth pseudowave
functions expanded in plane waves, while the true shape of
the wave functions within the atomic core region are retained.
This provides a way to calculate all-electron properties with
the efficiency of the pseudopotential-based supercell approach.
In its gauge-including extension (GIPAW) [15] which ensures
the translational invariance of the wave functions in external
magnetic field, this method has proved its capabilities for ab
initio calculation of magnetic resonance parameters.

Previously, the idea to treat the ZFS tensor within the
pseudopotential plane-wave framework was formulated by
Rayson and Briddon [16] and revisited by Bodrog and Gali
[17]. The potential capabilities of the complete PAW treatment
were further addressed in the literature [11,18], but a detailed
evaluation of the reconstruction scheme and a comparison
with all-electron data are still missing. Even though it was
possible to obtain satisfying results for some point defects
by considering only smooth pseudowave functions [11],
the potential significance of the on-site reconstruction of
all-electron wave functions has been pointed out recently in
the literature [18]. Thus, its implementation appears to be
unavoidable for further applications.

Therefore, this work aims at a complete PAW-based treat-
ment of the spin-spin ZFS. In Sec. II, we discuss the basic
formulation of the spin-spin ZFS tensor within a fully re-
constructed PAW formalism, where we propose an on-site
reconstruction scheme, which is added in a separable way.
We implement [19] these algorithms in the GIPAW module
of the QUANTUM ESPRESSO package [20] and validate them
(in Sec. III) against the all-electron method of the ORCA
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software [21]. Benchmark calculations on various diatomic
molecules and also for defects in diamond and silicon carbide
(3C-SiC) demonstrate the significance of the on-site ZFS
contribution for a wide range of systems.

II. THEORY

A. Spin-spin ZFS from DFT

A standard way to address the spin-spin ZFS in DFT is
based on a phenomenological spin Hamiltonian, which has
been thoroughly discussed in the literature related to EPR
spectroscopy. Within this formalism, the first order of the
perturbational ZFS Hamiltonian [22] can be parametrized in
terms of a symmetric 3 × 3 tensor DSS:

ĤSS = α2

2

∑
m,n

[
ŝmŝn

r3
mn

− 3
(ŝmrmn)(ŝnrmn)

r5
mn

]
= ŜDssŜ. (1)

In Eq. (1), α is the fine-structure constant, rmn is the vector
between electrons m and n, and Ŝ stands for the total effective
spin of the system. A conventional form for an element of the
Dss tensor which separates out the spin and space parts is then
given by (a,b = x,y,z) [9]

Dab = α2

S(2S − 1)

〈
�

∣∣∣∣∑
m,n

r2
mnδab − 3(rmn)a(rmn)b

r5
mn

×{2ŝzmŝzn − ŝxmŝxn − ŝymŝyn}
∣∣∣∣�

〉
, (2)

where the sum is taken over all the orbital pairs. Note that
throughout the following derivations we omit the label SS since
we focus only on the spin-spin part of ZFS. The multielectron
wave function � in Eq. (2) is conventionally approximated
by the ground-state Slater determinant. The main drawback of
this approximation is that the Slater determinant constructed
from spin-unrestricted DFT calculations is to a certain extent
affected by spin-contamination [23]. It originates from the
fact that the spin-unrestricted wave functions are no longer
eigenfunctions of the total spin operator Ŝ2 but contain an
artificial admixture of other spin states. In particular, this
affects the spatial distribution of the orbitals and thereby
introduces a certain error in the evaluated spin-spin ZFS [24].
We will come back to this point later (Sec. III C). Here, we
follow the general theory of McWeeny and Mizuno [25] and
write the expression for the total spin-spin ZFS as

Dab =
∑
m,n

fmfnσmnDab,mn, (3)

where fm, fn are the occupations of orbitals m and n and σmn

originates from the matrix elements of spin operators: σmn = 1
for parallel spins, and σmn = −1 in the case of antiparallel
spins. In Eq. (3) the space-dependent part of the spin-spin ZFS
contribution from two orbitals, m and n, is given by [25,26]

Dab,mn = α2

4S(2S − 1)

∫
d3r d3r′

× |r − r′|2δab − 3(r − r′)a(r − r′)b
|r − r′|5

× [nmm(r)n∗
nn(r′) − nmn(r)n∗

mn(r′)], (4)

which consists of Coulomb-like and exchangelike contribu-
tions. In the above expression we define the charge density,
nmn(r) = ψ∗

m(r)ψn(r), from the space distribution of the spin
orbitals.

B. PAW-based formulation of spin-spin ZFS

In the following, we aim to provide a general and consistent
treatment for the spin-spin ZFS given by Eq. (4) within the
framework of the PAW method. This formalism relies on the
transformation [14]

τ̂ = 1̂ +
∑
R

∑
i∈R

[|φi〉 − |φ̃i〉]〈p̃i |,

which maps the smooth pseudowave function �̃ expanded in
plane waves back to the all-electron wave function � = τ̂ �̃.
Here, the index i ∈ R refers to angular momentum quantum
numbers li and mi for atom R. The all-electron partial wave φi

is a solution of the radial Schrödinger (or Dirac) equation for
the reference atom. The pseudo-partial wave φ̃i is equivalent
to φi outside the augmentation sphere. The function p̃i is a
projector localized within the core region and dual to the partial
wave: 〈p̃i |φ̃j 〉 = δij .

The PAW transformation allows us to reconstruct an expec-
tation value of local operators 〈�̃|Ô|�̃〉 in a straightforward
way. In particular, this can be done for the charge density
defined in Eq. (4) by noticing that nmn(r) is an expectation
value of the real-space projection operator |r〉〈r|. It is thus
presented by a superposition

nmn(r) = ñmn(r) +
∑
R

[
nR

mn(r) − ñR
mn(r)

]
(5)

of the smooth pseudodensity ñmn(r) = 〈�̃m|r〉〈r|�̃n〉 treated
on a plane-wave grid and the difference between on-site
expansions of the all-electron densitynR and the pseudodensity
ñR defined on a radial grid within the augmentation sphere
around an atomic site R as

nR
mn(r) =

∑
i,j∈R

〈φi |r〉〈r|φj 〉〈�̃m|p̃i〉〈p̃j |�̃n〉,

ñR
mn(r) =

∑
i,j∈R

〈φ̃i |r〉〈r|φ̃j 〉〈�̃m|p̃i〉〈p̃j |�̃n〉. (6)

Similarly, we aim to construct the spin-spin ZFS in the form
of three noninteracting contributions,

Dab = D̃ab +
∑
R

[
DR

ab − D̃R
ab

] = D̃ab + 	Dab, (7)

where the sum 	Dab of the on-site terms constitutes the
essence of the PAW reconstruction. However, the spin-spin
ZFS is an expectation value of the nonlocal two-electron
operator [Eq. (1)]. For this kind of quantity, the separable form
of Eq. (7) is not straightforward to obtain and requires more
careful consideration [14]. It is thus illustrative to discuss the
idea behind this representation by substituting the two-electron
density [Eq. (5)] into the dipole-dipole interaction integral of
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Eq. (7). Using the shorthand notation

(f |g) =
∫

d3r d3r′f (r)g∗(r′)

× |r − r′|2δab − 3(r − r′)a(r − r′)b
|r − r′|5

and following Ref. [17], we write an exchange-like contribu-
tion to the ZFS as

(nmn|nmn) = (ñmn|ñmn) − 2
∑
R

(
nR

mn − ñR
mn|ñmn

)
+

∑
R

(
nR

mn − ñR
mn|nR

mn − ñR
mn

)
+

∑
R �=R′

(
nR

mn − ñR
mn|nR′

mn − ñR′
mn

)
. (8)

The expression for a Coulomb-like term in Eq. (4),
(nmm|nnn), is entirely analogous. From Eq. (8) we can obtain
the desired separable form of Dab if in the first sum the plane-
wave pseudodensity ñ is replaced by its on-site approximation
ñR

mn (compare with Sec. II C of Blöchl’s work [14]). This
substitution is partially justified by the fact that ñmn and ñR

mn are
exactly equal by construction within the augmentation spheres
(for a complete set of projectors). However, the substitution still
implies that the difference (nR

mn − ñR
mn) has negligible dipole-

dipole interaction with the charges outside the augmentation
region. With this in mind, we also leave out the last sum, which
consists of intersphere contributions, and obtain the following
expression [see Eq. (7)]:

(nmn|nmn) = (ñmn|ñmn) +
∑
R

(nR
mn|nR

mn) −
∑
R

(ñR
mn|ñR

mn).

(9)

In principle, very similar considerations are involved in
the formulation of Hartree and exchange energies in the PAW
method [14,27,28]. In this case, the problem is usually solved
by introducing a so-called compensation density. The latter
is constructed in such a way that upon its addition to the
on-site pseudodensity, all the moments of (nR

mn − ñR
mn) are

equal to zero individually, so that the difference produces
zero electrostatic potential outside the sphere. Fortunately,
we can avoid the use of the compensation in our current
implementation by noticing that in the case of dipole-dipole
interaction only the zeroth moment of (nR

mn − ñR
mn) has to

vanish in order to ensure the above assumption. This can be
proven by using the same analytics as in Sec. II D [in con-
nection with Eq. (15)]. For norm-conserving pseudopotentials
this requirement is always fulfilled, and this hypothesis will be
further evaluated through benchmark calculations (Sec. III).
Hence, we now have to provide explicit expressions and give
the details of implementation for each term in Eq. (7).

C. Plane-wave pseudodensity term

The detailed analytical derivation for this term was pro-
posed by Rayson and Briddon [16] and further revisited in
Refs. [11,17,18]. Here, we mention only that it is convenient

to formulate this term in the reciprocal space as

D̃ab,mn = α2
π

S(2S − 1)

∑
G

(
GaGb

G2
− δab

3

)

× [ñmm(G)ñnn(−G) − |ñmn(G)|2]. (10)

In the above expression, ñmm(G) and ñnn(−G) are the Fourier
coefficients of the two-electron densities at points G and −G,
and 
 is the volume of the unit cell.

D̃ab,mn is the computationally most demanding term in
Eq. (7). Its evaluation involves a two-step procedure. First, the
pseudowave functions are Fourier transformed to the plane-
wave grid in real space, where the two-electron densities are
subsequently constructed. Then the densities are transferred
again to the reciprocal space, and the summation in Eq. (10) is
computed.

D. On-site all-electron term

We begin the analytical treatment of the on-site term by
noticing that

∂a∂b

1

|r| = −4π

3
δabδ(r) − |r|2δab − 3(r)a(r)b

|r|5 . (11)

This allows us to reformulate the integral in Eq. (4) as

DR
ab,mn = α2

4S(2S − 1)

∫

R

d3r d3r′

×
[
nR

mm(r)nR∗
nn (r′) − nR

mn(r)nR∗
mn(r′)

]

×
{(

1

3
δab∇2 − ∂a∂b

)
r ′

1

|r − r′|
}
, (12)

where integration is restricted to the volume 
R of the
augmentation sphere. A similar representation of the dipole-
dipole interaction kernel has been previously suggested and
discussed by Blöchl for evaluating the anisotropic contribution
to hyperfine interaction [29]. Note that the choice of r ′ as
a differentiation variable does not limit the generality of the
following derivations, thanks to the symmetry of the kernel.

Next, we recall the definitions of the on-site densities
[Eq. (6)], so that Eq. (12) can be rewritten as

DR
ab,mn = α2

4S(2S − 1)

∑
i,j,k,l ∈ R

WR
ab,ijkl

× [〈�̃m|p̃i〉〈p̃j |�̃m〉〈�̃n|p̃l〉〈p̃k|�̃n〉
− 〈�̃m|p̃i〉〈p̃j |�̃n〉〈�̃n|p̃l〉〈p̃k|�̃m〉], (13)

where we introduce the four-partial-wave, two-electron
integral,

WR
ab,ijkl =

∫

R

d3r d3r′〈φi |r〉〈r|φj 〉〈φl|r′〉〈r′|φk〉

×
{(

1

3
δab∇2 − ∂a∂b

)
r ′

1

|r − r′|
}
, (14)

and account for complex conjugation. The projections of the
pseudowave function 〈p̃|�̃〉 in the square brackets in Eq. (13)
are standard quantities in the PAW formalism. Therefore, we
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can now focus on the remaining integral WR
ab,ijkl . To simplify it,

we expand the Coulomb operator in real spherical harmonics,

1

|r − r′| =
∑
L,M

4π

2L + 1

(r<)L

(r>)L+1
Y ∗

LM (̂r)YLM (r̂′),

where r< = min(r,r ′) and r> = max(r,r ′). Together with the
standard definition of partial waves

〈r|φi〉 = 1

r
ui(r)Ylimi

(̂r),

this will allow us to perform the angular integration analytically
and end up with numerical integration for the radial part
exclusively.

During the following analysis, for each augmentation
sphere we will also assume without loss of generality that
the volume 
R is centered in the origin of the coordinates.
In addition, we will further use the definition of the Clebsch-
Gordan coefficients

CLM
limi lj mj

=
∫

d r̂ Y ∗
LM (̂r)Y ∗

limi
(̂r)Ylj mj

(̂r)

and the orthonormality of spherical harmonics∫
d r̂ Y ∗

limi
(̂r)Ylj mj

(̂r) = δli lj δmimj
.

Thereby, for the four-partial-wave, two-electron integral we
obtain

WR
ab,ijkl =

∑
L,M

4π

2L + 1
CLM

limi lj mj

∫
drui(r)uj (r)

×
∫

d r̂′Y ∗
lkmk

(r̂′)Yllml
(r̂′)

∫
dr ′uk(r ′)ul(r

′)

×
{(

1

3
δab∇2 − ∂a∂b

)
r ′

(r<)L

(r>)L+1
YLM (r̂′)

}
. (15)

Next, we can treat the expression in the curly brackets of
Eq. (15) in a way similar to that proposed by Blöchl [29].
However, here, we have to consider separately the cases of
r > r ′ and r < r ′.

When r > r ′, only the terms with L = 2 will contribute to
the magnetic dipole-dipole interaction. Now the derivative in
the curly brackets,{

· · ·
}

|L=2

= 1

r3

{(
1

3
δab∇2 − ∂a∂b

)
r ′
Y2M (r ′)r ′2

}
,

can be evaluated analytically in Cartesian coordinates for each
Y2M (r ′) (M = −2,−1, . . . ,2) and will be retained in the final
expression as M-dependent coefficients (see Ref. [29], Eq.
(A7)).

For the case of r < r ′, the radius vector r ′ is in the
denominator, and it is obvious that only the element with
L = 0, M = 0 will contribute to DR

ab. Then, it can be seen
that for the expression in the curly brackets in Eq. (15) the
following holds:{

· · ·
}

|L=0

= 1

4π

(
1

3
δab∇2 − ∂a∂b

)
r ′

1

r ′ ,

which brings us to the same line of derivations for the integral
over r′ as those followed from Eq. (14). We can notice by

exploiting Eq. (11) that Eq. (15) then becomes formally similar
to the expression for the anisotropic hyperfine interaction of
the density at the radius vector r′ with the charge confined
within the sphere of the radius r < r ′. Subsequently, this leads
to a form analogous to that of the r > r ′ case and to the same
set of M-dependent coefficients.

Eventually, the explicit form of the four-partial-wave, two-
electron integral WR

ab,ijkl is easy to derive for each combination
of Cartesian indexes a and b:

WR
xx,ijkl =

√
12π

5

(
1√
3
WR

3z2−r2 − WR
x2−y2

)
,

WR
yy,ijkl =

√
12π

5

(
1√
3
WR

3z2−r2 + WR
x2−y2

)
,

WR
zz,ijkl = −

√
12π

5

√
4

3
WR

3z2−r2 ,

WR
xy,ijkl = −

√
12π

5
WR

xy,

WR
xz,ijkl = −

√
12π

5
WR

xz,

WR
yz,ijkl = −

√
12π

5
WR

yz,

where the radial integrals are abbreviated as

WR
M = C2M

limi lj mj
δk,l

∫ rc

0
dr

ui(r)uj (r)

r3

∫ r

0
dr ′uk(r ′)ul(r

′)

+C2M
lkmkllml

δi,j δk,l

∫ rc

0
drui(r)uj (r)

×
∫ rc

r

dr ′ uk(r ′)ul(r ′)
r ′3 .

When substituted into Eq. (13), this gives the final equation for
the on-site all-electron term in spin-spin ZFS. The derivations
for the on-site pseudoterm D̃R

ab are exactly the same, except
with the pseudo-partial waves being involved instead of the
all-electron ones.

III. NUMERICAL TESTS

A. Computational details

The described algorithms have been implemented in the
GIPAW module of the QUANTUM ESPRESSO software. For the
purpose of the following numerical exercises, we restrict our-
selves to norm-conserving pseudopotentials (generated with
the Troullier-Martins approach [30]) and the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [31]. The
robustness of our implementation with respect to technical
parameters of the pseudopotentials (see also Ref. [18]) is
illustrated in Fig. 1.

The calculations for diatomic radicals and isolated diamond
and 3C-SiC clusters cut from the defect-containing supercells
are carried out in a cubic supercell of 303 bohrs3. Such a
large supercell size has been chosen to ensure that the con-
tribution from the spurious magnetic dipole-dipole interaction
between periodic replicas is negligible. For the same reason,
the Brillouin zone sampling is restricted to the  point. For the
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FIG. 1. Top: Convergence of the spin-spin D value for the V+
2

radical with respect to the plane-wave cutoff. The different contribu-
tions to the D value are shown separately. Bottom: The D value of
the C+

2 radical calculated using the Troullier-Martins pseudopotential
with a varying core radius.

radicals, we use a plane-wave cutoff of at least 80 Ry. In the
case of main-group elements, converged results are achieved
at cutoff values as low as 40 Ry, while for transition metals the
convergence is slower, which is illustrated in Fig. 1 (top) for the
V+

2 radical. In the case of diamond and 3C-SiC, a cutoff of 50
Ry is already sufficient. Furthermore, for supercell calculations
a k-point mesh of varying size is adopted (up to 27 k points).
The defect-containing diamond and 3C-SiC supercells were
optimized with the fixed lattice constants (obtained from the
bulk material optimized with the PBE functional). When the
experimental lattice constant was used, only minor deviations
of the calculated ZFS (<2%) were observed.

Note that throughout the following section we will take the
notation of D and E parameters, which are commonly used in
EPR spectroscopy and defined via the principle values of the
D tensor as

D = Dzz − 1
2 (Dxx + Dyy), E = 1

2 (Dxx − Dyy). (16)

In these expressions, the coordinates are chosen so that 0 �
E/D � 1/3 and the parameter E becomes zero for axially
symmetric D tensor.

B. High-spin diatomic radicals

For some selected systems the calculated spin-spin ZFS can
be directly compared with experiment (see also Sec. III C).
In general, however, the spin-orbit term (so far not included
in the present implementation) prevents an unambiguous sys-
tematic evaluation of the spin-spin term against experimental
data. Therefore, we validate our reconstructed PAW approach
against the all-electron method implemented in the ORCA

package [21]. Presently, this is the most widely used quantum-
chemical code for predicting EPR parameters of molecular
systems. It has been applied to a broad range of systems,
thereby proving its accuracy and numerical stability, even
in connection with spin-spin ZFS [12,13,23]. For evaluation
of the PAW-reconstructed spin-spin ZFS, we concentrate on
a series of high-spin (S � 1) diatomic radicals, primarily
from the main group but also including examples containing
third-row transition metals. The ZFS for some of these radicals
was addressed by Reviakine et al. [32] and further revisited
by Neese [12]. For the purpose of the current benchmark we
focus exclusively on the spin-spin ZFS of these molecules.
In order to eliminate ambiguity, we use exactly the same
molecular geometries [33] and the same PBE functional for
both all-electron and PAW calculations, allowing a precise
comparison of the calculated spin-spin contribution.

The results are illustrated in Fig. 2 and indicate extremely
good agreement of our implementation with the ORCA code.
The data clearly demonstrate the significance of the on-site
PAW reconstruction. Already, the bare contribution alone fol-
lows qualitatively the trend of the all-electron values. For some
molecules (e.g., those containing H and C atoms exclusively)
the agreement is almost perfect. But, as shown in Fig. 2(b), the
reconstruction can exceed 20% of the total value for some of
the radicals (seemingly upon the increase in atomic numbers).
It should be noted that the relative importance of the recon-
struction term is not only atom dependent. It depends also on
technical details of the pseudopotential, as can be seen in Fig. 1
(bottom) for the varying cutoff radius (C+

2 radical). Overall, the
neglect of the on-site terms leads to appreciable deviation of the
spin-spin ZFS from the values calculated with the all-electron
approach, as illustrated graphically by a correlation plot in
Fig. 2(c). As further shown by the linear regression data in
Table I, the inclusion of the on-site contributions results in a
clear systematic improvement despite the certain quantitative
dependence of the reference data on the all-electron basis set.
As clearly seen from Fig. 1 (top), the inclusion of the PAW
reconstruction also gives faster convergence with respect to
the energy cutoff used for the plane-wave basis set.

C. High-spin defects in diamond and 3C-SiC

To proceed from isolated molecules to periodic systems, it
appears to be natural to consider spin-triplet defect states in
the diamond lattice. These kinds of paramagnetic centers are
prototype examples for qubits used in spintronic applications.
Thus, extensive experimental and theoretical data are available.

The first obvious choice of a test system is the negatively
charged nitrogen-vacancy center (NV−). At the ground state
(3A2, S = 1) this color center manifests C3v symmetry with
the spin density mostly localized on the three carbon dangling
bonds. Its ZFS (about 2.88 GHz in diamond [34] and 1.30 GHz
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FIG. 2. (a) Spin-spin contributions to the ZFS [expressed as D values defined in Eq. (16)] for a set of diatomic radicals calculated with
the PAW approach presented in this work and the all-electron (AE) method implemented in the ORCA program package. The PAW results are
obtained with the PBE exchange-correlation functional, norm-conserving pseudopotentials, and a supercell size of 303 bohrs3. The all-electron
calculations used the PBE functional and def2-TZVP basis set of the Aldrich type. In both methods, molecular geometries taken from Ref. [33]
are used if available and otherwise are relaxed using ORCA and the technical parameters described in Sec. III B. (b) Relative importance of
the on-site contribution (i.e., PAW reconstruction) with respect to the total spin-spin ZFS. (c) Correlation of the all-electron and PAW results
with and without the inclusion of the PAW reconstruction. For some of the considered radicals, the experimental D values can be found in
Ref. [33].

in 3C-SiC [6]) is supposed to be almost entirely caused by the
spin-spin contribution [11].

Aside from NV−, we consider the neutral silicon-vacancy
center (SiV0) in diamond, which has attracted increasing
interest throughout the last decade [35]. It has been identified
as an S = 1 system with ZFS of about 1.00 GHz at 300 K
[36] (0.94 GHz at 4 K [37]). In contrast to the NV− center, in
which the impurity occupies a substitutional site neighboring
the vacancy, SiV0 adopts a split-vacancy configuration and
D3d symmetry with two unpaired electrons situated on the six
carbon dangling bonds.

Yet another suitable test system is the neutral carbon 〈100〉-
split interstitial (denoted below as I 0) proposed in Ref. [38]
as a model for the R2 EPR center in diamond and assigned to

TABLE I. Linear regression data [the slope and the standard
deviation (SD)] for the PAW-calculated spin-spin D values for a set of
diatomic radicals listed in Fig. 2 in comparison with the all-electron
results obtained with different basis sets, including Aldrich def2-type
split valence (def2-SVP) and triple and quadruple zeta (def2-TZVP
and def2-QZVP) with one polarization function. The results are listed
for solely the plane-wave contribution to the ZFS as well as for the
total D.

def2-SVP def2-TZVP def2-QZVPa

Slope, D̃SS 0.907 0.905 0.903
Slope, D̃SS + 	DSS 1.028 1.026 1.025
SD, D̃SS (%) 12.0 12.4 13.5
SD, D̃SS + 	DSS (%) 4.9 3.8 4.2

aThe all-electron results obtained with def2-QZVP for SbH and SbF
radicals are found to be unreasonable and thus are not included in the
linear regression analysis.

the EI3 center in SiC polytypes in Ref. [26]. This S = 1 center
exhibits D2d symmetry, with the spin density mostly localized
on each of the two interstitial carbons. The observed ZFS
is, however, axially symmetric with D/h = ±4.17 GHz and
D/h = 1.68 GHz in diamond and SiC, respectively.

ZFS calculations have already been reported for these defect
models, either with the plane-wave technique [6,11,18,39]
or with the cluster approach [26,40]. However, instead of
solely comparing our approach to the existing data, we also
aim to validate its performance with respect to the all-
electron method. Accordingly, from each of the relaxed defect-
containing supercells (216 atoms) we construct a hydrogen-
terminated cluster (containing 86 C atoms and 78 H atoms
in the case of diamond and 43 C, 37 Si, and 78 H atoms
in the case of 3C-SiC). Within the PAW supercell approach,
these clusters are then immersed in a sufficiently large vacuum
box (303 bohrs3) to avoid spurious dipole-dipole interaction
between the periodic replicas. Like for the diatomic molecules
in the previous section, the geometries for PAW-based and
all-electron calculations are chosen to be exactly the same.

As shown in Table II, the results manifest only minor
discrepancies between the PAW and all-electron approaches.
As expected from the previous tests for C-containing diatomic
molecules [see the C+

2 entry in Fig. 2(b)], the on-site contri-
bution is almost entirely negligible (<1%) for NV− and SiV0.
However, it becomes surprisingly significant for I 0 (about 4%
of the total value in diamond and even about 14% in 3C-SiC).
This hints at why it has been possible to omit the on-site
contributions for diamond in previous works [11] but shows
its potential importance for the general case.

In the next step, we present the data obtained with supercell
calculations and compare them with the measured values (see
Table II). We use a Monkhorst-Pack [41] k-point grid up to
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TABLE II. Spin-spin ZFS values (in cm−1) for the defects in diamond and 3C-SiC described in Sec. III C. The values labeled “cluster”
were obtained with the PAW approach (the smooth pseudodensity term D̃PAW

SS , the on-site reconstruction term 	DPAW
SS , and the total value

DPAW
SS ) and with the all-electron calculations in the ORCA software (DAE

SS ) for hydrogen-terminated clusters constructed from relaxed 216-atom
defect-containing supercells. The label “supercell” refers to the results evaluated with the PAW approach (including the reconstruction) in 64-,
216-, and 512-atom supercells with a 50-Ry plane-wave cutoff. For the sake of completeness, the experimental values are provided in the last
column.

Cluster Supercell Experiment
64-atom 216-atom 512-atom

D̃PAW
SS 	DPAW

SS DPAW
SS DAE

SS DPAW
SS DPAW

SS DPAW
SS D

NV− in diamond 0.0941 0.0005 0.0946 0.0948 0.0982 0.1013 0.1028 0.0960a

SiV0 in diamond 0.0280 0.0003 0.0283 0.0271 0.0303 0.0265 0.0256 0.0315b

I 0 in diamond –0.1125 0.0038 −0.1088 −0.0995 −0.1123 −0.1103 −0.1100 ( − )0.1390c

NV− in 3C-SiC 0.0594 0.0006 0.0600 0.0595 0.0553 0.0571 0.0582 0.0435d

I 0 in 3C-SiC 0.0677 0.0107 0.0784 0.0773 0.0770 0.0723 0.0719 0.0560e

aReference [34].
bReference [37].
cReference [38].
dReference [6].
eReference [26].

(3 × 3 × 3) for supercells containing 64, 216, and 512 atoms.
The observed deviations with respect to the varying supercell
size can originate directly from the dipole-dipole interaction
between the periodic replicas and indirectly from the strain-
induced redistribution of the spin density within the supercell.
In either case, the results for larger supercells are expected to
be more reliable despite the somewhat better agreement with
experiment found for the smaller ones.

As the bottom line, independent of the convergence be-
havior of the supercell calculations, the agreement between
the reconstructed PAW approach and the all-electron method
observed for the cluster calculations suggests that the spin-spin
ZFS is reliably described in our implementation. Then it can be
argued that besides the influence of the exchange-correlation
functional used in the DFT calculation [12], the discrepancies
between the measured D values and our supercell calculations
can be at least partially due to the absence of the spin-orbit
contribution. The hypothesis of the second-order effect already
being significant for defects in diamond was recently addressed
in Ref. [40]. It thus motivates future efforts to extend the
PAW-based framework to spin-orbit ZFS.

A further possible source for deviation from the experiment
is given by the mentioned spin contamination. Due to the
construction of the D expectation values from ground-state
Slater determinants (see Sec. II), an overestimated partial
antiferromagnetic coupling in paramagnetic states also affects
the calculated spin-spin ZFS. In all-electron methods, the
spin contamination is often corrected by constructing the
ground-state wave function of the system [see Eq. (2)] from
(i) open-shell spin-restricted orbitals or (ii) spin-unrestricted
natural orbitals. While being clean of spin contamination,
the open-shell spin-restricted treatment does not preserve
physically relevant spin polarization, whereas the performance
of the second approach is believed to rely to a certain extent
on error cancellation [23]. There is also no evidence that this
will, in general, improve the accuracy of the ZFS calculation
for spin centers in semiconductors, where due to the presence
of valence bands the effect of spin contamination is less

prominent and where the concept of the natural orbitals is less
straightforward. A final unambiguous conclusion, however,
will again be possible only upon implementation of the spin-
orbit contribution and by comparing the full ZFS tensor with
experiment.

IV. SUMMARY

To summarize, we have proposed a complete formulation
for spin-spin ZFS within the formalism of the PAW method
[14]. We revisited the existing approach for the smooth
pseudodensity part and further provided the solution for the
on-site reconstruction which has not been investigated explic-
itly in previous works. The proposed algorithms were then
implemented into a plane-wave pseudopotential code and val-
idated against the all-electron approach of the ORCA program
package. The results exhibit extremely small discrepancies
showing that the approximations underlying the proposed
separation of the plane-wave and on-site terms [Eq. (8)] are
justified.

It is important to emphasize that we have observed an almost
negligible effect of the on-site reconstruction for some of the
defect centers in the diamond lattice. Historically, diamond
was the first test system for the plane-wave-based calculation
of the spin-spin ZFS [16,17]. The satisfying results obtained in
those works with solely the smooth pseudodensity contribution
have led to an impression that the on-site terms can be ignored
with no loss of accuracy. However, by means of benchmark
calculations on diatomic molecules we clearly illustrate that
this is not true in general. The results suggest that the effect of
on-site reconstruction is strongly atom specific. It is seemingly
more pronounced for heavier elements, but a general trend
or even an empirical rule cannot be found. The inclusion of
the on-site terms reduces the influence of the technical details
of the pseudopotentials and improves the convergence with
respect to k-point sampling and energy cutoff. It thus leads to
a systematic correction of the plane-wave results towards the
all-electron values.
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In this way, the presented PAW approach provides a general
treatment for the spin-spin ZFS of periodic systems. Its benefit
is, of course, not limited to systems where the spin-spin part is
the dominating one. It will be necessary even for paramagnetic
centers which are not yet fully addressable due to the missing
spin-orbit term (e.g., transition-metal ions).

ACKNOWLEDGMENTS

We thank Frank Neese for helpful discussions. Numerical
calculations were performed using grants of computer time
from the Paderborn Center for Parallel Computing (PC2) and
the HLRS Stuttgart. The Deutsche Forschungsgemeinschaft
(DFG) is acknowledged for financial support via the priority
program SPP 1601.

[1] D. DiVincenzo, Nat. Mater. 9, 468 (2010).
[2] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and

J. R. Petta, Science 339, 1174 (2013).
[3] H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno,

D. D. Awschalom, and D. Rugar, Science 339, 557 (2013).
[4] P. Maletinsky, S. Hong, M. S. Grinolds, B. Hausmann, M. D.

Lukin, R. L. Walsworth, M. Loncar, and A. Yacoby, Nat.
Nanotechnol. 7, 320 (2012).

[5] V. A. Soltamov, B. V. Yavkin, D. O. Tolmachev, R. A.
Babunts, A. G. Badalyan, V. Yu. Davydov, E. N. Mokhov, I. I.
Proskuryakov, S. B. Orlinskii, and P. G. Baranov, Phys. Rev.
Lett. 115, 247602 (2015).

[6] H. J. von Bardeleben, J. L. Cantin, A. Csóré, A. Gali, E. Rauls,
and U. Gerstmann, Phys. Rev. B 94, 121202(R) (2016).

[7] H. J. von Bardeleben, J. L. Cantin, E. Rauls, and U. Gerstmann,
Phys. Rev. B 92, 064104 (2015).

[8] A. Csóré, H. J. von Bardeleben, J. L. Cantin, and A. Gali, Phys.
Rev. B 96, 085204 (2017).

[9] J. E. Harriman, Theoretical Foundations of Electron Spin Reso-
nance (Academic, New York, 1978).

[10] F. Neese, in The Quantum Chemical Calculation of NMR and
EPR Properties (Wiley-VCH, Heidelberg, 2004), p. 541.

[11] V. Ivády, T. Simon, J. R. Maze, I. A. Abrikosov, and A. Gali,
Phys. Rev. B 90, 235205 (2014).

[12] F. Neese, J. Chem. Phys. 127, 164112 (2007).
[13] F. Neese, J. Am. Chem. Soc. 128, 10213 (2006).
[14] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[15] C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).
[16] M. J. Rayson and P. R. Briddon, Phys. Rev. B 77, 035119 (2008).
[17] Z. Bodrog and A. Gali, J. Phys. Condens. Matter 26, 015305

(2013).
[18] H. Seo, H. Ma, M. Govoni, and G. Galli, Phys. Rev. Mater. 1,

075002 (2017).
[19] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buon-

giorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de
Gironcoli, P. Delugas, R. A. DiStasio, Jr., A. Ferretti, A. Floris,
G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino,
T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Kkbenli,
M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen,
H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D.
Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A.
Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu,
and S. Baroni, J. Phys. Condens. Matter 29, 465901 (2017).

[20] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra et al., J. Phys.
Condens. Matter 21, 395502 (2009).

[21] F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012).
[22] R. McWeeny, Methods of Molecular Quantum Mechanics

(Academic Press, London, 1992).
[23] S. Sinnecker and F. Neese, J. Phys. Chem. A 110, 12267 (2006).
[24] The sensitivity of the spin-unrestricted ZFS to spin contami-

nation arises from its sum-over-orbital pairs formulation. If the
spatial distribution of each orbital deviates for the two spin chan-
nels, the individual cross-spin terms can add up to sometimes
completely unrealistic values. From a technical standpoint, this
forces us to further include (otherwise unphysical) m = n cross
terms in the sum over pairs in order to get a numerically robust
implementation.

[25] R. McWeeny and Y. Mizuno, Proc. R. Soc. Lond. A 259, 554
(1961).

[26] T. T. Petrenko, T. L. Petrenko, and V. Ya Bratus, J. Phys.
Condens. Matter 14, 12433 (2002).

[27] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[28] J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys.

122, 234102 (2005).
[29] P. E. Blöchl, Phys. Rev. B 62, 6158 (2000).
[30] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[31] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[32] R. Reviakine, A. V. Arbuznikov, J.-C. Tremblay, C. Remenyi,

O. L. Malkina, V. G. Malkin, and M. Kaupp, J. Chem. Phys. 125,
054110 (2006).

[33] K. P. Huber and G. Herzberg, Constants of Diatomic Molecules,
Molecular Spectra and Molecular Structure (Van Nostrand
Reinhold, New York, 1979).

[34] J. Loubser and J. van Wyk, Rep. Prog. Phys. 41, 1201 (1978).
[35] U. F. S. D’Haenens-Johansson, A. M. Edmonds, B. L. Green,

M. E. Newton, G. Davies, P. M. Martineau, R. U. A. Khan, and
D. J. Twitchen, Phys. Rev. B 84, 245208 (2011).

[36] A. M. Edmonds, M. E. Newton, P. M. Martineau, D. J. Twitchen,
and S. D. Williams, Phys. Rev. B 77, 245205 (2008).

[37] B. C. Rose, G. Thiering, A. M. Tyryshkin, A. M. Edmonds,
M. L. Markham, A. Gali, S. A. Lyon, and N. P. de Leon,
arXiv:1710.03196.

[38] D. C. Hunt, D. J. Twitchen, M. E. Newton, J. M. Baker, T. R.
Anthony, W. F. Banholzer, and S. S. Vagarali, Phys. Rev. B 61,
3863 (2000).

[39] M. J. Rayson, J. P. Goss, and P. R. Briddon, Phys. B (Amsterdam,
Neth.) 340, 673 (2003).

[40] A. Komarovskikh, A. Dmitriev, V. Nadolinny, and Y. Palyanov,
Diamond Relat. Mater. 76, 86 (2017).

[41] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

115135-8

https://doi.org/10.1038/nmat2774
https://doi.org/10.1038/nmat2774
https://doi.org/10.1038/nmat2774
https://doi.org/10.1038/nmat2774
https://doi.org/10.1126/science.1231364
https://doi.org/10.1126/science.1231364
https://doi.org/10.1126/science.1231364
https://doi.org/10.1126/science.1231364
https://doi.org/10.1126/science.1231540
https://doi.org/10.1126/science.1231540
https://doi.org/10.1126/science.1231540
https://doi.org/10.1126/science.1231540
https://doi.org/10.1038/nnano.2012.50
https://doi.org/10.1038/nnano.2012.50
https://doi.org/10.1038/nnano.2012.50
https://doi.org/10.1038/nnano.2012.50
https://doi.org/10.1103/PhysRevLett.115.247602
https://doi.org/10.1103/PhysRevLett.115.247602
https://doi.org/10.1103/PhysRevLett.115.247602
https://doi.org/10.1103/PhysRevLett.115.247602
https://doi.org/10.1103/PhysRevB.94.121202
https://doi.org/10.1103/PhysRevB.94.121202
https://doi.org/10.1103/PhysRevB.94.121202
https://doi.org/10.1103/PhysRevB.94.121202
https://doi.org/10.1103/PhysRevB.92.064104
https://doi.org/10.1103/PhysRevB.92.064104
https://doi.org/10.1103/PhysRevB.92.064104
https://doi.org/10.1103/PhysRevB.92.064104
https://doi.org/10.1103/PhysRevB.96.085204
https://doi.org/10.1103/PhysRevB.96.085204
https://doi.org/10.1103/PhysRevB.96.085204
https://doi.org/10.1103/PhysRevB.96.085204
https://doi.org/10.1103/PhysRevB.90.235205
https://doi.org/10.1103/PhysRevB.90.235205
https://doi.org/10.1103/PhysRevB.90.235205
https://doi.org/10.1103/PhysRevB.90.235205
https://doi.org/10.1063/1.2772857
https://doi.org/10.1063/1.2772857
https://doi.org/10.1063/1.2772857
https://doi.org/10.1063/1.2772857
https://doi.org/10.1021/ja061798a
https://doi.org/10.1021/ja061798a
https://doi.org/10.1021/ja061798a
https://doi.org/10.1021/ja061798a
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.63.245101
https://doi.org/10.1103/PhysRevB.63.245101
https://doi.org/10.1103/PhysRevB.63.245101
https://doi.org/10.1103/PhysRevB.63.245101
https://doi.org/10.1103/PhysRevB.77.035119
https://doi.org/10.1103/PhysRevB.77.035119
https://doi.org/10.1103/PhysRevB.77.035119
https://doi.org/10.1103/PhysRevB.77.035119
https://doi.org/10.1088/0953-8984/26/1/015305
https://doi.org/10.1088/0953-8984/26/1/015305
https://doi.org/10.1088/0953-8984/26/1/015305
https://doi.org/10.1088/0953-8984/26/1/015305
https://doi.org/10.1103/PhysRevMaterials.1.075002
https://doi.org/10.1103/PhysRevMaterials.1.075002
https://doi.org/10.1103/PhysRevMaterials.1.075002
https://doi.org/10.1103/PhysRevMaterials.1.075002
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1002/wcms.81
https://doi.org/10.1002/wcms.81
https://doi.org/10.1002/wcms.81
https://doi.org/10.1002/wcms.81
https://doi.org/10.1021/jp0643303
https://doi.org/10.1021/jp0643303
https://doi.org/10.1021/jp0643303
https://doi.org/10.1021/jp0643303
https://doi.org/10.1098/rspa.1961.0008
https://doi.org/10.1098/rspa.1961.0008
https://doi.org/10.1098/rspa.1961.0008
https://doi.org/10.1098/rspa.1961.0008
https://doi.org/10.1088/0953-8984/14/47/316
https://doi.org/10.1088/0953-8984/14/47/316
https://doi.org/10.1088/0953-8984/14/47/316
https://doi.org/10.1088/0953-8984/14/47/316
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1063/1.1926272
https://doi.org/10.1063/1.1926272
https://doi.org/10.1063/1.1926272
https://doi.org/10.1063/1.1926272
https://doi.org/10.1103/PhysRevB.62.6158
https://doi.org/10.1103/PhysRevB.62.6158
https://doi.org/10.1103/PhysRevB.62.6158
https://doi.org/10.1103/PhysRevB.62.6158
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevB.43.1993
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.2227382
https://doi.org/10.1063/1.2227382
https://doi.org/10.1063/1.2227382
https://doi.org/10.1063/1.2227382
https://doi.org/10.1088/0034-4885/41/8/002
https://doi.org/10.1088/0034-4885/41/8/002
https://doi.org/10.1088/0034-4885/41/8/002
https://doi.org/10.1088/0034-4885/41/8/002
https://doi.org/10.1103/PhysRevB.84.245208
https://doi.org/10.1103/PhysRevB.84.245208
https://doi.org/10.1103/PhysRevB.84.245208
https://doi.org/10.1103/PhysRevB.84.245208
https://doi.org/10.1103/PhysRevB.77.245205
https://doi.org/10.1103/PhysRevB.77.245205
https://doi.org/10.1103/PhysRevB.77.245205
https://doi.org/10.1103/PhysRevB.77.245205
http://arxiv.org/abs/arXiv:1710.03196
https://doi.org/10.1103/PhysRevB.61.3863
https://doi.org/10.1103/PhysRevB.61.3863
https://doi.org/10.1103/PhysRevB.61.3863
https://doi.org/10.1103/PhysRevB.61.3863
https://doi.org/10.1016/j.physb.2003.09.108
https://doi.org/10.1016/j.physb.2003.09.108
https://doi.org/10.1016/j.physb.2003.09.108
https://doi.org/10.1016/j.physb.2003.09.108
https://doi.org/10.1016/j.diamond.2017.04.013
https://doi.org/10.1016/j.diamond.2017.04.013
https://doi.org/10.1016/j.diamond.2017.04.013
https://doi.org/10.1016/j.diamond.2017.04.013
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188



