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This paper experimentally demonstrates the effects of inharmonic photonic transition in tailored aperiodic
space-time refractive index modulated media. Such effects introduce a pure frequency mixing based on the
simultaneous and distinct shifts in the spatial and temporal frequencies. The medium is characterized with a
periodic temporal modulation and a tailored aperiodic spatially modulated permittivity and permeability, yielding
aperiodic, large and tunable photonic band gaps. Since the medium is time periodic, an infinite number of
space-time mixing products are generated with a distance equal to the temporal frequency of the pump wave.
However, thanks to the tailored spatial aperiodicity of the medium and associated photonic band gaps, transition
to unwanted space-time mixing products is prohibited. Interesting features include tunability of the operation
frequencies of the mixer via space-time modulation parameters, high isolation, linear response, and possibility
of conversion gain due to the transfer of energy and momentum of the space-time modulation to the input wave.
We derive the analytical solution for such mixer with aperiodic space-modulated permittivity and permeability
and periodic time modulation, and then provide the synthesis procedure which takes into account the effects of
space-time modulation inhomogeneity. Finally, to see the effect of the tailoring of space modulation, we compare
the experimental results of the aperiodic space-time modulated pure mixer with those of the conventional periodic
uniform space-time modulated medium.
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I. INTRODUCTION

Frequency mixing of electromagnetic waves represents a
vital functionality for a great number of applications ranging
from radio astronomy and military radars to biological sensing
systems. This is conventionally achieved by nonlinear compo-
nents, e.g., Schottky diodes, GaAs field-effect transistors, and
complementary metal-oxide semiconductor transistors [1–3],
whereas nonlinear response of the component results in gener-
ation of an infinite number of mixing products. Theoretically,
the frequency components generated by a single diode read
ωO = mω0 ± nωLO, where m and n are all integers, ω0 and
ωLO are temporal frequencies of the two input waves, and ωO

is the temporal frequency of the output wave. However, we only
desire one output frequency, e.g., n = 1 and m = 1, whereas
the existence of all other harmonic terms creates significant
problems, and elimination of these distortion products is the
key aim in mixer technology. Over the past few decades, many
efforts have been made to realize harmonic-rejection mixers;
however, conventional mixers, even in their most ideal realiza-
tions, still suffer from undesirable mixing products. Switching
mixers, subsampling mixers, and microwave photonic mixers
suffer from the same problem [4–6].

Space-time refractive-index modulation may be represented
as an alternative approach for achieving mixing products of two
frequencies [7–13]. The space-time modulation technique ex-
hibits high isolation and compatibility with circuit technology
and integrated optical networks. It has been recently utilized for
the realization of a new class of microwave and optical isolators
[10,11,14–19], circulators [20,21], nonreciprocal metasurfaces
[22–25], and nonreciprocal integrated systems [26–28]. Up
to now, all reported space-time modulations are periodic in
both space and time. However, periodic space-time modulation

provides the required energy and momentum for transition
from fundamental temporal frequency ω0 to an infinite number
of space-time frequency harmonics, i.e., ωO = ω0 ± nωp with
ωp being the pump wave frequency [8,11,13,29]. The common
way to experimentally realize the space-time modulation is to
use a pump wave that spatiotemporally modulates an array
of distributed varactors on a transmission line [26–28,30].
However, in experiment, the input wave may also modulate the
varactors, and thus, both the pump wave and the input wave will
contribute harmonics, so that ωO = mω0 ± nωp [11,27,30].
Periodically, space-time modulated leaky-wave systems may
exhibit pure leaky-wave frequency mixing and radiation, where
the leaky-wave radiation of unwanted harmonics is prohibited
by the light cone [26–28,31].

This study introduces a general technique for pure fre-
quency mixing in space-time modulated media, where har-
monic photonic transitions in temporally periodic systems are
prohibited by tailored photonic band gaps introduced by the
engineered spatial aperiodicity of the structure. In contrast to
conventional periodic uniform space-time modulated media,
here the medium is aperiodic in space and therefore exhibits an
aperiodic dispersion diagram and photonic band gaps tailored
in a way to provide photonic band gaps at undesired space-
time mixing products, and hence, introduces a pure frequency
mixing. It should be noted that such a time-periodic system
still generates all the unwanted harmonics, whereas due to
the existence of tailored band gaps the progressive growth
of these unwanted space-time mixing products is prohibited.
The proposed mixer inherits the linearity property of space-
time modulated media. In addition, the frequency bands of
the mixer may be tuned via space-time modulation param-
eters. The proposed mixer takes advantage of the aperiodic
spatially varying structures which are capable of providing
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a variety of electromagnetic responses that are unattainable
by uniform structures. Such structures have introduced a
variety of enhanced efficiency electromagnetic systems, such
as, for instance, broadband and multiband power dividers
[32,33], very large scale integrated interconnection structures
[34,35], matching circuits of multiplexers [36], directional fil-
ters [37], phase shifters and group delay engineering [38–41],
impedance transformers [42], and miniaturized and broadband
rat race and branch-line couplers [43–45].

II. APERIODIC SPACE-TIME MODULATION

Consider a periodic space-time modulated medium repre-
sented by a particular periodic space-time varying permittivity
ε(z,t) = εr[1 + δp cos(βpz − ωpt)] [7,8,10,11], where εr is the
permittivity of medium, δp represents the pumping depth,
and βp and ωp respectively denote the spatial frequency
and temporal frequency of the pump wave. Such a medium
possesses a dispersion diagram as depicted in Fig. 1(a). This
diagram consists of an infinite periodic set of βn/βp − ωn/ωp

straight lines, where βn = β0 + nβp and ωn = ω0 + nωp with
n being any integer. To any frequency, ω0, corresponds an
infinite number of modes, each of which include an infinite
number of forward and backward space-time harmonics, i.e.,
(β0 + nβp,ω0 + nωp) [8,11,29]. However, in practice only one
of these harmonics may be required and all others should be fil-
tered out. This represents a waste of energy and design and fab-
rication complexities. Different from conventional mixers, in a
periodic space-time modulated medium, the input wave at ω0,
theoretically, will not space-time modulate the structure, and
thus will not contribute to harmonic generation. In experiment,
however, due to the implementation restrictions, the input wave
may also space-time modulate the structure [11,27,30], and
hence contribute to space-time harmonic generation, yielding
a transition from (β0,ω0) to [kβ0 + nβp,kω0 + nωp], with
k,n all being integers. As a consequence, such a periodic
space-time modulated medium practically introduces the same
mixing products as conventional mixers. Furthermore, as the
space-time modulation is experimentally demonstrated by a
pump wave at ωp that spatiotemporally modulates an array of
subwavelength spaced varactors [11,19,27,28], the harmonics
of the pump wave nωp may show up at the output. The
output spectrum of a particular periodic space-time modulated
medium is shown in the inset of Fig. 1(a).

Here, we consider the case of an aperiodic space-time
modulated medium with thickness L, spatially aperiodic and
temporally periodic permittivity as

ε(z,t ; ω) = ε0εap(z; ω)[1 + δp cos(βp,ap(z; ω)z − ωpt)], (1a)

and spatially aperiodic permeability

μ(z; ω) = μ0μap(z; ω), (1b)

where εap(z; ω) and μap(z; ω) are aperiodic functions of space
and frequency, and ε0 and μ0 respectively represent the
permittivity and permeability of vacuum so that

√
ε0μ0 =

1/c, with c being the speed of light in vacuum. In (1), δp

represents the pumping depth, and βp,ap(z) and ωp respectively
denote the spatial frequency and temporal frequency of the
pump wave. The medium assumes an average spatially variant
phase velocity vap(z; ω) = c/

√
εap(z; ω)μap(z; ω), where c is

FIG. 1. Frequency generation based on photonic transitions in
space-time modulated media. (a) Harmonic transitions in a periodic
space-time modulated medium leads to the generation of an infinite
number of space-time harmonics [8,11,29]. A particular output spec-
trum of such system is shown in the inset [11]. (b) Pure transition from
ω0 to ω1 = ω0 + ωp in an aperiodic space-time modulated medium
(spatially aperiodic and temporally periodic) with spatially aperiodic
permittivity and permeability in (1), exhibiting aperiodic photonic
band gaps. The inset shows a particular output spectrum of aperiodic
space-time modulated medium, where all undesired mixing products
are suppressed.

the speed of light in vacuum, and hence the pump wave
reads with an aperiodic space-dependent spatial frequency of
βp,ap(z; ω) = ωp/vap(z; ω), where the subscript “p” in βp,ap and
ωp refers to “pumping” and subscript “ap” in βp,ap and vap

highlights that they are “aperiodic” functions of z.
Figure 1(b) plots the qualitative dispersion diagram of this

aperiodic space-time modulated medium. It was shown in
[11] that, in a periodic space-time medium, strong transition
of energy and momentum occurs from the fundamental to
the space-time harmonics, where propagation of the wave
through the structure yields a progressive increase of the power
of the space-time harmonics. As the proposed space-time
modulated mixer with the constitutive parameters in (1) is still
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FIG. 2. Generic representation of the spatially aperiodic space-
time modulated mixer with the space-time varying constitutive pa-
rameters in (1), yielding a pure frequency transition from (β0,ω0) to
(β1,ω1).

time periodic, time harmonics occur at ω0 + nωp. However,
thanks to the tailored spatial aperiodicity of the structure,
except ω0 and ω1, other undesired time harmonics lie in the
band gap of the structure. Hence, they will not progressively
grow up, but rather propagate as weak waves through the
structure. In contrast to the periodic space-time modulation,
aperiodic space-time modulation exhibits aperiodic photonic
band gaps, where ∂β/∂ω = 0, yielding an inharmonic and
distinct photonic transition, e.g., from (β0,ω0) to (β1 = β0 +
βp,ω1 = ω0 + ωp). As a result, harmonic photonic transitions
to space-time harmonics are prohibited. In addition, such
medium suppresses all undesired harmonics of the input wave
and the pump wave, e.g., 2ω0 + ωp, yielding a pure frequency
transition from ω0 to ω1. A qualitative output spectrum of such
aperiodic space-time modulated medium is shown in the inset
of Fig. 1(b) which shows suppression of undesired space-time
frequency components.

The term “photonic band gap” has been introduced in the
photonics field, considering the similarities between the stop-
band performance of optical periodic structures, e.g., photonic
crystals, and solid-state electronic band gaps. Hence, stop
bands are called band gaps and periodic structures are called
photonic band-gap structures [46,47]. The photonic band gap
represents a forbidden energy range, where the wave behaving
photons cannot be transmitted through the structure. However,
aperiodic structures exhibit aperiodic stop bands which may
be called aperiodic photonic band gaps [48,49].

Figure 2 shows a generic schematic of the aperiodic space-
time modulated mixer possessing the qualitative dispersion di-
agram in Fig. 1(b). Such a spatially aperiodic structure assumes
a time-periodic modulation, with TMx or Ex polarization for
the electromagnetic fields. Since the medium is periodic in
time, the electric and magnetic fields inside it may be generally

represented by the time Bloch-Floquet expansion as

E(z,t ; ωn) = x̂
N∑

n=−N

En(z; ωn)e−iωnt , (2a)

H(z,t ; ωn) = ŷ
N∑

n=−N

Hn(z; ωn)e−iωnt , (2b)

where ωn = ω0 + nωp and N → ∞. The input wave at ω0

is injected into the aperiodic space-time modulated medium
in Fig. 2, and then propagates inside the medium in the
+z direction and experiences a photonic transition to ωn =
ω0 + nωp. However, it will be shown that with a proper spatial
aperiodicity all the undesired space-time mixing products
could be significantly suppressed, leading to a pure transition
from ω0 to ω1 = ω0 + ωp. Such pure transition is supported by
aperiodic photonic band gaps, through the aperiodicity of the
medium, where all undesirable mixing products, e.g., ω0 − ωp

andω0 + 2ωp, lie within the photonic band gaps of the medium.

III. MIXER SYNTHESIS

Figure 3 shows a sketch of the experimental imple-
mentation of the aperiodic space-time modulated waveguide
mixer with constitutive parameters in (1). This structure is
composed of an array of varactors subwavelength spaced
on top of an aperiodic spatially varying conductor-backed
coplanar waveguide. These varactors are reverse biased at
their nominal capacitive point, and will be spatiotemporally
modulated using a +z propagating pump wave with temporal
frequency of ωp, realizing the space-time varying capac-
itance C(z,t ; ω) = C0Cap(z; ω){1 + δp cos[βp,ap(z)z − ωpt]}.
This circuit emulates a medium with effective permit-
tivity ε(z,t ; ω) = ε0εap(z; ω){1 + δp cos[βp,ap(z)z − ωpt]} and
μ(z; ω) = μ0μap(z; ω). The modulation depth will be con-
trolled via the amplitude of the pump wave.

Coplanar waveguides support TEM propagation and are
well suited for implementation of lumped elements since

FIG. 3. Realization of an aperiodic space-time modulated mixer
in Fig. 2 using an array of space-time varying varactors distributed
on top of an aperiodic spatially variant conductor-backed coplanar
waveguide.
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ground planes are available at the top of the structure. A
detailed analysis and design parameters of conductor-backed
coplanar waveguides are given in [50,51].

Here we present a straightforward synthesis method for
the design of the continuously spatially varying coplanar
waveguides. The goal of the synthesis is to determine the
spatial variation of the constitutive parameters, i.e., μap(z; ω)
and εap(z; ω), providing the specified dispersion diagram. We
first discretize the aperiodic spatially variant line into Q

deep subwavelength uniform subsections, for which closed-
form formulas are available. The ray transfer matrix of each
uniform subsection, with the length lq = L/Q � λmin, may
be expressed as

[
Aq Bq

Cq Dq

]
=

⎡
⎣ cos(βl) jzq sin(βl)

j
1

zq

sin(βl) cos(βl)

⎤
⎦. (3)

The ray transfer matrix of the subsections hosting shunt
varactors with the length l → 0 reads[

Avar,q Bvar,q

Cvar,q Dvar,q

]
=

[
1 0

jω(C0q + Cvar) 1

]
, (4)

where C0q represents the intrinsic capacitance of the line and
Cvar is the average capacitance of the varactors for a given dc
bias.

Iteratively multiplying the ray transfer matrix of the Q

uniform subsections, considering subsections with shunt var-
actors, gives the total ray transfer matrix of the continuously
spatially varying transmission line. It should be noted that
the characteristic impedance function zq in (4) must satisfy
the fabrication condition of zmin < zq(z) < zmax. Next, the
transmission scattering parameter S21 of the entire structure
may be achieved using the four elements of the ray transfer
matrix of the structure, as S21(ω) = 2/(A + BZ−1

0 + CZ0 +
D), where Z0 is the reference characteristic impedance of
the load and source. The dispersion relation of the aperiodic
nonuniform transmission line will be achieved using the phase
angle of the transmission scattering parameter as φS21 (ω)/L.
The characteristic impedances of q uniform subsections in (4),
zq , will be computed through achieving the desired passbands
and band gaps as

|S21(ω0,ωp,ω1)| = 1, (5a)

|S21(ω < ω0,ω0 < ω < ωp,ω1 < ω)| → 0. (5b)

We shall then use the characteristic impedance func-
tion zap(z; ω) and calculate the corresponding permit-
tivity εap(z; ω), inductance Lap(z; ω), and capacitance
Cap(z; ω) of the transmission line [50–52], where zap(z; ω) =√

Lap(z; ω)/Cap(z; ω). Then, the permeability of the transmis-
sion line may be computed as

μap(z; ω) = c2

εap(z; ω)
Lap(z; ω)Cap(z; ω). (6)

IV. ANALYTICAL SOLUTION FOR
ELECTROMAGNETIC FIELDS

This section derives a general analytical solution which may
be used for aperiodic/periodic space-time modulated media.

Inside the modulated medium in Fig. 2, with aperiodic con-
stitutive parameters in (1), the source-less Maxwell equations
read

∇ × E(z,t ; ωn) = −μ(z; ω)
∂H(z,t ; ωn)

∂t
, (7a)

∇ × H(z,t ; ωn) = ∂[ε(z,t ; ω)E(z,t ; ωn)]

∂t
. (7b)

Inserting the electric and magnetic fields in (2) into (7),
and following the procedure described in the Supplemental
Material [51], we achieve the electric and magnetic coupled
mode equations in matrix form as

∂E(z; ωn)

∂z
= Z(z; ωn)H(z; ωn), (8a)

∂H(z; ωn)

∂z
= Y(z; ωn)E(z; ωn), (8b)

where E(z; ωn)=[E−N (z; ω−N ) · · · E0(z; ω0) · · ·EN (z; ωN )]T,
H(z; ωn) = [H−N (z; ω−N ) · · ·H0(z; ω0) · · · HN (z; ωN )]T, and

Z(z; ωn) = iμ0μap(z; ω)W(ωn), (8c)

Y(z; ωn) = iε0εap(z; ω)W(ωn)

×

⎡
⎢⎢⎢⎢⎢⎣

1 δp

2 e−iβpz 0 · · · 0
δp

2 eiβpz 1 δp

2 e−iβpz · · · 0
0 δp

2 eiβpz 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

, (8d)

with W(ωn) = diag[ω−N · · ·ω0 · · · ωN ]. Two aperiodic func-
tions in (8c) and (8d), i.e., μap(z; ω) and εap(z; ω), are to be
found through the synthesis procedure (Sec. III), satisfying (5).
To solve the matrix coupled equation in (8), we first express
the desired Z(z; ωn) and Y(z; ωn) functions with 2M + 1
exponential terms as

Z(z; ωn) =
M∑

m=−M

Zm(ωn) exp[(imγ z)/L], (9a)

Y(z; ωn) =
M∑

m=−M

Ym(ωn) exp[(imγ z)/L], (9b)

where γ is an unknown rational number between 0 and 2π ,
and Zm(ωn) and Ym(ωn) are unknown coefficient matrices. We
next define the electric and magnetic fields as 2M + 1 number
of Bloch-like spatial waves as

E(z; ωn) = K(z)
M∑

m=−M

Em(ωn) exp[(imγ z)/L], (10a)

H(z; ωn) = K(z)
M∑

m=−M

Hm(ωn) exp[(imγ z)/L]. (10b)

In (10a) and (10b), the coefficients Em(ωn) and Hm(ωn) are
unknown electric and magnetic field matrices, and

K(z) = diag[exp(κ−Nz) · · · exp(κ0z) · · · exp(κNz)] (10c)
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is the principal spatial frequency matrix. Inserting (9a)–(10c)
into the coupled mode equation matrices in (8) yields 2M + 1
set of space-independent matrix equations as

Em(ωn) = �m

M∑
n=−M

Zm−n(ωn)Hn(ωn), (11a)

Hm(ωn) = �m

M∑
n=−M

Ym−n(ωn)En(ωn), (11b)

where

�m = diag[(κ−N + imγ/L)−1 · · · (κN + imγ/L)−1], (11c)

for m = −M, . . . ,0, . . . ,M . The set of 2M + 1 space-
independent coupled mode matrix equations in (11) may be
expressed as

−→
E m(ωn) = −→

� m

−→
Z (ωn)

−→
H m(ωn), (12a)

−→
H m(ωn) = −→

� m

−→
Y (ωn)

−→
E m(ωn), (12b)

In (12),
−→
E m = [E−M · · · E0 · · · EM ]T,

−→
H m =

[H−M · · · H0 · · · HM ]T, and

−→
Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z0 Z−1 · · · Z−2M+1 Z−2M

Z1 Z0 · · · Z−2M+2 Z−2M+1

...
...

. . .
...

...

Z2M−1 Z2M−2 · · · Z0 Z−1

Z2M Z2M−1 · · · Z1 Z0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (12c)

with

−→
Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0 Y−1 · · · Y−2M+1 Y−2M

Y1 Y0 · · · Y−2M+2 Y−2M+1

...
...

. . .
...

...

Y2M−1 Y2M−2 · · · Y0 Y−1

Y2M Y2M−1 · · · Y1 Y0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12d)

−→
� m = diag{[�−M · · · �0 · · · �M ]}, (12e)

[
−→
� m

−→
Z (ωn)

−→
� m

−→
Y (ωn) − I]

−→
E (ωn) = 0, (13)

where I is a (2M + 1) × (2M + 1) identity matrix. The eigen-
value problem in (13) has nontrivial solutions if

det{[−→� m

−→
Z (ωn)

−→
� m

−→
Y (ωn) − I]} = 0. (14)

We shall finally consider the initial conditions at z = 0, i.e.,

E(0) =
M∑

m=−M

Em = Ei, (15)

where Ei = [0 · · · 0Ei0 · · · 0]T.

V. EXPERIMENTAL IMPLEMENTATION

This section experimentally demonstrates the application
of the aperiodic space-time modulated medium, shown in

FIG. 4. Aperiodic spatial variation of the constitutive parameters
of the mixer in Fig. 3, achieved using the synthesis method in Sec. III,
and compared with the analytical results, using the series expansion
in (9a) and (9b), for γ = 5.677 and M = 30. (a) Permittivity εap(z).
(b) Permeability μap(z).

Figs. 2 and 3, to pure frequency mixing. To best show the
effect of the dispersion tailoring in suppression of unwanted
space-time harmonics, we compare the experimental results of
the proposed spatially aperiodic space-time modulated mixer
with those of the conventional periodic uniform space-time
modulated medium. The specifications of the mixer are L =
0.1778 m, ω0 = 2π × 300 MHz, ωp = 2π × 700 MHz, and
ω1 = 2π × 1000 MHz. Figure 4(a) plots the tailored aperiodic
spatial variation of the permittivity of the mixer, optimized
using the synthesis method in Sec. III, and compared with
the results of the series expansion in (9a) for γ = 5.677
and M = 30. Figure 4(b) plots the tailored aperiodic spatial
variation of the permeability of the mixer, optimized using the
synthesis method in Sec. III, compared with the results of the
series expansion in (9b) for γ = 5.677 and M = 30.

Figure 5(a) plots the analytical results for the dispersion
diagram of the dominant mode, i.e., Re{β(ω)}, for the un-
bounded aperiodic dispersion-tailored space-time modulated
mixer with the optimized permittivity and permeability in (1).
It may be seen from this figure that such a dispersion-tailored
structure provides large and aperiodic band gaps at desired
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frequency bands, prohibiting transition to the undesired space-
time harmonics. It should be noted that, since the structure is
time periodic, time harmonics occur at ω0 + nωp. However,
thanks to the tailored spatial aperiodicity of the structure,
except ω0 and ω1, all the time harmonics lie in the band
gap of the structure and hence will not grow up, but rather
propagate as weak waves and are attenuated. Figure 5(b) plots
the corresponding analytical results for the imaginary part of
the wave number of the dominant mode, i.e., Im{β(ω)}. This
figure exhibits the suppression level at different band gaps
for undesired harmonics. It should be noted that, except for
the input wave at ω0, the power level of all the space-time
harmonics is equal to zero at the input of the structure, i.e.,
at z = 0. As a result, the band gaps are to prohibit growth of
the power of the undesired harmonics, rather than attenuation
of the strong waves. Consequently, even a weak or moderate
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harmonic at ω1, multiplied by 2

√
μ0/ε0, i.e., |E0(z)|2 and |E1(z)|2.

(b) Time-averaged magnitude of the pointing vectors of higher-order
harmonics at −ω0 + ωp, −ω0 + 2ωp, and ω0 + 2ωp, multiplied by
2
√

μ0/ε0, i.e., |E−2(z)|2, |E−1(z)|2, and |E2(z)|2. (c) Imaginary part
of the electric fields at ω0 and ω1, Im{E0(z)} and Im{E1(z)}.

attenuation in a band gap may lead to strong suppression of
the corresponding space-time harmonic.

Figure 6(a) plots the analytical results for the time-averaged
magnitude of the pointing vectors of two main harmonics
multiplied by 2

√
μ0/ε0, i.e., |E0(z)|2 and |E1(z)|2. At z = 0,

the amplitude of the input wave ω0 and the first harmonic
ω1 are respectively equal to the unity and zero. As the input
wave propagates through the structure, progressive transition
of the energy and momentum occurs to the desired space-time
harmonic at ω1. Figure 6(b) plots the analytical results for
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FIG. 7. Experimental demonstration of space-time modulated
mixers. (a) An image and the equivalent circuit model of the fabricated
periodic space-time modulated mixer using an array of varactors
distributed on top of a periodic uniform coplanar waveguide. (b) An
image and the equivalent circuit model of the fabricated aperiodic
dispersion-tailored space-time modulated mixer using an array of
varactors distributed on top of an aperiodic spatially varying coplanar
waveguide. (c) Measurement setup.

the time-averaged magnitude of the pointing vectors of the
higher-order undesired harmonics multiplied by 2

√
μ0/ε0, i.e.,

|E−2(z)|2, |E−1(z)|2, and |E2(z)|2. At z = 0, the amplitude of
all these space-time harmonics, ω−2, ω−1, and ω2, is equal to
zero. Since the structure is time periodic, all the harmonics are
physically generated and are nonzero. However, as they lie in
the band gap of the structure, they will not progressively grow
up through the structure, but rather propagate as weak waves
and are suppressed. Figure 6(b) plots the analytical results for
the imaginary part of the electric fields of the fundamental and
first harmonic, Im{E0(z)} and Im{E1(z)}.

Figure 7(a) shows an image of the fabricated periodic space-
time modulated medium and its equivalent circuit model. The
structure is realized using an array of varactors subwavelength
distributed on top of a uniform conductor-backed coplanar
waveguide with the dispersion diagram in Fig. 1(a), where
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FIG. 8. Experimental results. (a) Comparison of the output spec-

tra of the periodic and aperiodic space-time modulated structures,
respectively, in Figs. 7(a) and 7(b). The space-time harmonics occur
at |kω0 + nωp|, where for the dispersion-tailored aperiodic space-time
modulated mixer, the power level of the unwanted harmonics is
negligible. (b) The ratio between the amplitude of the output and
input waves of the aperiodic dispersion-tailored space-time modulated
mixer in Fig. 7(b), |E1|/|E0|, revealing a linear response of the
system. (c) Tuning the output frequency of the mixer ω1 (and the
corresponding ωm) using the average capacitance of varactors through
their average dc voltage.

photonic transition from the fundamental harmonic ω0 to all
space-time harmonics are allowed. In the circuit model, L0

and C0 respectively represent the intrinsic inductance and
capacitance of the transmission line, and Cvar denotes the
variable capacitance. The array of varactors is spatiotemporally
modulated using a harmonic generator, with the amplitude
Vp cos(ωpt), propagating in the +z direction.

Figure 7(b) shows an image of the fabricated dispersion-
tailored spatially aperiodic space-time modulated mixer and
the corresponding equivalent circuit model. In this scheme,
an array of subwavelength spaced varactors is placed on top
of an aperiodic spatially varying conductor-backed coplanar
waveguide. It may be seen in the circuit model that all the
intrinsic inductance, intrinsic capacitance, and variable capac-
itance of the structure are varying in space, where the structure
is space-time modulated using the same harmonic generator
as in Fig. 7(a). Figure 7(c) illustrates the measurement setup
composed of the feeding network and a signal analyzer. The
feeding network includes a diplexer which combines the input
wave at ω1 and the pump wave at ωp, provided by two signal
generators, and a bias T superimposing the dc bias.

Figure 8(a) compares the experimental results of the output
spectra of the periodic and aperiodic space-time modulated
frequency mixers, shown respectively in Figs. 7(a) and 7(b). It
may be seen from this figure that the periodic space-time mod-
ulated mixer provides all, undesirable space-time harmonics
at its output, i.e., |kω0 + nωp|, where the strongest transition
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occurs from ω0 to the unwanted harmonic at |ω0 − ωp|. This is
due to the fact that the varactors are dispersive and exhibit their
highest efficiency at low frequencies. In contrast, the aperiodic
dispersion-tailored space-time modulated mixer, shown in
Fig. 7(b), provides the required energy and momentum for
a pure transition from the input frequency ω0 to the desirable
harmonic at ω0 + ωp and prohibits transition to undesirable
harmonics. Figure 8(b) investigates the linear response of the
aperiodic dispersion-tailored space-time modulated mixer in
Fig. 7(b). This figure demonstrates that the output of the
structure linearly follows the input, i.e., |E1|/|E0| = const.
The linear property of the space-time modulated medium may
also be seen in (15), where the amplitude of the space-time
harmonics linearly follows the input wave. It should be noted
that changing the applied dc bias of varactors will alter the
average permittivity εap of the structure, dispersion diagram
(band gaps), and the space-time pumping depth δp. As a result,
the pump and output frequencies may be tuned via the applied
dc bias. Figure 8(c) plots the variation of the output frequency
ω1 versus the applied dc bias of varactors. Therefore, the
operation frequencies of this mixer may be tuned.

Such pure frequency mixer provides an important step
toward integrated broadband and high isolation microwave and
optical mixing technologies. Moreover, it may present conver-
sion gain for greater pumping depths. The ratio |E1|/|E0| at
the output of the mixer can be further enhanced using appro-
priate design and fabrication of the coplanar waveguide and

lumped elements. Appropriate structures may be envisioned at
terahertz and optics, for instance, using dielectric slabs doped
to create p-i-n junction schemes responding to a pump wave
and operate as voltage-tunable capacitors [16,53].

VI. CONCLUSIONS

This study investigated the effects of inharmonic and
distinct photonic transition in an aperiodic space-time mod-
ulated medium. Leveraging peculiar properties of tailored
aperiodic space-time modulation, we presented a pure fre-
quency mixer. In contrast to periodic space-time modulated
media and conventional mixers, the proposed mixer is im-
mune to undesirable mixing products. A rigorous analytical
solution is provided for the electromagnetic field solution
inside general aperiodic/periodic space-time modulated media.
The experimental demonstration of this mixer is provided
using an array of subwavelength-spaced space-time modulated
varactors mounted on top of an aperiodic spatially variant
coplanar waveguide. Aperiodic space-time modulated medium
is endowed with aperiodic photonic band gaps which may be
utilized for various wave transformations. It is expected to find
a range of complementary applications, such as, for instance,
in metasurface technology, illusion cloaks, subharmonic fre-
quency mixing, nonreciprocal structures, and optical frequency
generators.
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