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Strong enhancement of the Edelstein effect in f -electron systems
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The Edelstein effect occurring in systems with broken inversion symmetry generates a spin polarization when an
electric field is applied, which is most advantageous in spintronics applications. Unfortunately, it became apparent
that this kind of magnetoelectric effect is very small in semiconductors. We here demonstrate that correlation
effects can strongly enhance the magnetoelectric effect. Particularly, we observe a strong enhancement of the
Edelstein effect in f -electron systems close to the coherence temperature, where the f electrons change their
character from localized to itinerant. We furthermore show that this enhancement can be explained by a coupling
between the conduction electrons and the still localized f electrons.
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I. INTRODUCTION

Spin-orbit interaction, which leads to a coupling between
the spin of an electron and its momentum, provides the
possibility to manipulate the spin polarization of a material by
applying electric fields as desired for spintronics. Particular
interesting are lattices without inversion symmetry, where
the antisymmetric spin-orbit coupling leads to fascinating
transport properties [1] such as the anomalous Hall effect
[2–4], the spin Hall effect [5,6], and magnetoelectric (ME)
effects [7–14]. The latter leads to a spin polarization without
an applied magnetic field when an electric current flows, which
has been also confirmed in experiments [15–18]. Thus, the spin
polarization could be controlled by electric fields, which would
be a tremendous advantage for memory storage devices [19].
However, the ME effect in semiconductors with antisymmetric
spin-orbit interaction is usually small, so that it cannot be
effectively used in spintronic devices.

An analysis using Fermi liquid theory has shown that in
interacting systems without inversion symmetry the ME effect
can be enhanced [20–23]. This is particularly important for
f -electron systems, where on the one hand the spin-orbit
interaction caused by heavy atoms can be large, and on the other
hand electron correlations in partially filled f -electron bands
can be very strong. Thus, f -electron systems might give rise to
a large ME effect. The existence of the ME and the inverse ME
effect in f -electron systems has recently been experimentally
demonstrated for the Kondo insulator SmB6 [24].

The previous Fermi liquid analysis on how correlations
affect the ME effect was however based on the Hubbard model,
which is not applicable for f -electron systems. In f -electron
systems, the hybridization between non- or weakly interacting
conduction electrons (s, p, d orbitals) and strongly interacting
f orbitals leads to fascinating phenomena, which are not
described by the Hubbard model. While at high temperatures
the f electrons are localized and do not participate in the
Fermi surface, at low temperatures the Kondo effect leads
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to the formation of heavy quasiparticles, which are formed
by conduction (c) electrons and f electrons. Thus, at low
temperatures the f electrons become itinerant and do par-
ticipate in the Fermi surface [25]. This crossover between
localized f electrons and itinerant f electrons when the
temperature is decreased, the Kondo effect, and the resulting
heavy quasiparticles are not included in the previous theoretical
works.

The aim of this paper is to analyze the ME effect, particular
the Edelstein effect, in strongly correlated noncentrosymmetric
f -electron systems such as CeRhSi3, CeIrSi3, or CePt3Si. By
using dynamical mean field theory (DMFT), we fully include
the Kondo effect and thus the formation of heavy quasiparticles
and the crossover between localized and itinerant f electrons.
Furthermore, the combination of DMFT with the numerical
renormalization group (NRG) enables us to calculate transport
properties with high accuracy using real-frequency Green’s
functions without the need of an analytic continuation.

The main results can be summarized as follows: (i) The
ME effect can be strongly enhanced in f -electron systems
and exhibits a maximum at the crossover temperature between
localized and itinerant f electrons. This enhancement is
beyond Fermi liquid theory. (ii) The enhancement of the ME
effect originates from a coupling between the c electrons
and the localized f electrons which generates a momentum
dependent spin polarization of the c electrons even at high
temperatures, above the formation of heavy quasiparticles. The
spin polarization of the c electrons is thereby generated by a
virtual hopping between a c-electron orbital and an f -electron
orbital. Thus, the main contribution to the enhancement of
the ME effect comes from the c electrons. (iii) Besides the
intraorbital Rashba spin-orbit interaction within the f -electron
band, the interorbital Rashba spin-orbit interaction between c

electrons and f electrons is significant for a large ME effect.

II. MODEL AND METHOD

To analyze the ME effect in f -electron systems with anti-
symmetric spin-orbit interaction, we use a periodic Anderson
model, which consists of one c-electron band and one f -
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electron band and includes a local density-density interaction
into the f -electron band. Besides a local c-f hybridization, we
include the intraorbital Rashba spin-orbit interaction within
the f -electron band, and the interorbital Rashba spin-orbit
interaction between c electrons and f electrons. Due to
the hybridization between strongly correlated f electrons
and c electrons, this model includes all essential ingredients

necessary to describe heavy fermion behavior. Furthermore,
the inclusion of the intraorbital and interorbital Rashba spin-
orbit interaction, which have been derived for CePt3Si, reflects
the situation of a system without inversion symmetry [26]
which will lead to the emergence of ME effect.

The Hamiltonian can be split in a single-electron part H�k ,
and the interaction part HU , so that H = H�k + HU . H�k reads

H�k =
∑

�k

⎛
⎜⎜⎜⎜⎜⎜⎝

c
†
k,↑

c
†
k,↓

f
†
k,↑

f
†
k,↓

⎞
⎟⎟⎟⎟⎟⎟⎠

T⎛
⎜⎜⎜⎜⎝

tc(cos kx + cos ky) 0 V αcf (sin ky + i sin kx)

0 tc(cos kx + cos ky) αcf (sin ky − i sin kx) V

V αcf (sin ky + i sin kx) tf (cos kx + cos ky) αff (sin ky + i sin kx)

αcf (sin ky − i sin kx) V αff (sin ky − i sin kx) tf (cos kx + cos ky)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ck,↑

ck,↓

fk,↑

fk,↓

⎞
⎟⎟⎟⎟⎠,

(1)

where c
†
k,σ and f

†
k,σ create a c electron and an f electron

with momentum k and spin projection {↑, ↓}, respectively.
Our model includes a spin-independent hopping for the c

and f electron with amplitude tc and tf . We fix the hopping
to tf = −0.2tc. For simplicity we assume a band structure
corresponding to a square lattice, but note that our results
do not depend on the exact band structure. V is the local
hybridization between c electrons and f electrons, αcf is
the interorbital Rashba interaction between c electrons and f

electrons, and αff is the intraorbital Rashba interaction within
the f -electron band. The local density-density interaction
within the f -electron band reads

HU = U
∑

i

n
f

i,↑n
f

i,↓. (2)

The noninteracting spectrum is shown in Fig. 1 for two parame-
ter sets. Clearly visible are the c-electron and f -electron bands,
which hybridize close to the Fermi energy. The main difference
between these two parameter sets is the band splitting due to the
Rashba interaction close to the Fermi energy. Furthermore, it is

FIG. 1. Noninteracting momentum resolved spectral functions
for (a) αff /tf = 0.5, αcf /tf = 0, V/tf = 0.5 and (b) αff /tf = 0.5,
αcf /tf = 0.5, V/tf = 0.5.

important to note that the particle-hole symmetry is generally
broken when V , αcf , and αff are all nonzero.

To analyze transport properties of this system, we solve
the Hamiltonian by using the DMFT [27–29]. DMFT maps
the lattice model onto a quantum impurity model, which is
solved self-consistently. DMFT thereby fully includes local
fluctuations, but neglects nonlocal fluctuations. The neglect
of nonlocal fluctuations is the main drawback of DMFT. It
thus must be noted that all obtained results are only valid
as long as nonlocal fluctuations are small. However, DMFT
has proven to accurately describe heavy-fermion physics as
necessary to analyze f -electron materials [30]. For solving
the quantum impurity model, we use the NRG [31–33], which
provides real-frequency spectral functions and self-energies
with high accuracy around the Fermi energy for a wide range
of interaction parameters and temperatures.

III. CONDUCTIVITY AND MAGNETOELECTRIC EFFECT

The electric current Jx and the polarization My are related
to the electric field Ex via the conductivity σxx and the ME
coefficient ϒyx by

Jx = σxxEx, (3)

My = ϒyxEx, (4)

where σxx and ϒyx can be calculated using the Kubo formula
[29,34]. These two equations can be combined to give the spin
polarization depending on the electric current,

My = ϒyx

σxx

Jx, (5)

which we will use below to quantize the strength of the ME
effect.

After having obtained self-consistent self-energies using the
DMFT, we use the Kubo formula to calculate the conductivity
σxx(ω) and the ME effect ϒyx(ω) which are defined as

σxx(ω) = i

ω

∑
k,k′

Tr〈〈vxnk,vxnk′ 〉〉(ω), (6)

ϒyx(ω) = i

ω

∑
k,k′

Tr〈〈σynk,vxnk′ 〉〉(ω). (7)
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We have set h̄ = e = μ0 = 1. The main problem consists
of calculating the two-particle Green’s functions
〈〈vxnk,vxnk′ 〉〉(ω) and 〈〈σynk,vxnk′ 〉〉(ω), where the difference
between the conductivity and the ME effect is the change from
the velocity operator vx to the Pauli-spin matrix σy . We take
the same Pauli matrix in the c- and f -electron bands setting
g = 2 and remind the reader that all operators represent 4 × 4
matrices, so that

σy =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i

0 0 i 0

⎞
⎟⎠. (8)

Because vertex corrections are neglected within the DMFT
approximation, the two-particle Green’s function reduces to
the product of two single-particle Green’s functions written in
Matsubara frequencies as

σxx(iω) = 1

ω
�xx(iω), (9)

ϒyx(iω) = 1

ω
Kyx(iω), (10)

�xx(iω) = T
∑

k

∑
iν

Tr[vxGk(iν)vxGk(iν + iω)], (11)

Kyx(iω) = T
∑

k

∑
iν

Tr[σyGk(iν)vxGk(iν + iω)], (12)

where T is the temperature of the system.
Having a self-consistent solution for the self-energy, these

single-particle Green’s functions are known and �xx(iω) and
Kyx(iω) could be calculated using Matsubara frequencies,
which must be followed by an analytic continuation at the end
of the calculation.

However, a significant advantage of combining DMFT with
NRG is the availability of real-frequency spectral functions and
self-energies. Thus, we can perform the full calculation using
real frequencies, which results in a considerable gain of accu-
racy. For each component of the Green’s function we can write

Gk(z) =
∫

dω
1

z − ω
Ak(ω), (13)

where Ak(ω) = 1
2πi

[Gret
k (ω) − Gadv

k (ω)] is the density of
states, which is calculated from the retarded and advanced
Green’s functions Gret

k (ω) and Gadv
k (ω).

Writing the density of states for all components of the
Green’s function again as a matrix, we can calculate �xx(ω)
and Kyx(ω) directly on the real-frequency axis. The conduc-
tivity σxx and ME effect ϒyx thus become

σxx(ω) =
∑

k

∫
dω′Tr[vxA(ω′)vxA(ω + ω′)]

× fT (ω′) − fT (ω + ω′)
ω

, (14)

ϒyx(ω) =
∑

k

∫
dω′Tr[σyA(ω′)vxA(ω + ω′)]

× fT (ω′) − fT (ω + ω′)
ω

, (15)

where fT (ω) is the Fermi function for temperature T . Taking
the static limit ω → 0, we obtain the final result

σxx(ω = 0) =
∑

k

∫
dω′Tr[vxA(ω′)vxA(ω′)]

dfT (ω′)
dω′ ,

(16)

ϒyx(ω = 0) =
∑

k

∫
dω′Tr[σyA(ω′)vxA(ω′)]

dfT (ω′)
dω′ .

(17)

We note that in these results the temperature dependence enters
via the Fermi function and A(ω) which depends on the self-
energy calculated self-consistently for a given temperature.

IV. NONINTERACTING SYSTEM

To gain some understanding about this model, we first show
results for the noninteracting system in Fig. 2. This will help to
clarify the effect of the Coulomb interaction below. Close to the
Fermi energy, shown in Fig. 2, the visible bands are composed
of hybridized f electrons and c electrons. Both systems are
metallic with a spin-split Fermi surface. The chemical potential
is adjusted in both systems, so that the system is half-filled,
nf = nc = 1. We note that while Fig. 2(a) corresponds to a
particle-hole symmetric system, the particle-hole symmetry is
broken in Fig. 2(b). Figure 2(c) shows the results for ϒyx/σxx

for the parameter sets in (a) and (b).
For the system with αcf = 0, shown in Fig. 2(a), the ME

effect disappears at half-filling. Due to the Rashba interaction,
two bands with opposite spin polarization cut the Fermi energy.
Therefore, the particle-hole symmetry, which is conserved in
this system, results in a perfect cancellation of the contributions
of these bands to the ME effect. To verify this statement, we
show the Fermi surface of this parameter set in Fig. 3(a) and

FIG. 2. (a) and (b) Noninteracting momentum resolved spectral
functions. Model parameters are written above each panel. The Fermi
energy corresponds to ω/tf = 0. (c) ME effect for the parameter
shown in (a) and (b).
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FIG. 3. Fermi surfaces of the noninteracting systems shown in
Figs. 1 and 2. The arrows in the plot indicate the direction of the
spin polarization in these bands, which is induced due to the Rashba
spin-orbit interaction.

include the spin polarization of each band. Clearly visible is
the appearance of bands with identical shape but opposite spin
polarization.

On the other hand, the system including all three parameters
(V 	= 0, αff 	= 0, αcf 	= 0), shown in Figs. 1(b) and 2(b), has
a finite ME effect. The inclusion of αcf breaks the particle-
hole symmetry and favors bands with equal spin polarization
close to the Fermi energy. Therefore, the contributions to
the ME effect from different bands at the Fermi energy do
not completely cancel. The Fermi surface including the spin
polarization is shown in Fig. 3(b). Due to the breaking of
particle-hole symmetry, bands with opposite spin polarization
have vanished from the Fermi surface.

These results demonstrate the importance of the interorbital
Rashba interaction for the ME effect which naturally arises in
noncentrosymmetric f -electron systems and leads to bands
with spin polarization into the same direction. We note that the
exact cancellation for the system with αcf = 0 only holds for
the half-filled situation. The ME effect becomes finite when
doping the system away from half-filling.

V. INTERACTING SYSTEM

We next turn our attention to the interacting system. Because
the system with αcf = 0 which preserves particle-hole symme-
try can be regarded as a special situation, we will focus from
now on the metallic system with V = αff = αcf = 0.5tf .
The chemical potential is adjusted in all calculations so that
the system remains half-filled. We note that the qualitative
behavior shown here does not depend on the filling of the
conduction electrons.

Let us start the analysis by showing separately the conduc-
tivity σxx and ME effect ϒxy for different interaction strengths
and temperatures, see Fig. 4. For the noninteracting system,
the conductivity decreases with decreasing temperature in the
shown temperature range due to the hybridization between c

FIG. 4. Conductivity σxx (a) and magnetoelectric effect ϒxy

(b) for αff /tf = αcf /tf = V/tf = 0.5 and different interaction
strengths and temperatures.

and f electrons which gaps out parts of the Fermi surface.
With increasing interaction strength, the conductivity develops
a peak at finite temperature. Overall, the conductivity exhibits
only a moderate interaction dependence for the shown temper-
atures. On the other hand, the ME effect shown in Fig. 4(b) is
small at weak coupling, but strongly increases with increasing
interaction strength. It develops a peak at a finite temperature.
The peak position is at a slightly smaller temperature than that
in the conductivity. At very low temperature the ME effect
strongly decreases again.

Figure 5 shows the temperature dependent ratio of ME
effect and conductivity for different interaction strengths,
which can be measured in experiment. We see that even a
weak interaction in the f orbital U/tf = 0.5 enhances the
ME effect, particularly at high temperatures. Comparing with
Fig. 4, it becomes clear that this enhancement is due to
the enhancement of the ME effect, and not due to a strong
change in the conductivity. Increasing the interaction further,

FIG. 5. ϒxy/σxx for αff /tf = αcf /tf = V/tf = 0.5 for different
interaction strengths and temperatures.
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FIG. 6. Momentum resolved spectral functions for U/tf = 5,
αff /tf = αcf /tf = V/tf = 0.5, and different temperatures.

we find a significant enhancement of the ME effect and a
clear peak in the temperature dependence. While the height of
this peak increases with the interaction strength for U/tf < 5,
it becomes constant when further increasing the interaction.
The temperature of this peak decreases monotonically with
increasing interaction and can be identified as the crossover
temperature between localized and itinerant f electrons.

Comparing to the ME effect of the noninteracting system,
we observe that the maximum value is more than ten times
enhanced by the correlations. However, the enhancement is
even more dramatic at high temperatures, where we find a
ME effect nearly 40 times the noninteracting value. Thus,
our results suggest to look at the ME effect in heavy fermion
systems above their coherence temperature. This enhancement
would be most useful for spintronics application at room
temperature.

To understand the mechanism behind this enhancement,
we show momentum resolved spectral function for U/tf = 5
in Fig. 6. The depicted temperatures correspond to a low
temperature, where the ME effect is small (T/tf = 0.05), a
temperature shortly below the peak of the ME effect (T/tf =
0.15), and a temperature shortly above the peak (T/tf = 0.4).
The spectral function at temperatures above the peak includes
only c electrons; due to a strong peak in the imaginary part
of the f -electron self-energy, the f electrons are completely
localized and thus absent from the spectral function. Heavy
quasiparticles are not formed at these temperatures. Because
there is no Rashba spin-orbit interaction acting within the
conduction band, a spin splitting of the conduction band is
not observed. At temperatures, shortly below the peak of the
ME effect, we observe the appearance of the f -electron band
within the spectrum. The f electrons become itinerant at this
temperature and begin to form heavy quasiparticles, which are
observable as a flat band at the Fermi energy. This proves
that the peak of the ME effect is related to the coherence
temperature of the system. Finally, at very low temperature,
we find coherent heavy quasiparticles around the Fermi energy.
The spectrum looks similar to the noninteracting spectrum with
renormalized energies.

FIG. 7. Momentum resolved σ k
xx and ϒk

yx along the diagonal in the
Brillouin zone for U/tf = 5, αff /tf = αcf /tf = V/tf = 0.5, and
different temperatures.

To elucidate the reason for the enhancement at high temper-
atures, we show the summand of the momentum integration for
the conductivity (σ k

xx = ∫
dω′Tr[vxAk(ω′)vxAk(ω′)] dfT (ω′)

dω′ )

and the ME effect (ϒk
yx = ∫

dω′Tr[σyAk(ω′)vxAk(ω′)] dfT (ω′)
dω′ )

along the diagonal of the Brillouin zone in Fig. 7. The
conductivity and the ME effect as shown in the previous figures
correspond to the momentum integral of these functions over
the whole Brillouin zone. The summand for the conductivity
is always positive. Its amplitude around the Fermi momentum
(π/2,π/2) is increasing with decreasing temperature due to an
increased lifetime, while the width of the peak decreases at the
same time. The summand of the ME effect, on the other hand,
shows a more interesting behavior. At low temperature,T/tf =
0.05, it shows positive as well as negative contributions.

The existence of positive and negative contributions can
also be immediately understood from the Fermi surface of the
system (αff /tf = 0.5, αcf /tf = 0.5, V/tf = 0.5, U/tf = 5)
including the spin polarization shown in Fig. 8 for three
different temperatures. Figure 8(a) shows a low temperature,
where the f electrons are itinerant. We observe a complicated
Fermi surface made up of several bands. Furthermore, we
observe that these bands have opposite spin polarization, which
results in a cancellation of the ME effect at this temperature.
This cancellation is indeed responsible for the suppression of
the ME effect in most metallic systems.

However, the situation is very different at high temperatures.
In Fig. 7 we observe that the negative contribution to the ME
effect vanishes with increasing temperature. At temperatures
above the coherence temperature, we only find positive contri-
butions. In Fig. 8(b) the f -electron bands become incoherent
and are blurred in the density of states at the coherence
temperature. Nevertheless, the f electrons still contribute to
the spin polarization. Thus, the spin polarization includes
momentum regions with opposite direction. Finally, Fig. 8(c)
shows a temperature where the f electrons are localized
and thus are absent from the spectrum. The calculated spin
polarization only includes the clockwise direction. There are
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FIG. 8. Cuts of the momentum dependent density of states through the Brillouin zone at the Fermi energy. The color plot denotes the density
of states at the fixed energy with a maximum intensity for yellow. The white arrows denote the calculated spin polarization. The parameters are
αff /tf = 0.5αcf /tf = 0.5 V/tf = 0.5 and U/tf = 5. (a) T/tf = 0.01. (b) T/tf = 0.15. (c) T/tf = 0.4.

only positive contributions to the ME effect at this temperature,
see T/tf = 0.4 in Fig. 7. We thus conclude that the ME effect
becomes large because of an absence of cancellation above
the crossover temperature between itinerant and localized f

electrons.
Because the f electrons are localized, the ME effect

above the coherence temperature is solely generated by the c

electrons. It is rather remarkable that the c electrons contribute
to the ME effect when the f electrons are absent from the
spectrum, although there is no direct Rashba interaction within
the c orbitals. This fact can be understood in the following way:
In a virtual process, a c electron can hop onto an f orbital and
return to a c-electron orbital. This hopping process involves
the interorbital Rashba spin-orbit interaction and thus will
lead to a term describing a spin-dependent coupling, which
can generate a spin polarization within the c-electron band.
Thus, the dependence of the ME effect on the interaction
strength and the temperature can be understood as an interplay
between the localization of f electrons and a virtual hopping
of c electrons on f -electron orbitals. At high temperature, f

electrons are localized due to the Coulomb interaction. Thus,
the ME effect arises due to polarized c electrons and it is
large because of an absence of cancellation. With lowering the
temperature, the ME effect first increases until the coherence
temperature of the material is reached. At this temperature
the f electrons become itinerant. At lower temperatures, the
material is described by a renormalized band structure of
the noninteracting one. Thus, the ME effect is small due to
cancellation effects. The coherence temperature, where the f

electrons change from localized to itinerant, decreases thereby
strongly with increasing Coulomb interaction.

Finally, before concluding this paper, we want to shortly
address the situation for a hole-doped system. Up to now, we
have focused on a half-filled system, which might be regarded
as a special situation, although the particle-hole symmetry is
broken for αff /tf = 0.5, αcf /tf = 0.5, V/tf = 0.5. We here
demonstrate that the enhancement of the ME effect does not
depend on the filling of the c-electron band.

Figure 9 shows the momentum resolved and local DOS of
the system with αff /tf = 0.5, αcf /tf = 0.5, V/tf = 0.5 and
interaction strength U/tf = 5 at T/tf = 1 and T/tf = 0.005.
While the f -electron band is half-filled, the c-electron band
has a filling nc = 0.6. We observe for the doped system

qualitatively the same physics as at half-filling. For high
temperature T/tf = 1, the f electrons are localized and thus
absent from the Fermi energy in the momentum resolved
spectral function and local DOS. The conduction electrons
show a spectrum corresponding to noninteracting electrons on
a square lattice.

At low temperatures T/tf = 0.005, the f electrons become
coherent and form heavy quasiparticles together with the c

electrons. The f electrons form a peak in the density of states at
the Fermi energy. This is exactly the same physics as described
above for the half-filled system.

It is thus not surprising to find qualitatively similar behavior
for the ME effect shown in Fig. 10. The ME effect is enhanced
for the interacting system and shows a clear peak, which can
be identified again as the transition between localized and
itinerant f electrons.

FIG. 9. System with αff /tf = 0.5, αcf /tf = 0.5, V/tf = 0.5,
and U/tf = 5 at T/tf = 1 (left panels) and T/tf = 0.005 (right
panels). The filling of the c-electron band is nc = 0.6. The f -electron
band is half-filled. (a) Momentum-resolved spectral function for
T/tf = 1. (b) Local density of states (DOS) for T/tf = 1. The black
(red) lines correspond to the c (f ) electrons. (c) Momentum-resolved
spectral function for T/tf = 0.005. (d) Local density of states (DOS)
for T/tf = 0.005.
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FIG. 10. ME effect ϒyx/σxx for αff /tf = 0.5, αcf /tf = 0.5,
V/tf = 0.5, and filling of the conduction electrons nc = 0.6.

VI. CONCLUSIONS

We have demonstrated that the ME effect can be strongly
enhanced in f -electron systems showing a peak at the co-
herence temperature, where the f electrons change from
itinerant to localized behavior. Above the coherence tem-
perature, where a strong peak in the imaginary part of the
f -electron self-energy is formed, the Fermi liquid theory
breaks down, and a momentum-dependent spin polarization
of the c electrons is created, which causes the large ME effect.
Remarkably, a cancellation of the ME effect due to spin-split
bands with different polarization is absent at this tempera-
ture, which is the main reason for the enhancement. Thus,

our results suggest to look at the ME effect in noncen-
trosymmetric f -electron systems such as CeRhSi3, CeIrSi3,
or CePt3Si above their coherence temperature. The coherence
temperature, as defined in our calculation, can be determined
from experiment by the peak position of the magnetic contri-
bution to the resistivity. For CeRhSi3 and CeIrSi3 this peak can
be observed at approximately Tc = 100 K [35] and for CePt3Si
at Tc = 80 K [36]. The spin-orbit interaction in CePt3Si has
been estimated from first-principle calculation to 50–200 meV
[37]. If we assume the strength of the spin-orbit coupling to
be 100 meV in our calculations, tf will also be 100 meV.
Our calculations with U/tf = 6 and U/tf = 7 would then
correspond to coherence temperatures of Tc = 120 K and Tc =
60 K, respectively. The enhancement of the ME effect at room
temperature due to interaction effects would be approximately
40 for these calculations. Thus, our results suggest that these
noncentrosymmetric f -electron materials might have a large
ME effect even at room temperature, which would be most
significant for spintronics applications.
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