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Persistence of the gapless spin liquid in the breathing kagome Heisenberg antiferromagnet
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The nature of the ground state of the spin S = 1/2 Heisenberg antiferromagnet on the kagome lattice with
breathing anisotropy (i.e., with different superexchange couplings J� and J� within elementary up- and down-
pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and
Monte Carlo methods. We analyze the stability of the U(1) Dirac spin liquid with respect to the presence of
fermionic pairing that leads to a gapped Z2 spin liquid. For several values of the ratio J�/J�, the size scaling of
the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the
energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size
or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening
the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application
of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped
state is detected when improving the quality of the variational states. Finally, we discuss the competition with
the “simplex” Z2 resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly
anisotropic regime, i.e., J� � J�.
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I. INTRODUCTION

In the past two decades, considerable effort has been
devoted towards understanding the properties of the S = 1/2
Heisenberg model on the kagome lattice, which represents the
purest example of geometric frustration in two dimensions.
This is reflected in the fact that the ground state fails to
develop long-range magnetic order, thus potentially realizing
a quantum spin liquid phase [1], which features high en-
tanglement, low-energy excitations with fractional quantum
numbers, and possibly topological order [2–4]. Even though
investigations of the Heisenberg model on the kagome lattice
started in the 1990s [5–7], a considerable boost was given
by the discovery of Herbertsmithite [ZnCu3(OH)6Cl2], which
proves to be an excellent embodiment of the nearest-neighbor
S = 1/2 Heisenberg model on the structurally perfect kagome
lattice, with only minor longer-range superexchange couplings
[8–11]. Experimental investigations have revealed the absence
of long-range magnetic order or frozen magnetic moments;
however, in the resulting quantum spin liquid, it has been
particularly challenging to reach a definite conclusion as to
the presence/absence of a spin gap in the excitation spectrum
which is expected to be tiny [12–14]. Similarly, theoretical
approaches have long wrestled with the question of the nature
of the ground state and properties of its low-energy excitations,
which turn out to be particularly elusive and remain per-
plexing. Indeed, early density-matrix renormalization group
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(DMRG) calculations reported the presence of a finite S = 1
gap [15,16], suggestive of a topologically ordered Z2 spin
liquid ground state [17]. In contrast, recent calculations based
upon Gutzwiller projected fermionic wave functions [18–21],
DMRG [22,23], and tensor network approaches [24] provide
strong evidence in favor of a gapless spin liquid with signatures
of Dirac cones in the spinon spectrum.

In order to reach a consensus on the low-energy properties of
the S = 1/2 Heisenberg model on the kagome lattice, and the
possibility of it describing the experimental features observed
in ZnCu3(OH)6Cl2, it proves enlightening to look at variations
of the model arising from distortions of the geometrically
perfect kagome lattice. On a more conceptual level, it is a
recurrent motif in theoretical physics to introduce interpolation
parameters in order to facilitate the model analysis of a partic-
ular parameter limit. As it has been suggested early on that the
nearest neighbor S = 1/2 Heisenberg model might be located
close to a first order phase transition, it appears useful to in-
troduce a geometric distortion parameter, and study the model
family as it approaches the isotropic limit. Concretely, it may
offer an alternative route for the study of quantum spin liquids.
One example is given by Volborthite [Cu3V2O7(OH)2 · 2H2O],
where the elementary triangles that build up the kagome lattice
are no longer equilateral but isosceles, leading to different
antiferromagnetic couplings along short and long bonds. In
this case, there is some evidence for a magnetic ground state,
even though unusually slow spin fluctuations persist down to
low temperatures [25–33]. Another interesting deformation is
one leading to alternately sized equilateral triangles, dubbed
the trimerized or breathing kagome lattice [34], in analogy to
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FIG. 1. Breathing kagome lattice is defined with nearest-neighbor
superexchange coupling J� on up-pointing triangles (thick solid lines)
and J� on down-pointing triangles (thin solid lines). A schematic
illustration of the Z2[0,π ]β∗ spin liquid Ansatz (Ref. [42]) is also
shown. The auxiliary (spinon) Hamiltonian requires a 2×1 doubling
of the three-site geometrical unit cell. Nearest-neighbor (next-nearest-
neighbor) bonds are shown by solid (dashed) lines. The green (blue)
bonds represent sij = νij = +1 (sij = νij = −1) in Eq. (2). The
fact that the hopping and pairing amplitudes on nearest-neighbor
bonds belonging to up- and down-pointing triangles are allowed
to be different is represented by a difference in the thickness of
bonds.

the breathing pyrochlores [35]. Correspondingly, the kagome
lattice features an alternation of interactions, with the triangles
pointing up (having a superexchange coupling J�) and those
pointing down (with J�) [36]; see Fig. 1. Originally, this
model was considered by Mila [37,38], in order to explain
the large number of singlet excitations at low energies detected
within exact diagonalizations on small clusters for the isotropic
limit with J� = J� [7]. Remarkably, vanadium oxyfluoride
(NH4)2[C7H14N][V7O6F18] (DQVOF) provides a realization
of the breathing kagome lattice with J�/J� = 0.55(4) [39].
An earlier muon spin resonance (μSR) study [40] and a more
recent nuclear magnetic resonance (NMR) study revealed no
magnetic order, with the latter pointing to an essentially gapless
excitation spectrum [39,41]. These results have provided a re-
newed impetus to understand whether a gapless spin liquid may
be stabilized in realistic spin models with SU(2) symmetry.

The Hamiltonian for the breathing kagome lattice is given
by

Ĥ = J�
∑

〈ij〉∈�
Ŝi · Ŝj + J�

∑
〈ij〉∈�

Ŝi · Ŝj , (1)

where Ŝi = (Ŝx
i ,Ŝ

y

i ,Ŝz
i ) is the S = 1/2 operator on a site i

and 〈ij 〉 indicate nearest-neighbor pairs of sites i and j that
belong to up-pointing (〈ij 〉 ∈ �) or down-pointing (〈ij 〉 ∈ �)
triangles. The crystallographic unit cell of this lattice consists
of three sites located at (0,0), (1,0), and (1/2,

√
3/2) (forming

an up-pointing triangle); the primitive vectors are a1 = (2,0)
and a2 = (1,

√
3). For our calculations, we consider toric

clusters that are defined by T1 = La1 and T2 = La2, and thus
consist of N = 3L2 sites. Notice that, for J� = 0 (or J� = 0)
the Hamiltonian corresponds to uncoupled up-pointing (or
down-pointing) triangles. At this special point, the ground
state is highly degenerate, since each interacting triangle
has a doubly degenerate ground state with an energy per
triangle E� = −3/4J� (E� = −3/4J�) and spin S = 1/2.
In the weakly coupled limits J� � J� (or J� � J�), the
massive degeneracy is expected to be partially or completely
lifted. A perturbative treatment around the uncoupled limit,
unfortunately, gives rise to a complicated effective model [37],
which contains both spin and pseudospin degrees of freedom
and whose solution cannot be obtained in a straightforward
manner.

Recently, the Heisenberg model on the breathing kagome
lattice has been investigated theoretically by using a projective-
symmetry group (PSG) analysis supplemented by Monte Carlo
simulations of variational wave functions [42] and by DMRG
calculations [43]. The latter one pointed to the existence of
an extended gapless spin liquid phase which shows signatures
of Dirac cones, similar to what has been found at the isotropic
point [22]. In the limit of strong breathing anisotropy J� � J�,
the existence of a lattice-nematic state, i.e., a state with inequiv-
alent nearest-neighbor spin-spin correlations, was claimed for
in the regime J�/J� � 0.13. In contrast, the variational Monte
Carlo study claimed that a gapped Z2 spin liquid ground
state is obtained within Gutzwiller projected fermionic wave
functions. However, this conclusion was based only upon a
calculation of the variational parameters and energies for a
few system sizes without a finite-size-scaling analysis.

In this paper, we report a high-accuracy systematic study
of both the U(1) Dirac state and the gapped Z2 state that
is obtained from the U(1) Dirac state by an inclusion of a
fermionic pairing term. By performing calculations on very
large system sizes (up to N = 2352 sites), we show that the
variational parameters that are responsible for a finite spin
gap are vanishing in the thermodynamic limit and, therefore,
the energy gain of the gapped Z2 state with respect to the
U(1) Dirac state scales to zero for N → ∞. Moreover, in
the strongly anisotropic limit J� � J�, we show that the
U(1) Dirac spin liquid undergoes a dimer instability, giving
way to a valence-bond crystal (VBC) ground state for 0 <

J�/J� � 0.25. In addition, in this regime, a “simplex” Z2

resonating-valence-bond (RVB) spin liquid is found to have
an energy between the U(1) Dirac state and the VBC state.

The paper is organized as follows: in Sec. II, we describe
the variational wave functions that are used in this work (and
also the simplex RVB state that is constructed and used within
a tensor-network approach); in Sec. III, we present our results;
finally, in Sec. IV, we draw our conclusions.

II. VARIATIONAL WAVE FUNCTIONS

A. Gutzwiller projected Ansätze

The variational wave functions are written in terms of
Abrikosov fermions [44]. In the following, the noninteracting
state, defined in the fermionic Hilbert space, is obtained
by taking the ground state |�0〉 of the following auxiliary
Hamiltonian, which has the form of a generalized Bardeen-
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Cooper-Schrieffer (BCS) Hamiltonian:

Ĥaux{Z2[0,π ]β∗} = χ�
∑

〈ij〉∈�,α

sij ĉ
†
i,αĉj,α

+
∑

〈ij〉∈�
sij

{
χ�

∑
α

ĉ
†
i,αĉj,α + ��(ĉ†i,↑ĉ

†
j,↓ + H.c.)

}

+
∑
〈〈ij〉〉

νij

{
χ2

∑
α

ĉ
†
i,αĉj,α + �2(ĉ†i,↑ĉ

†
j,↓ + H.c.)

}

+
∑

i

{
μ

∑
α

ĉ
†
i,αĉi,α + ζ (ĉ†i,↑ĉ

†
i,↓ + H.c.)

}
. (2)

Here, 〈ij 〉 ∈ � and 〈ij 〉 ∈ � denote sums over pairs of nearest-
neighbor sites belonging to up- and down-pointing triangles,
respectively, while 〈〈ij 〉〉 denote sums over pairs of next-
nearest-neighbor sites; sij and νij encode the sign structure
of the nearest- and next-nearest-neighbor pairs of sites, as
depicted in Fig. 1. The variational wave function thus ob-
tained contains six variational parameters (upon fixing χ� = 1
as the overall energy scale), namely, the nearest-neighbor
hopping (χ�) and pairing (��) on down-pointing triangles,
the next-nearest-neighbor hopping (χ2) and pairing (�2), the
on-site chemical potential (μ), and real on-site pairing (ζ ). In
order to have a nondegenerate ground state of the auxiliary
Hamiltonian, we choose antiperiodic and periodic boundary
conditions along a1 and a2, respectively.

The form of this Ansatz is dictated by the PSG classification
[42], and it describes both the gapless U(1) Dirac state (when
all the fermionic pairing terms ��, �2, and ζ are identically
zero) and a generalization of the so-called Z2[0,π ]β state that
was obtained for the isotropic limit [45] (when at least one
pairing amplitude is nonzero), and hereafter is referred to as
the Z2[0,π ]β∗ spin liquid. In total, the PSG approach for the
breathing kagome lattice allows for six different Z2 Ansätze
[42]. However, two of them do not allow any amplitudes
on nearest-neighbor pairs of sites nor any on-site (chemical
potential and pairing) terms, thus making the variational Ansatz
unplausible for a model with J� �= 0 and J� �= 0; for another
two Ansätze, the on site and nearest-neighbor pairings are not
allowed, which again renders them energetically unfavorable;
finally, among the remaining two options, one has the uniform
flux structure with sij = νij = +1, which gives a rather high
variational energy, while the last one (the Z2[0,π ]β∗ spin
liquid) is parametrized by the Hamiltonian of Eq. (2).

A bona fide spin liquid wave function, which lives in the
correct Hilbert space with one fermion per site (corresponding
to the physical Hilbert space of the spin model), is obtained by
applying the Gutzwiller projector to the noninteracting state
|�0〉:

|
SL〉 = PG|�0〉, (3)

where PG = ∏
i (n̂i,↑ − n̂i,↓), n̂i,α = ĉ

†
i,αĉi,α being the

fermionic density per spin α on the site i. The variational
energy and correlation functions over |
SL〉 can be calculated
in a straightforward manner by using Monte Carlo sampling
[46]. In addition, a stochastic optimization is possible to obtain
accurate estimations of the variational parameters contained
in Eq. (2) [46,47].

FIG. 2. (a) Local tensors defining the RVB PEPS on the kagome
lattice. Straight (wiggly) lines denote virtual (physical) degrees of
freedom, spanning a Hilbert space of dimension D = 3 (d = 2). In
the simplex RVB, one applies the operator I − αP3/2 on the three
wiggly lines. (b) After grouping the three sites of the up triangle, one
obtains a rank-5 four-coordinated tensor.

We would like to mention that the Gutzwiller projected
wave function, with only χ� = 1 (or χ� = 1) and all the other
parameters equal to zero, gives the exact energy in the limit of
decoupled triangles with J� = 0 (or J� = 0) and represents, in
the general case, an excellent approximation for the isotropic
case with J� = J� [48].

The accuracy of the variational wave functions can be easily
improved by applying a few Lanczos steps on the variational
state [49]:

|
p−LS〉 =
(

1 +
p∑

k=1

αkĤk

)
|
SL〉, (4)

where {αk} is a set of variational parameters. On large cluster
sizes, only a few steps can be efficiently implemented, and here
we consider the case withp = 1 andp = 2 (p = 0 corresponds
to the original trial wave function). In addition, an estimate of
the exact ground-state energy may be achieved by the method
of variance extrapolation. In fact, for sufficiently accurate
states, we have that E − Eex ≈ σ 2, where E = 〈Ĥ〉/N and
σ 2 = (〈Ĥ2〉−〈Ĥ〉2)/N are the energy and variance per site,
respectively; therefore, the exact ground-state energy Eex can
be extracted by fitting E vs σ 2 for p = 0, 1, and 2. Also, in the
presence of a few Lanczos steps the energy and its variance
can be obtained using the standard variational Monte Carlo
method.
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B. Simplex RVB as a projected entangled pair state

Other types of spin liquids can be constructed using the
framework of projected-entangled pair states (PEPS) [51,52].
On a kagome lattice, a PEPS can be defined in terms of rank-3
tensors (i) As

λ,μ on the sites and (ii) R�
λ,μ,ν and R�

λ,μ,ν in the
center of the up- and down-pointing triangles, respectively,
where s = 0,1 are qubits representing the two Sz = ±1/2 spin
components and λ,μ,ν ∈ {0,1, . . . ,D} are virtual indices, as
shown in Fig. 2(a) [53]. One can then group three sites on
each unit cell (for example, on the up-pointing triangles) to
obtain a rank-5 tensor (of new physical dimension 23 = 8)
connected on an effective square lattice, as shown in Fig. 2(b).
The amplitudes of the PEPS in the local Sz basis are then
obtained by contracting all virtual indices.

The original nearest-neighbor (NN) RVB state [54] defined
as an equal weight (and equal sign) summation of all NN
singlet coverings (NN singlets are all oriented clockwise on
all the triangles) also belongs to the class of short-ranged
(topologically ordered) Z2 spin liquids. Such a state can in fact
be represented as a PEPS with bond dimension D = 3 [53,55]
and involving the above rank-3 tensors, As

λ,μ on the sites, and
R�

λ,μ,ν = R�
λ,μ,ν = Rλ,μ,ν in the center of the triangles. More

precisely, As
2,s = As

s,2 = 1, and zero otherwise, and R2,2,2 = 1,
and Rλ,μ,ν = ελ,μ,ν otherwise, with ελ,μ,ν being the antisym-
metric tensor. Note that the RVB state is also equivalent to a
projected BCS wave function [56] and is perfectly (spatially)

isotropic. It has been studied in detail in Ref. [55] and its energy
density was found to be rather poor compared to variational
wave functions or DMRG. In fact, the NN RVB wave function
has a fixed proportion (1/4) of “defect triangles” with no singlet
bonds (characterized by λ = μ = ν = 2 on the three bonds of
the corresponding PEPS R tensor), equally distributed between
the up- and down-pointing triangles. In the isotropic case
J� = J�, defect triangles are energetically costly. However,
in the regime with strong anisotropy, i.e., J� � J�, placing
defects predominantly on the down-pointing triangles will be
energetically very favorable [38]. Such an improvement can
be performed easily within the PEPS formalism. Choosing the
up-pointing triangles as the three-site units, one then acts with
the operator I − αP3/2 on every unit (where I is the identity
operator, P3/2 is the projector on the fully symmetric subspace
of three spins 1/2, and α is a variational parameter [57]). As a
result of this projection, we expect longer range singlet bonds
to appear in the RVB state, with a nontrivial sign structure.
When α = 1, one projects exactly onto the (two-dimensional)
S = 1/2 manifolds of all up-pointing triangles.

III. RESULTS

A. Competition between the U(1) Dirac and gapped
Z2 spin liquids

Our main results are shown in Fig. 3. Here, we report the
finite-size scaling of the on-site ζ , nearest-neighbor ��, and

FIG. 3. For different values of the breathing anisotropy J�/J�, we show the finite-size scaling of the energy gain of the Z2[0,π ]β∗ spin
liquid with respect to the U(1) Dirac spin liquid, i.e., E(Z2) − E(U(1)) (first row). The finite-size scaling of ��,�2,ζ , the variational parameters
responsible for opening a gap, are also shown (second row). Here, lines are quadratic fits [50] of the results. The largest cluster considered
corresponds to L = 28 and has 2352 sites. The results for the isotropic limit J�/J� = 1 are also reported for comparison.

115127-4



PERSISTENCE OF THE GAPLESS SPIN LIQUID IN THE … PHYSICAL REVIEW B 97, 115127 (2018)

next-nearest-neighbor �2 pairing terms for J�/J� = 0.1, 0.3,
0.5, 0.7, and 0.9; the isotropic case J�/J� = 1 is also reported
for comparison. For all ratios of J�/J�, we considered clusters
for which L = 4n with n ranging from 1 to 7 (the largest
cluster thus has N = 2352 sites), except for the isotropic point,
where the maximum is n = 4, since already for n = 3 the
pairing terms are vanishing. In addition, we also report the
energy gain of the Z2[0,π ]β∗ state due to the presence of these
pairing variational parameters with respect to the U(1) Dirac
state that contains only hopping terms, i.e., the gain �E =
E(Z2)−E(U(1)) [see Supplemental Material (Ref. [58]) for
values of energies of the U(1) and Z2[0,π ]β∗ spin liquids].

We find that for all values of J�/J� the pairing amplitudes
scale to zero (within error bars) in the thermodynamic limit
indicating that theZ2 spin liquid is not stable in the Heisenberg
model on the breathing kagome lattice, and that its occurrence,
as reported in a previous variational Monte Carlo study [42],
is a finite-size artifact. We emphasize that, in the isotropic
case, the pairing terms are essentially vanishing for L � 12,
as already reported in Refs. [48,59]. Correspondingly, the
thermodynamic extrapolation of �E is found to be vanishing
for J�/J� � 0.3 (within the error bar) and for J�/J� = 0.1
(within two error bars). In the latter case, the extrapolated result
is tiny anyway, i.e., �E = 0.00002(1).

At this point, we would like to make a brief comment on the
optimization procedure, which is particularly relevant for the
isotropic point. In particular, it has been suggested that finite
pairing amplitudes are obtained up to large system sizes and
in the thermodynamic limit [60], in contrast to what we have
previously obtained [48,59]. Indeed, on each size, it is possible
to stabilize finite values of the pairing terms (ζ and �2),
whenever the chemical potential μ does not correspond to the
one of the Dirac state. However, once μ is correctly placed (i.e.,
within the highest occupied and the lowest unoccupied levels
of the Dirac spectrum on each finite cluster), all the pairing
amplitudes optimize to zero (within the error bar) for L � 12.
In any case, also when the chemical potential is misplaced
(and finite values of the pairings are obtained), the energy gain
�E is still negligibly small on any finite system and scales to
zero (within error bars) in the thermodynamic limit. Therefore,
for understanding whether a gap opens up or not in reality, it
is not sufficient to analyze the size scaling of the variational
parameters alone, but rather a complete study of the energy
gain on large finite systems together with a thermodynamic
extrapolation must be afforded.

The stability of the U(1) Dirac spin liquid with respect to
the opening of a (topological) gap leading to the formation
of a Z2 state is not an artifact of the variational approach.
In order to prove this statement, we have performed one and
two Lanczos steps on both the gapless U(1) and gapped Z2

states for L = 4 and 8 clusters at a given J�/J� = 0.5, also
performing the zero-variance extrapolation that allows us to get
a (nonvariational) estimation of the exact ground-state energy.
The results are shown in Fig. 4 [see also the Supplemental
Material (Ref. [58])] and a few aspects should be stressed. First
of all, we must emphasize that the finite-size energy gain of the
Z2 Ansatz decreases from p = 0 to p = 2, suggesting the fact
that the fermionic pairing does not reflect the correct way to
improve the original U(1) state. Moreover, the zero-variance
extrapolated estimate of the energy for the U(1) Dirac state is

FIG. 4. For J�/J� = 0.5, the Lanczos step extrapolation (em-
ploying a quadratic fit) of the ground-state energy for the U(1) Dirac
and the Z2[0,π ]β∗ states on the 48- and 192-site clusters.

slightly lower compared to the Z2[0,π ]β∗ state on the 48-site
cluster, and this difference in energy increases on the 192-site
cluster, implying that the Z2[0,π ]β∗ wave function performs
worse with increasing system size. Even though an accurate
extrapolation to the thermodynamic limit of the zero-variance
energy is beyond the goals of the present work, we are confident
that these results will be important for future comparisons that
employ complementary numerical methods.

B. Strong breathing anisotropy limit

For completeness, we now focus on the strong anisotropy
limit J� � J� where other states compete with the U(1)
spin liquid. In particular, we shall investigate (i) the simplex
topological RVB liquid (which can be written as a simple
PEPS) and (ii) a VBC that is adiabatically connected to the
projected U(1) state.

1. Competition with the simplex RVB liquid

Here, we consider the simplex RVB written as a PEPS [57]
and consider a Taylor expansion of the energy per site (in units
of J�) in the strong anisotropy limit:

E

J�
= −0.25 + c1

J�
J�

+ c2

(
J�
J�

)2

+ · · · . (5)

The constant −0.25 and the coefficient c1 of the linear term are
captured by setting α = 1 appearing in the operator I − αP3/2

acting on the up-pointing triangles (hence projecting exactly
on the S = 1/2 manifold of all up-pointing triangles). Note,
however, that an optimization over the parameter α would be
required at finite J� (and to get higher order terms in the Taylor
expansion). From the energy per site E = −0.25J� + c1(L)J�
that is obtained for α = 1 on infinitely long (vertical) cylinders
of perimeter L = 4, 6, and 8 unit cells (in each even or odd
topological sector), we can extract the coefficient c1(L). Then,
by performing the extrapolation L → ∞ as shown in Fig. 5(a),
we obtain c1 � −0.1243(3). Instead, a fit of the energy of the
U(1) state gives c1 � −0.119(1), definitely above the value of
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FIG. 5. (a) Coefficient c1 (extracted from the energy at α = 1 of
infinitely long cylinders of finite circumference L) plotted versus 1/L.
To minimize finite size effects, we consider the average over the two
topological sectors. The error bars represent the energy difference
(in units of J�) between strong and weak bonds in the down triangles
(nematicity), giving a tight bracketing of the extrapolation. (b) Energy
(per site) in units of J� vs J�/J� of (i) the U(1) wave function,
(ii) the simplex RVB at fixed α = 1, and (iii) the optimal VBC state.
Fits up to second and third order in J�/J� are used for the U(1)
(dashed line) and the VBC (full line) states to extract the respective
c1 and c2 parameters (with error bars). The VBC has lower energy up
to J�/J� ≈ 0.25.

the simplex RVB; see Fig. 5(b). This implies that the simplex
RVB has a lower energy than the U(1) wave function at a
sufficiently small value of the coupling J�/J�, whatever the
respective values of the coefficient c2 of the quadratic term.

2. Evidence of a VBC ground state

Now, we address the issue of the stability of the U(1) Dirac
spin liquid towards dimerizing into a VBC. For simplicity, we
choose a VBC with a unit cell of six sites, i.e., composed of
two geometrical unit cells, and impose a chosen pattern of am-
plitude modulation of nearest-neighbor hoppings on top of the
uniform U(1) state; see Fig. 6(a). This dimer pattern breaks
both the translational and the threefold rotational symmetry
of the lattice, but preserves the reflection symmetry about an
axis perpendicular to the primitive lattice vector a1. Therefore,
the VBC wave function has two different hopping amplitudes
within up-pointing triangles, i.e., the maroon (strong) and black

FIG. 6. Schematic illustration of nearest-neighbor hopping am-
plitudes of the auxiliary Hamiltonian [Eq. (2)] for (a) VBC and
(b) nematic states (no pairing terms are considered here): maroon
(green) bonds within the up-pointing (down-pointing) triangles are
stronger compared to the black (gray) bonds within the same triangles.

FIG. 7. For different values of the breathing anisotropy J�/J�,
the finite-size scaling of the energy gain (in units of J�) of the six-
site unit-cell VBC with respect to the U(1) Dirac spin liquid, i.e.,
[E(VBC)−E(U(1))]/J�. The clusters considered are L = 8, 12, 16,
and 20.

(weak) bonds, and also down-pointing triangles, i.e., green
(strong) and gray (weak) bonds. This results in an enlarged
variational parameter space and hence allows for potential
lowering of energy. We optimize the VBC wave function for
various values of the breathing anisotropy and find that, starting
from the isotropic limit down to J�/J� ≈ 0.25, the optimiza-
tion yields back the uniform U(1) spin liquid as the lowest
energy state. Then, for J�/J� � 0.25, the optimization of the
VBC wave function yields an energy which is significantly
lower compared to the U(1) Dirac state [see Fig. 7 and the
Supplemental Material (Ref. [58])]; therefore, the resulting
wave function is characterized by a strong dimerization of
the hopping amplitudes, with the maroon and green bonds [in
Fig. 6(a)] being considerably stronger compared to the black
and gray bonds. Most importantly, we find that the gain in the
energy of the VBC with respect to the U(1) Dirac state, i.e.,
E(VBC) − E(U(1)), stays essentially constant with increasing
system size from L = 8 to L = 20 (see Fig. 7) pointing to the
fact that the VBC wave function does not lose accuracy as
N → ∞, i.e., it is size consistent (unlike the gapped Z2 spin
liquid). The variational energy of the optimal VBC state is also
slightly lower than the simplex RVB state that is constructed
by using PEPS; see the analysis on the Taylor expansion of
Eq. (5) reported in Fig. 5(b). These results thus provide strong
evidence for a VBC ground state of the model in the regime
0 < J�/J� � 0.25.

We would like to mention that consideration of VBCs with
larger unit cell with 12 or 36 sites, as defined in Refs. [61,62],
and their optimization could possibly lead to further lowering
of energy due to the enlargement of variational space; nonethe-
less, the fact that already for a six-site unit-cell VBC we obtain
an appreciable and size-consistent energy gain is conclusive
proof enough of a VBC ordered ground state in this parameter
regime.
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3. Search for nematic order

We finally consider the case of a lattice-nematic state,
which only breaks the threefold lattice rotational symmetry
but preserves the translational symmetry; see Fig. 6(b). By
optimizing such a case for various values of the breathing
anisotropy and starting from different points in variational
parameter space (i.e., having different hopping amplitude
modulations), we find that the optimization always returns back
to the uniform U(1) Dirac state as the lowest energy one. In
particular, in the regime of strong anisotropy, this points to
the fact that in order to gain energy with respect to the U(1)
spin liquid, it is crucial to break translational symmetry along
with rotations. This fact is in contrast to the results obtained by
the DMRG approach in Ref. [43], which claimed a pure lattice
nematic without any translational symmetry breaking. We want
to stress that the simplex RVB wave function obtained within
PEPS also showed nematicity [see Fig. 5(a)]; however, this is
an artifact induced by finite-perimeter cylinders (manifesting
itself in the spatial anisotropy of spin-spin correlations) and
drops off with increasing perimeter. In addition, there is no
further energy gain by allowing a nematic bias in the R� tensor.

IV. CONCLUSIONS

We have investigated the nature of the ground state of
the S = 1/2 Heisenberg antiferromagnet on the breathing
kagome lattice employing Gutzwiller projected wave func-
tions analyzed with variational Monte Carlo methods. Based
on high-accuracy and large-scale calculations, supplemented
by a finite-size scaling analysis, we showed that the true
thermodynamic ground state is a U(1) Dirac spin liquid
for a wide span of breathing anisotropies, starting from
(and including) the isotropic point J�/J� = 1 down to large
anisotropies J�/J� ≈ 0.25. Our findings concerning the re-
markable stability, robustness, and extent of the U(1) Dirac
spin liquid are in excellent agreement with those from a recent
DMRG study [43]. The results are of direct relevance to the
breathing kagome material vanadium oxyfluoride DQVOF, as
the strength of breathing anisotropy estimated using series
expansion is J�/J� = 0.55(4) [39], which securely places

DQVOF inside the regime of stability of the U(1) Dirac state.
Our results are thus consistent with the gapless spin liquid
behavior observed in spin-lattice (T1) measurements [39] and
lend support to the view that spin liquid behavior observed in
DQVOF is likely to be intrinsic to the breathing kagome lattice.
In addition, our results would suggest that couplings between
the S = 1/2 V4+ ions within the breathing kagome planes to
the interlayer S = 1 V3+ ions is not a necessary ingredient to
generate spin liquid behavior.

In the regime of strong breathing anisotropy J� � J�, we
revealed the presence of a phase transition whereby the U(1)
Dirac spin liquid undergoes a dimer instability and gives way
to a VBC ground state for J�/J� � 0.25. This finding is at
variance with that from DMRG [43], which claimed a pure
lattice-nematic state that preserves translations. Nonetheless,
the remarkable agreement between the conclusions obtained
from variational Monte Carlo and DMRG on the nature and
extent of the ground state in a wide span of parameter space
represents a milestone which hitherto could not be foreseen.
It also highlights the quantitative and qualitative accuracy of
projected fermionic wave functions (while only involving a
few parameters) for spin models hosting a spin liquid ground
state.

ACKNOWLEDGMENTS

We thank M. Mambrini and F. Mila for helpful discus-
sions. We acknowledge the kind hospitality and stimulating
environment of the Centro de Ciencias de Benasque Pedro
Pascual, Benasque, during the workshop “Entanglement in
Strongly Correlated Systems” where this project was initiated.
Y.I. and R.T. gratefully acknowledge the Gauss Centre for
Supercomputing e.V. for funding this project by providing
computing time on the GCS Supercomputer SuperMUC at
Leibniz Supercomputing Centre (LRZ). D.P. acknowledges
support from the French Research Council (ANR) under the
NQPTP ANR-0406-01 grant and CALMIP (Toulouse) for
CPU time on the EOS Supercomputer. R.T. acknowledges
support through ERC-StG-TOPOLECTRICS-336012, DFG
SFB 1170, and DFG SPP 1666.

[1] I. Pomeranchuk, Zh. Eksp. Teor. Fiz. 11, 226 (1941).
[2] L. Balents, Nature (London) 464, 199 (2010).
[3] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017).
[4] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003

(2017).
[5] C. Zeng and V. Elser, Phys. Rev. B 42, 8436 (1990).
[6] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[7] P. Lecheminant, B. Bernu, C. Lhuillier, L. Pierre, and P. Sindz-

ingre, Phys. Rev. B 56, 2521 (1997).
[8] M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera,

J. Am. Chem. Soc. 127, 13462 (2005).
[9] P. Mendels, F. Bert, M. A. de Vries, A. Olariu, A. Harrison, F.

Duc, J. C. Trombe, J. S. Lord, A. Amato, and C. Baines, Phys.
Rev. Lett. 98, 077204 (2007).

[10] J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett,
Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung, D. G.
Nocera, and Y. S. Lee, Phys. Rev. Lett. 98, 107204 (2007).

[11] R. Suttner, C. Platt, J. Reuther, and R. Thomale, Phys. Rev. B
89, 020408 (2014).

[12] A. Olariu, P. Mendels, F. Bert, F. Duc, J. C. Trombe,
M. A. de Vries, and A. Harrison, Phys. Rev. Lett. 100, 087202
(2008).

[13] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-
Rivera, C. Broholm, and Y. S. Lee, Nature (London) 492, 406
(2012).

[14] M. Fu, T. Imai, T.-H. Han, and Y. S. Lee, Science 350, 655
(2015).

[15] H. C. Jiang, Z. Y. Weng, and D. N. Sheng, Phys. Rev. Lett. 101,
117203 (2008).

[16] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
[17] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys. Rev.

Lett. 109, 067201 (2012).
[18] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett.

98, 117205 (2007).

115127-7

https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/PhysRevB.42.8436
https://doi.org/10.1103/PhysRevB.42.8436
https://doi.org/10.1103/PhysRevB.42.8436
https://doi.org/10.1103/PhysRevB.42.8436
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.56.2521
https://doi.org/10.1103/PhysRevB.56.2521
https://doi.org/10.1103/PhysRevB.56.2521
https://doi.org/10.1103/PhysRevB.56.2521
https://doi.org/10.1021/ja053891p
https://doi.org/10.1021/ja053891p
https://doi.org/10.1021/ja053891p
https://doi.org/10.1021/ja053891p
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevLett.98.107204
https://doi.org/10.1103/PhysRevB.89.020408
https://doi.org/10.1103/PhysRevB.89.020408
https://doi.org/10.1103/PhysRevB.89.020408
https://doi.org/10.1103/PhysRevB.89.020408
https://doi.org/10.1103/PhysRevLett.100.087202
https://doi.org/10.1103/PhysRevLett.100.087202
https://doi.org/10.1103/PhysRevLett.100.087202
https://doi.org/10.1103/PhysRevLett.100.087202
https://doi.org/10.1038/nature11659
https://doi.org/10.1038/nature11659
https://doi.org/10.1038/nature11659
https://doi.org/10.1038/nature11659
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1126/science.aab2120
https://doi.org/10.1103/PhysRevLett.101.117203
https://doi.org/10.1103/PhysRevLett.101.117203
https://doi.org/10.1103/PhysRevLett.101.117203
https://doi.org/10.1103/PhysRevLett.101.117203
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevLett.98.117205
https://doi.org/10.1103/PhysRevLett.98.117205


IQBAL, POILBLANC, THOMALE, AND BECCA PHYSICAL REVIEW B 97, 115127 (2018)

[19] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B 87,
060405 (2013).

[20] Y. Iqbal, D. Poilblanc, and F. Becca, Phys. Rev. B 89, 020407
(2014).

[21] Y. Iqbal, D. Poilblanc, and F. Becca, Phys. Rev. B 91, 020402
(2015).

[22] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Phys.
Rev. X 7, 031020 (2017).

[23] W. Zhu, X. Chen, Y.-C. He, and W. Witczak-Krempa,
arXiv:1801.06177.

[24] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang,
B. Normand, and T. Xiang, Phys. Rev. Lett. 118, 137202 (2017).

[25] F. Bert, D. Bono, P. Mendels, F. Ladieu, F. Duc, J.-C. Trombe,
and P. Millet, Phys. Rev. Lett. 95, 087203 (2005).

[26] T. Yavors’kii, W. Apel, and H.-U. Everts, Phys. Rev. B 76,
064430 (2007).

[27] F. Wang, A. Vishwanath, and Y. B. Kim, Phys. Rev. B 76, 094421
(2007).

[28] M. Yoshida, M. Takigawa, H. Yoshida, Y. Okamoto, and Z. Hiroi,
Phys. Rev. Lett. 103, 077207 (2009).

[29] O. Janson, J. Richter, P. Sindzingre, and H. Rosner, Phys. Rev.
B 82, 104434 (2010).

[30] G. J. Nilsen, F. C. Coomer, M. A. de Vries, J. R. Stewart, P. P.
Deen, A. Harrison, and H. M. Rønnow, Phys. Rev. B 84, 172401
(2011).

[31] O. Janson, S. Furukawa, T. Momoi, P. Sindzingre, J. Richter, and
K. Held, Phys. Rev. Lett. 117, 037206 (2016).

[32] L. E. Chern, K. Hwang, T. Mizoguchi, Y. Huh, and Y. B. Kim,
Phys. Rev. B 96, 035118 (2017).

[33] L. E. Chern, R. Schaffer, S. Sorn, and Y. B. Kim, Phys. Rev. B
96, 165117 (2017).

[34] F. H. Aidoudi, D. W. Aldous, R. J. Goff, A. M. Z. Slawin,
J. P. Attfield, R. E. Morris, and P. Lightfoot, Nat. Chem. 3, 801
(2011).

[35] Y. Okamoto, G. J. Nilsen, J. P. Attfield, and Z. Hiroi, Phys. Rev.
Lett. 110, 097203 (2013).

[36] K. Essafi, L. D. C. Jaubert, and M. Udagawa, J. Phys.: Condens.
Matter 29, 315802 (2017).

[37] F. Mila, Phys. Rev. Lett. 81, 2356 (1998).
[38] M. Mambrini and F. Mila, Eur. Phys. J. B 17, 651 (2000).
[39] J.-C. Orain, B. Bernu, P. Mendels, L. Clark, F. H. Aidoudi, P.

Lightfoot, R. E. Morris, and F. Bert, Phys. Rev. Lett. 118, 237203
(2017).

[40] J. C. Orain, L. Clark, F. Bert, P. Mendels, P. Attfield, F. H.
Aidoudi, R. E. Morris, P. Lightfoot, A. Amato, and C. Baines,
J. Phys.: Conf. Ser. 551, 012004 (2014).

[41] L. Clark, J. C. Orain, F. Bert, M. A. De Vries, F. H. Aidoudi, R. E.
Morris, P. Lightfoot, J. S. Lord, M. T. F. Telling, P. Bonville, J.
P. Attfield, P. Mendels, and A. Harrison, Phys. Rev. Lett. 110,
207208 (2013).

[42] R. Schaffer, Y. Huh, K. Hwang, and Y. B. Kim, Phys. Rev. B 95,
054410 (2017).

[43] C. Repellin, Y.-C. He, and F. Pollmann, Phys. Rev. B 96, 205124
(2017).

[44] A. A. Abrikosov, Physics 2, 5 (1965).
[45] Y.-M. Lu, Y. Ran, and P. A. Lee, Phys. Rev. B 83, 224413

(2011).
[46] F. Becca and S. Sorella, Quantum Monte Carlo Approaches for

Correlated Systems (Cambridge University Press, Cambridge,
UK, 2017).

[47] S. Sorella, Phys. Rev. B 71, 241103 (2005).
[48] Y. Iqbal, F. Becca, and D. Poilblanc, Phys. Rev. B 84, 020407

(2011).
[49] F. Becca, W.-J. Hu, Y. Iqbal, A. Parola, D. Poilblanc, and S.

Sorella, J. Phys.: Conf. Ser. 640, 012039 (2015).
[50] We have employed a quadratic fit with relative weighting by

1/X2, which weights the points at the left part of the graph
more than points to the right. Hence the nonlinear regres-
sion minimizes the quantity

∑
(Ydata − Ycurve)2/X2

curve instead
of

∑
(Ydata − Ycurve)2. The choice of the weight factor 1/X2 is

determined by the fact that it minimizes the sum of the absolute
values of the relative errors.

[51] F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066.
[52] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev.

Lett. 98, 140506 (2007).
[53] N. Schuch, D. Poilblanc, J. I. Cirac, and D. Pérez-García, Phys.

Rev. B 86, 115108 (2012).
[54] P. Anderson, Mater. Res. Bull. 8, 153 (1973).
[55] D. Poilblanc, N. Schuch, D. Pérez-García, and J. I. Cirac, Phys.

Rev. B 86, 014404 (2012).
[56] F. Yang and H. Yao, Phys. Rev. Lett. 109, 147209 (2012).
[57] D. Poilblanc and N. Schuch, Phys. Rev. B 87, 140407

(2013).
[58] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.97.115127 for the tables of energies of
competing states.

[59] Y. Iqbal, D. Poilblanc, and F. Becca, arXiv:1606.02255.
[60] T. Li, arXiv:1601.02165.
[61] Y. Iqbal, F. Becca, and D. Poilblanc, New J. Phys. 14, 115031

(2012).
[62] Y. Iqbal, F. Becca, and D. Poilblanc, Phys. Rev. B 83, 100404

(2011).

115127-8

https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.89.020407
https://doi.org/10.1103/PhysRevB.89.020407
https://doi.org/10.1103/PhysRevB.89.020407
https://doi.org/10.1103/PhysRevB.89.020407
https://doi.org/10.1103/PhysRevB.91.020402
https://doi.org/10.1103/PhysRevB.91.020402
https://doi.org/10.1103/PhysRevB.91.020402
https://doi.org/10.1103/PhysRevB.91.020402
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevX.7.031020
http://arxiv.org/abs/arXiv:1801.06177
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevLett.95.087203
https://doi.org/10.1103/PhysRevLett.95.087203
https://doi.org/10.1103/PhysRevLett.95.087203
https://doi.org/10.1103/PhysRevLett.95.087203
https://doi.org/10.1103/PhysRevB.76.064430
https://doi.org/10.1103/PhysRevB.76.064430
https://doi.org/10.1103/PhysRevB.76.064430
https://doi.org/10.1103/PhysRevB.76.064430
https://doi.org/10.1103/PhysRevB.76.094421
https://doi.org/10.1103/PhysRevB.76.094421
https://doi.org/10.1103/PhysRevB.76.094421
https://doi.org/10.1103/PhysRevB.76.094421
https://doi.org/10.1103/PhysRevLett.103.077207
https://doi.org/10.1103/PhysRevLett.103.077207
https://doi.org/10.1103/PhysRevLett.103.077207
https://doi.org/10.1103/PhysRevLett.103.077207
https://doi.org/10.1103/PhysRevB.82.104434
https://doi.org/10.1103/PhysRevB.82.104434
https://doi.org/10.1103/PhysRevB.82.104434
https://doi.org/10.1103/PhysRevB.82.104434
https://doi.org/10.1103/PhysRevB.84.172401
https://doi.org/10.1103/PhysRevB.84.172401
https://doi.org/10.1103/PhysRevB.84.172401
https://doi.org/10.1103/PhysRevB.84.172401
https://doi.org/10.1103/PhysRevLett.117.037206
https://doi.org/10.1103/PhysRevLett.117.037206
https://doi.org/10.1103/PhysRevLett.117.037206
https://doi.org/10.1103/PhysRevLett.117.037206
https://doi.org/10.1103/PhysRevB.96.035118
https://doi.org/10.1103/PhysRevB.96.035118
https://doi.org/10.1103/PhysRevB.96.035118
https://doi.org/10.1103/PhysRevB.96.035118
https://doi.org/10.1103/PhysRevB.96.165117
https://doi.org/10.1103/PhysRevB.96.165117
https://doi.org/10.1103/PhysRevB.96.165117
https://doi.org/10.1103/PhysRevB.96.165117
https://doi.org/10.1038/nchem.1129
https://doi.org/10.1038/nchem.1129
https://doi.org/10.1038/nchem.1129
https://doi.org/10.1038/nchem.1129
https://doi.org/10.1103/PhysRevLett.110.097203
https://doi.org/10.1103/PhysRevLett.110.097203
https://doi.org/10.1103/PhysRevLett.110.097203
https://doi.org/10.1103/PhysRevLett.110.097203
https://doi.org/10.1088/1361-648X/aa782f
https://doi.org/10.1088/1361-648X/aa782f
https://doi.org/10.1088/1361-648X/aa782f
https://doi.org/10.1088/1361-648X/aa782f
https://doi.org/10.1103/PhysRevLett.81.2356
https://doi.org/10.1103/PhysRevLett.81.2356
https://doi.org/10.1103/PhysRevLett.81.2356
https://doi.org/10.1103/PhysRevLett.81.2356
https://doi.org/10.1007/PL00011071
https://doi.org/10.1007/PL00011071
https://doi.org/10.1007/PL00011071
https://doi.org/10.1007/PL00011071
https://doi.org/10.1103/PhysRevLett.118.237203
https://doi.org/10.1103/PhysRevLett.118.237203
https://doi.org/10.1103/PhysRevLett.118.237203
https://doi.org/10.1103/PhysRevLett.118.237203
https://doi.org/10.1088/1742-6596/551/1/012004
https://doi.org/10.1088/1742-6596/551/1/012004
https://doi.org/10.1088/1742-6596/551/1/012004
https://doi.org/10.1088/1742-6596/551/1/012004
https://doi.org/10.1103/PhysRevLett.110.207208
https://doi.org/10.1103/PhysRevLett.110.207208
https://doi.org/10.1103/PhysRevLett.110.207208
https://doi.org/10.1103/PhysRevLett.110.207208
https://doi.org/10.1103/PhysRevB.95.054410
https://doi.org/10.1103/PhysRevB.95.054410
https://doi.org/10.1103/PhysRevB.95.054410
https://doi.org/10.1103/PhysRevB.95.054410
https://doi.org/10.1103/PhysRevB.96.205124
https://doi.org/10.1103/PhysRevB.96.205124
https://doi.org/10.1103/PhysRevB.96.205124
https://doi.org/10.1103/PhysRevB.96.205124
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.5
https://doi.org/10.1103/PhysRevB.83.224413
https://doi.org/10.1103/PhysRevB.83.224413
https://doi.org/10.1103/PhysRevB.83.224413
https://doi.org/10.1103/PhysRevB.83.224413
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.84.020407
https://doi.org/10.1103/PhysRevB.84.020407
https://doi.org/10.1103/PhysRevB.84.020407
https://doi.org/10.1103/PhysRevB.84.020407
https://doi.org/10.1088/1742-6596/640/1/012039
https://doi.org/10.1088/1742-6596/640/1/012039
https://doi.org/10.1088/1742-6596/640/1/012039
https://doi.org/10.1088/1742-6596/640/1/012039
http://arxiv.org/abs/arXiv:cond-mat/0407066
https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/10.1103/PhysRevB.86.115108
https://doi.org/10.1103/PhysRevB.86.115108
https://doi.org/10.1103/PhysRevB.86.115108
https://doi.org/10.1103/PhysRevB.86.115108
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1103/PhysRevB.86.014404
https://doi.org/10.1103/PhysRevB.86.014404
https://doi.org/10.1103/PhysRevB.86.014404
https://doi.org/10.1103/PhysRevB.86.014404
https://doi.org/10.1103/PhysRevLett.109.147209
https://doi.org/10.1103/PhysRevLett.109.147209
https://doi.org/10.1103/PhysRevLett.109.147209
https://doi.org/10.1103/PhysRevLett.109.147209
https://doi.org/10.1103/PhysRevB.87.140407
https://doi.org/10.1103/PhysRevB.87.140407
https://doi.org/10.1103/PhysRevB.87.140407
https://doi.org/10.1103/PhysRevB.87.140407
http://link.aps.org/supplemental/10.1103/PhysRevB.97.115127
http://arxiv.org/abs/arXiv:1606.02255
http://arxiv.org/abs/arXiv:1601.02165
https://doi.org/10.1088/1367-2630/14/11/115031
https://doi.org/10.1088/1367-2630/14/11/115031
https://doi.org/10.1088/1367-2630/14/11/115031
https://doi.org/10.1088/1367-2630/14/11/115031
https://doi.org/10.1103/PhysRevB.83.100404
https://doi.org/10.1103/PhysRevB.83.100404
https://doi.org/10.1103/PhysRevB.83.100404
https://doi.org/10.1103/PhysRevB.83.100404



