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Nodal surface semimetals: Theory and material realization
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We theoretically study the three-dimensional topological semimetals with nodal surfaces protected by
crystalline symmetries. Different from the well-known nodal-point and nodal-line semimetals, in these materials,
the conduction and valence bands cross on closed nodal surfaces in the Brillouin zone. We propose different
classes of nodal surfaces, both in the absence and in the presence of spin-orbit coupling (SOC). In the absence
of SOC, a class of nodal surfaces can be protected by space-time inversion symmetry and sublattice symmetry
and characterized by a Z2 index, while another class of nodal surfaces are guaranteed by a combination of
nonsymmorphic twofold screw-rotational symmetry and time-reversal symmetry. We show that the inclusion
of SOC will destroy the former class of nodal surfaces but may preserve the latter provided that the inversion
symmetry is broken. We further generalize the result to magnetically ordered systems and show that protected
nodal surfaces can also exist in magnetic materials without and with SOC, given that certain magnetic group
symmetry requirements are satisfied. Several concrete nodal-surface material examples are predicted via the
first-principles calculations. The possibility of multi-nodal-surface materials is discussed.
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I. INTRODUCTION

Topological states of matter have been attracting great
interest in recent physics research. Inspired by the previous
studies on topological insulators [1–3], the research focus is
now shifted towards topological semimetals [4–7]. In these
materials, the electronic band structures possess nontrivial
topology and/or symmetry-protected band crossings close to
the Fermi level, such that the low-energy electrons behave dras-
tically different from the usual Schrödinger-type fermions. For
example, in Weyl-Dirac semimetals [7–10], the conduction and
valence bands cross linearly at isolated k points, around which
the electrons resemble the massless Weyl-Dirac fermions from
the standard model, making it possible to simulate intriguing
high-energy and relativistic physics phenomena in table-top
experiments [11–13].

The nontrivial band crossings can be classified based on
their dimensionalities. The crossings in the aforementioned
Dirac-Weyl semimetals are isolated zero-dimensional (0D)
points. Materials with 1D band crossings, known as nodal-line
semimetals, have also been proposed and intensively studied in
recent works [14–21]. For 3D materials, there is one remaining
possibility: The band crossings may form a 2D nodal surface,
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namely each point on the surface is a crossing point between
two bands whose dispersions are linear along the surface
normal direction. Although both are 2D manifolds in the 3D
Brillouin zone (BZ), we stress that the nodal surface is distinct
from the ordinary Fermi surface, because the coarse-grained
quasiparticles excited from a nodal surface have an intrinsic
pseudospin degrees of freedom (representing the two cross-
ing bands) [22], behaving effectively as 1D massless Dirac
fermions along the surface normal direction, and therefore may
have interesting physical properties. In addition, in contrast to
the ordinary Fermi surface as a sphere, each nodal surface
identified in this article is a torus with opposite edges attached
on the periodic boundaries of the BZ.

To date, such nodal-surface semimetals (NSSMs) have only
appeared in a few scattered theoretical studies. In Ref. [22],
Zhong et al. proposed a family of stable graphene network
materials, each exhibiting a pair of nodal surfaces close to the
Fermi energy. Liang et al. [23] studied the hexagonal BaMX3

(M = V, Nb, or Ta; X = S or Se) and found a single nodal
surface in these materials when the spin-orbit coupling (SOC)
can be neglected. From symmetry and topology analysis,
Bzdušek and Sigrist discussed the possibility to stabilize nodal
surfaces in centrosymmetric systems [24]. More recently, the
nodal surface similar to Ref. [23] was predicted for a proposed
acoustic metamaterial [25], and the stability of nodal surfaces
against perturbations was theoretically investigated [26]. Ad-
mittedly, our current understanding of NSSMs is still at the
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primitive stage with several important issues to be addressed.
First, the nodal surfaces in the carbon allotropes were found
through first-principles calculations, but its topological origin
has not been clearly elucidated. Second, given that the nodal
surfaces in the aforementioned works are all vulnerable against
SOC, is it possible to have nodal surfaces robust under SOC?
This important question is still waiting to be answered. Third,
the carbon allotropes in Ref. [22] have yet to be synthesized,
while the nodal surfaces in BaVS3 [23] can only be maintained
in the room-temperature structural phase. It is thus important
to search for more realistic material candidates to facilitate the
experimental investigation on NSSMs.

Motivated by the above questions and issues, in this work,
we present a theoretical study of the 3D NSSMs both in
the absence and in the presence of SOC. In the absence of
SOC, we propose two different classes of symmetry-protected
nodal surfaces corresponding to the two materials studied
in Refs. [22,23]. The first class of the nodal surfaces (as
those in the graphene networks) are protected by space-
time inversion symmetry and sublattice symmetry and are
characterized by a Z2 topological index. The second class of
nodal surfaces are guaranteed by a combination of twofold
screw-rotational symmetry and time-reversal symmetry. After
the inclusion of SOC, the former class of nodal surfaces is
destroyed generically, but the latter can still be protected with
the requirement that the space-time inversion symmetry is
violated. Furthermore, it is found that both in the absence and
in the presence of SOC, the protection in the latter case persists
even in the presence of magnetic orders perpendicular to the
screw axis, where, although time reversal symmetry is violated,
the system is still invariant under the combination of screw
rotation and time reversal. Via first-principles calculations,
we identify several candidate NSSM materials with relatively
clean low-energy band structures, which support the theo-
retical analysis in this paper and will facilitate experimental
studies on the novel physical properties associated with nodal
surfaces.

It is noteworthy that the band structures of the two classes
are essentially different due to their qualitatively distinct
origins. Nodal surfaces in the first classes have the nontrivial
Z2 topological charge, and therefore appear in pairs in the
BZ conforming the Nielsen-Ninomiya no-go theorem [27,28],
while those in the second class mainly due to the twofold
nonsymmorphic symmetry exist alone in the BZ, for which
the topological essence was revealed in Ref. [29]. Particularly,
each degenerate point on such a nodal surface belong to a
twisted band structure analogous to the Möbius strip [29], and
the band structure as a whole is equivalent to a collection of
Mobius strip parametrized by a torus (a 2D sub-BZ perpendic-
ular to the screw axis).

This paper is organized as follows. In Sec. II, we discuss the
two classes of nodal surfaces in the absence of SOC. In Sec. III,
we propose nodal surfaces that can be protected in the presence
of SOC. In Sec. IV, we generalize the discussion to magnet-
ically ordered systems, predicting nodal surfaces in magnetic
materials. In each section, we present corresponding material
examples with band structures obtained from first-principles
calculations. The details of our first-principles methods are
presented in the Appendix. Discussion and conclusion are
presented in Sec. V.

II. NODAL SURFACE IN THE ABSENCE OF SOC

A. Nodal surface with Z2 topological charge

Let us start with the first class (class I) of nodal surfaces,
which require space-time inversion symmetry PT with the
relation (PT )2 = 1 and sublattice symmetry S . Here P and T
denote space inversion and time reversal, respectively, and the
sublattice symmetry S satisfies the anticommutation relation
with the Hamiltonian: {S,H(k)} = 0. It is required thatPT and
S are mutually independent, namely [PT ,S] = 0. The relation
of (PT )2 = 1 can be realized by particles with integer spin,
such as photonic crystals or phonons of mechanical systems
and certain cold-atom systems and by electronic systems
with negligible SOC, such as the carbon allotropes studied in
Ref. [22]. In Ref. [22], the symmetry-topology aspect was not
fully exposed and will be our focus in the following discussion.

We now address the Z2 topological classification of the
class-I nodal surfaces under the constraint of PT and S
symmetries [24,30]. Since both P and T inverse k, PT
operates trivially in momentum space. As P is unitary but
T antiunitary, we can choose the representation in momentum
space that PT = K, which is unique up to a unitary trans-
formation. Here K is the complex conjugation. Therefore, a
PT -symmetric HamiltonianH(k) is real in this representation.
On the other hand, if S is represented by S = σz ⊗ 1N ,
where σz is the third Pauli matrix and 1N the N × N identity
matrix with N being the number of valence bands, then the
Hamiltonian H(k) takes the block antidiagonal form, i.e.,
H(k) = antidiag[Q(k),Q†(k)] [30]. Because of [PT ,S] = 0,
Q(k) can always be converted to a real matrix by a uni-
tary transformation. Thus, for any gapped momentum k, the
Hamiltonian H(k) (after being flattened) can be topologically
regarded as a point in the space O(N ) (with the assumption
N � 2), which is exactly the Hamiltonian space for the class
BDI among the 10 Altland-Zirnbauer (AZ) symmetry classes
[31,32]. The space of O(N ) has two disconnected components,
namely π0[O(N )] = Z2, and the sign of the determinant of
Q(k) specifies which component H(k) belongs to.

In the framework of topological classification of nodal
surfaces, the spatial codimension of nodal surfaces in three
dimensions is zero, namely a 0D sphere S0 consisting of
two points is chosen to surround a nodal surface in 3D BZ
from its transverse dimensions [12,33]. We now consider two
gapped points k1,2 with sgn[DetQ(k1,2)] = ±1, respectively.
Then, any path connecting the two points in momentum space
has to pass through at least a band-crossing point k0 with
DetQ(k0) = 0 as a result of the mean value theorem, and
the band-crossing point has a twofold degeneracy, which is
of topological stability once PT and S are preserved. These
twofold degenerate band-crossing points generically spread
out a compact nodal surface in momentum space, namely a
class-I nodal surface, which accordingly has a nontrivially Z2

topological charge.
The class-I nodal surface can be realized by the carbon

allotropes, which has been studied in Ref. [22] with other em-
phases. This family of materials share both P and T symmetry
with negligible SOC and therefore have the desired PT sym-
metry with (PT )2 = 1. The chiral symmetry S also emerges
in the low-energy effective theory by appropriately tuning the
chemical potential of each site. To be concrete, we take one
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FIG. 1. (a) Lattice structure and (b) unit cell of the carbon
allotrope QGN(1,2). (a) A 2 × 2 × 2 supercell, in which the unit
cell is marked by the black box. In (b), the red-colored carbon
atoms have a sp2 hybridization character (which are labeled from
site 1 to site 8), whereas the blue-colored carbon atoms have a sp3

hybridization character. (c) Corresponding Brillouin zone, where the
two nodal surfaces are schematically shown by the shaded surfaces.
(d) Calculated band structure for QGN(1,2) without SOC.

particular example in this family, namely QGN(1,2), where
QGN stands for the quadrilateral graphene network, as shown
in Fig. 1. The crystal structure of QGN(1,2) has the space
group symmetry of P 42/mmc (No. 131). Its unit cell contains
two kinds of graphene nanorbbon-like structural motifs: The
edge atoms show a strong sp3 hybridization character, whereas
the remaining atoms exhibit sp2 hybridization character and
form four zigzag chains running along the c axis. From atomic
orbital projection, one finds that the low-energy states are
dominated by theπ orbitals on the eight sp2 carbon atomic sites
which are marked in red color in Fig. 1(b). Thus, it is emerged
a sublattice symmetry in low-energy regime, which relates
electrons at odd sites to holes at their even nearest neighbors
and vice versa (see the detailed discussion below), given that
the chemical potential is appropriately tuned for each orbital.

The band structure of QGN(1,2) obtained from the first-
principles calculations is plotted in Fig. 1(d). The band struc-
tures with and without SOC have little difference, due to the
negligible SOC strength of carbon atoms. One observes the
linear-type band crossing along the �-Z and the M-A paths.
As mentioned in Ref. [22], these crossing points form nodal
surfaces and there is a pair of such surfaces related by T or P
in the BZ, as illustrated in Fig. 1(c). Each point on the surfaces
is a linear crossing point between two bands along the surface
normal direction (approximately the kz direction). And either
nodal surface is quite flat with very small energy variation and
is close to the Fermi level.

To reveal the topological nature of the class-I nodal surface
of QGN(1,2), we first work out the tight-binding (TB) model
corresponding to its low-energy physics. At low energies, the
two crossing bands are dominated by the π orbitals from the

eight sp2 carbon atoms in a unit cell, which are numbered
clockwisely from 1 to 8 as shown in Fig. 1(b), and the eight-
band TB model H(k) is explicitly given in Appendix A. The
sublattice symmetry S relates ci to c

†
i+1 with i = 1,3,5,7, and

therefore is represented as S = 14 ⊗ σz. Here and hereafter,
we express the 8 × 8 matrices using the Kronecker products
of the Pauli matrices (σi , τi) and the identity matrices. The
chiral symmetry operator can be converted to S̃ = σz ⊗ 14 by
the unitary transformation U� that exchanges c2 and c7 as well
as c4 and c5, so that the transformed Hamiltonian is block
diagonalized with the upper right block denoted by A(k). The
operators are now ordered as c = (c1,c7,c3,c5,c4,c6,c2,c8)T .
From Fig. 1(b), P maps c1 to c5, c3 to c7 for odd orbitals, and
c2 to c6, c4 to c8 for even orbitals, namely P = 12 ⊗ (σx ⊗ τx)
with τx being the first Pauli matrix. Since T is simply complex
conjugation, it is found that PT = 12 ⊗ σx ⊗ τxK, which
commutes with S̃ . The relation (PT )2 = 1 implies there
exists a unitary transformation converting PT to ˜PT = K,
which turns out to be UPT = 12 ⊗ ei π

4 σx⊗τx . After this unitary
transformation, the upper right block A(k) becomes a real
matrix Q(k). Now theZ2 topological charge of a nodal surface
can be defined as

ν = (sgnDet[Q(k1)] − sgnDet[Q(k2)])/2 mod 2, (1)

where k1,2 are two points on two sides of the nodal surface,
respectively. It is verified in Appendix A that both nodal
surfaces illustrated in Fig. 1(c) have the nontrivial topological
charge.

We have two remarks before proceeding. First, in Ref. [24],
Bzdušek and Sigrist developed a theory for the centrosymmet-
ric extension of the 10 AZ classes. The example discussed here
would fit into the BDI class discussed in their work. Second,
the similar S symmetry (known as the chiral symmetry) also
naturally emerge in the low-energy excitation spectrum for
superconductors. Hence, nodal surfaces may also appear in
certain centrosymmetric superconductors, like that discussed
in Refs. [24,34].

B. Essential nodal surface dictated by nonsymmorphic
symmetry

Next, we consider the second class (class-II) of nodal
surfaces existing in the absence of SOC. Such surface is a
result of the combination of a twofold screw symmetry and
time reversal symmetry. It is essential in the sense that its
presence and location are solely dictated by the symmetries,
as we discuss below.

Consider the twofold screw rotation S2z : (x,y,z) →
(−x, − y,z + 1

2 ), which is a nonsymmorphic symmetry in-
volving a half translation along the rotation axis. In momen-
tum space S2z inverses kx and ky and preserves kz. Without
SOC, one finds that (S2z)2 = T001 = e−ikz , where T001 is the
translation along the z direction by a lattice constant. T is
antiunitary and inverses k with the relation T 2 = 1. Thus, the
combination T S2z is antiunitary and only inverses kz. Since
[T ,S2z] = 0, T S2z satisfies

(T S2z)
2 = e−ikz . (2)

We now regard the system under consideration as a collec-
tion of 1D kz subsystems parametrized by (kx,ky). Each 1D
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subsystem with given (kx,ky) effectively has the same nonsym-
morphic magnetic symmetry T S2z with the relation (2). Hence
for a two-band theory, it has a twisted band structure of Möbius
strip with a single band crossing at the boundary of the 1D sub-
BZ, which is enforced by the topological nature of the twofold
nonsymmorphic symmetry, as shown in Refs. [29,35,36],
where the momentum-dependent symmetry operator is also
associated with a unit winding number. The Möbius-strip type
band structure has a nontrivial Z2 topological charge, which
means that, given the symmetry being preserved, a single band
crossing is topologically stable and can only be gapped in pair
in four-band theories [29]. Since a linear crossing point exists
for every 1D subsystem (kx,ky) at the sub-BZ boundary, the
collection of crossings form a nodal surface on the boundary
plane of the 3D BZ with kz = π .

The crossings on the surface can also be understood as a
result of the Kramers degeneracy. One notes that any point on
the kz = π plane is invariant under T S2z, but from Eq. (2), the
antiunitary symmetry satisfies

(T S2z)
2 = −1 (3)

on the whole plane. Thus, the twofold Kramers degeneracy
arises at every point on the plane. This degeneracy is generi-
cally lifted away from this plane due to the loss of symmetry
protection, so that a nodal surface is formed at the kz = π

plane. The above argument was presented in Ref. [23], where
BaVS3 was identified as a candidate material with this type of
nodal surfaces.

As we have mentioned, the condition for the presence of the
class-I nodal surface is quite stringent: Besides the symmetries
PT and S , its appearance also requires regions in BZ with
inverted band orderings (different Z2 indices). In contrast, the
presence of the class-II nodal surface discussed here is solely
guaranteed by symmetry (hence can be regarded as an essential
band crossing), and its location is fixed at kz = π (if the screw
axis is along z). This makes it easier for search for candidate
materials by analyzing the space groups.

We emphasize that although the existence of class-II nodal
surface is determined by symmetry, its energy is not determined
and depends on the specific material. In addition, there could be
strong energy variation from point to point on the nodal surface.
In order for the nodal surface to manifest in physical properties,
a “good” candidate NSSM needs to satisfy the following
requirements: (i) the nodal surface should have relatively small
energy variation, (ii) its energy should be close to Fermi level,
and (iii) it is desired that no other extraneous band is present
at low energy.

Here we identify example materials which possess the
class-II nodal surfaces. The first example is the compound
K6YO4 with the structure in the space group P 63mc (No.
186), as illustrated in Fig. 2(a). This material is predicted in
Materials Project [37]. In the crystal structure, each yttrium
atom is surrounded by a tetrahedron of O atoms and is located
at the 2b positions: ( 1

2 , 2
3 ,u) and ( 2

3 , 1
3 ,u + 1

2 ) with u = 0.239,
while the K atoms fill the space between the tetrahedra, forming
two types of triangles with different sizes. The material is
nonmagnetic and has a twofold screw axis along the z direction
exists, hence the condition for a class-II nodal surface is
satisfied. To be noted, the material does not have the inversion
symmetry.

FIG. 2. (a) Crystal structure of K6YO4 and (b) the corresponding
Brillouin zone. In (b), R and E are the midpoints of the paths A-L and
�-M, respectively. (c) Band structure of K6YO4 without SOC. The
red arrows indicate the band degeneracy along the paths on the nodal
surface.

The calculated band structure of K6YO4 in the absence of
SOC is displayed in Fig. 2(c). Since the material is composed
of light elements, the SOC has negligible effect on the band
structure, which has been checked by our density functional
theory (DFT) calculation. From the result, one observes that a
nodal surface is indeed present in the kz = π plane, where the
two low-energy bands cross linearly. In Fig. 2(c), we purposely
show the dispersion along a generic k-path E-R, which is not
a high-symmetry path [see Fig. 2(b)] and on which the linear
crossing can be clearly observed. This is in agreement with the
above argument that the antiunitary symmetryT S2z guarantees
a nodal surface at the kz = π plane. In addition, the energy
variation of the nodal surface at the kz = π plane is small
(<0.2 eV), the linear dispersion range is relatively large (above
0.5 eV), and there is no other extraneous band close to the Fermi
level. These features are desired for a NSSM.

The second example is a family of materials with the
formula AMo3X3, where A = (Na, K, Rb, In, Tl) and X = (S,
Se, Te). These AMo3X3 compounds have been synthesized in
experiment [38,39]. They share the same crystalline structure
with the space group P 63/m (No. 176), as shown in Figs. 3(a)
and 3(b). The structure features close-packed one-dimensional
[Mo3X3] columns, consisting of face-sharing Mo6 octahedra
surrounded by X atoms. The [Mo3X3] columns are oriented
along the z direction, arranged in a trigonal lattice in the x-y
plane and related to each other by a screw rotation. The A atoms
are intercalated in the large holes between the columns. The
space group contains the S2z and T symmetries. And it should
be noted that the structure preserves the inversion symmetryP .
This point will be important for the later discussion in Sec. III
when we deal with the case with SOC included.

Let us consider one specific example RbMo3S3 in this
family, for which the effect of SOC on the low-energy bands
is small. The calculated band structure for RbMo3S3 in the
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FIG. 3. (a) Perspective view and (b) top view of the crystal
structure of the AMo3X3 family materials, where A = (Na, K, Rb,
In, Tl) and X = (S, Se, Te). The insert in (b) shows the face-sharing
Mo6 octahedra chains. (c) Band structure of RbMo3S3 without SOC.
The red arrows indicate the band degeneracy along the paths on the
nodal surface. The Brillouin zone here has the same shape as that in
Fig. 2(b).

absence of SOC is shown in Fig. 3(c). Similarly to K6YO4,
one observes a nodal surface located at the kz = π plane,
guaranteed by the antiunitary symmetry T S2z. The linear
dispersion range is above 1 eV, even larger than that of K6YO4.
The nodal surface is very flat in energy, and it sits almost exactly
at the Fermi level. Such a band structure would be ideal for
studying the class-II nodal surfaces.

Before proceeding, we mention that the structure of the
AMo3X3 family compounds have strong quasi-1D charac-
ter, which may induce structural instabilities towards Peierls
distortion. First-principles calculations indicated that except
for TlMo3Te3 and RbMo3Te3, other members in this family
would be prone to a Peierls distortion that breaks the S2z

symmetry [40], hence destroying the nodal surface. However,
such distortion has not been detected in experiment [41,42],
and future studies are needed to clarify this issue.

III. NODAL SURFACE IN THE PRESENCE OF SOC

Compared to the case without SOC, the inclusion of SOC
makes at least two important differences in terms of symmetry
properties: (i) The time-reversal operator now satisfies T 2 =
−1 because the time-reversal operation reverses the electron
spin and (ii) all rotation operations need to operate on the spin
in addition to the spatial degree of freedom.

For class-I nodal surfaces, the protection mechanism dis-
cussed in Sec. II A no longer holds, because of point (i). Hence
introducing SOC will generally destroy class-I nodal surfaces.
We explicitly verify this point by artificially increasing the SOC
strength in QGN(1,2) and indeed find that the nodal surface is
gapped out by SOC (see Appendix C).

For class-II nodal surfaces, a more involved analysis is
needed. It turns out that the inversion symmetry P plays an
important role in this case. In order to ensure the boundary

FIG. 4. Calculated band structures of TlMo3Te3 (a) without SOC
and (b) with SOC. Panel (c) shows the Brillouin zone. R and E are
the midpoints of the paths A-L and �-M, respectively. (d) Enlarged
view of the low-energy band dispersion around the R and H points,
showing that the original band crossing at the nodal surface is gapped
by SOC.

Kramers degeneracies due to T S2z are protecting a nodal
surface, PT symmetry has to be violated. First, Eq. (3) still
holds with SOC. Although T 2 = −1, performing S2z twice
also rotates spins, and we have

(S2z)
2 = T001Ē = −e−ikz , (4)

where Ē denotes the 2π -rotation on spin, contributing a
factor of −1. As [T ,S2z] = 0, Eq. (2) still holds, so does
Eq. (3). However, as long as inversion symmetry is present,
the Kramers degeneracies on the BZ boundary with kz = π

can extend to the whole bulk of BZ (along any generic path)
because of the space-time inversion symmetry PT . In contrast
to the case without SOC, (PT )2 = −1, hence there is actually
the Kramers degeneracy at every point in the BZ due to PT ,
which acts locally in momentum space. Consequently, the
degeneracy at the kz = π plane in this case does not represent
a nodal surface according to our definition.

To explicitly demonstrate the above point, we perform the
first-principles calculation on the material TlMo3Te3 in the
AMo3X3 family with SOC included. Its crystal structure has
been shown in Figs. 3(a) and 3(b). As mentioned before, the
lattice structure of TlMo3Te3 preserves the inversion symmetry
P , and unlike RbMo3S3, the SOC in TlMo3Te3 has appreciable
effects on the band structure and needs to be taken into account.
In Figs. 4(a) and 4(b), we plot the band structures of TlMo3Te3

without and with SOC. In the absence of SOC, a nodal surface
is present at the kz = π plane, similar to that for RbMo3S3.
After including SOC, band splitting is observed at the original
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FIG. 5. (a) Side view and (b) top view of the crystal structure for
Ta3TeI7. The inset in (b) shows the cluster unit of the triangular lattice.
(c) Calculated band structure for Ta3TeI7 in the presence of SOC. The
right panel shows the enlarged view of the band structure near the
Fermi level along a generic path E-R-H, where E-R is perpendicular
to the kz = π plane and R-H is in the kz = π plane. The Brillouin
zone and the labeled k points are the same as in Fig. 2(b).

nodal surface. One notes that the band dispersion along the K-H
and E-R no longer shows the band crossing [see Figs. 4(b) and
4(d)], hence the twofold degeneracy by T S2z in the kz = π

plane does not lead to a nodal surface. This demonstrates that
when P is preserved, T S2z can no longer guarantee a nodal
surface in the presence of SOC. Meanwhile, it is noted that in
Fig. 4(b), the crossing is maintained along �-A path at the A
point, which is enabled by the sixfold rotational symmetry on
this path. A recent study shows that the crossing point at A is
actually a cubic Dirac point with linear dispersion along kz and
cubic dispersion in the kz = π plane [40].

Hence, from the above argument, a necessary condition for
a T S2z-protected nodal surface would be that the P symmetry
needs to be broken (here we consider nonmagnetic materials
where T is preserved). This will generally lift the twofold
degeneracy away from the kz = π plane, thus pairs of nonde-
generate bands along a generic path have to cross at the kz = π

plane, making the doubly degenerate kz = π plane a nodal
surface. Here, it should be mentioned that for systems without
SOC (those in Sec. II B), spin is a dummy degree of freedom.
Hence, if the spin degeneracy is counted, then the nodal surface
there would be fourfold degenerate. In comparison, in the
presence of SOC, the obtained nodal surfaces are twofold
degenerate essentially due to a Kramers-like degeneracy, and
there is no protection for a fourfold degenerate surface (at least
by the symmetries discussed in this work).

This picture is indeed confirmed by our calculation on an
example material Ta3TeI7. Its crystal structure has the space
group P 63mc (No. 186), which does not possess an inversion
center. Ta3TeI7 is a member of the M3QX7 material family
(M = Nb, Ta; Q = S, Se, Te; and X = Cl, Br, I) [43,44].
The crystal structure consists of ordered, close-packed layers
of I and Te atoms, interleaved by Ta atoms, as shown in
Figs. 5(a) and 5(b). Figure 5(b) displays the top view of a single
Ta3TeI7 layer, which is similar to the structure of 1T′-MoS2.
This layered material have several types of stacking. Here we
consider the bulk structure with the ABAB layer stacking

pattern. The calculated band structure with SOC included is
shown in Fig. 5(c). The material is a semiconductor with a
band gap about 0.48 eV. Although it is not a semimetal, by
examining the band dispersion around the kz = π plane, one
finds that there is indeed a nodal surface in that plane consisting
of linear band-crossing points. This is more easily observed in
the right panel of Fig. 5(c), which shows a zoom-in image for
the dispersion along the generic path E-R. Along the path, the
bands are nondegenerate (due to the broken P), and a pair
of bands must cross at R in the kz = π plane, hence a nodal
surface is formed in that plane.

IV. NODAL SURFACE IN MAGNETIC MATERIALS

The discussion in the previous sections are about nonmag-
netic materials, such that T is preserved. We have seen that T
plays an important role in stabilizing the nodal surfaces. Then
the question arises: Is it possible to realize protected nodal
surfaces also in magnetic materials?

Here we show that this is indeed possible, and the result also
depends on whether the SOC in the system can be neglected
or not.

First, consider the case in the absence of SOC. Without
SOC, the spin and the orbital degrees of freedom are indepen-
dent and can be considered as different subspaces. The spins
can be oriented in any direction without affecting the orbital
part of the wave function. With a chosen spin polarization axis,
the two spin channels are decoupled, and hence the bands for
each spin species can be effectively regarded as for a spinless
system. Therefore, for the states of one spin, all the crystalline
symmetries are preserved [45,46]. Consequently, the analysis
can be reduced to those in Sec. II, which means that it is
in principle possible to have class-I as well as class-II nodal
surfaces in a magnetic system if the symmetry requirements
presented in Sec. II are satisfied. Particularly, if the crystal
structure possesses a twofold screw axis S2z, then there must
exist a nodal surface (for each spin species) at kz = π .

We demonstrate the above point using a concrete material
example. We consider the material CsCrI3, which is a member
of the material family CsCrX3 (X = Cl, Br, I) [47]. The
material takes the BaVS3-type structure, with space group
P 63/mmc (No. 194), as shown in Figs. 6(a) and 6(b). The Cr
atoms are surrounded by octahedra of X atoms, forming one-
dimensional chains along the z axis, with octahedra sharing
common faces. Those chains are arranged into a trigonal lattice
in the x-y plane, with the Cs atoms intercalated between the
chains. Without considering the spin polarization, the lattice
structure has a twofold screw axis S2z. The material assumes a
ferromagnetic ground state, for which the magnetic moments
are provided by the Cr atoms. The band structure for CsCrI3

without SOC is plotted in Fig. 6(c). One observes that the
system is a half metal: The Fermi level crosses only the
spin-up bands, whereas the spin-down bands are high in energy.
Focusing on the spin-up bands that are near the Fermi level, one
finds that there is indeed a nodal surface in the kz = π plane, as
consistent with our above argument for the case without SOC.
Due to the absence of SOC, orienting the magnetic moments
along different directions will not affect the band structure and
hence will not affect the nodal surface. This is confirmed by our
DFT results: We have repeated the calculation with different
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FIG. 6. (a) Side view and (b) top view of the crystal structure for
CsCrI3. (c) Calculated band structure for CsCrI3 in the absence of
SOC, showing a ferromagnetic state. The red and blue lines represent
spin-up and spin-down bands, respectively. In the absence of SOC,
the nodal surface is preserved, and the band structure does not depend
on the direction of the magnetic moments.

magnetic moment orientations (e.g., along the x direction and
the z direction), and the obtained results are exactly the same
as in Fig. 6(c).

Next, we consider the case in the presence of SOC. The
spin and orbital degrees of freedom are tied with each other
by SOC. It is generally not possible to label the bands as
spin-up/spin-down. Hence, the symmetry operations need to
act on both orbital and spin as a whole. Nevertheless, we
note that the arguments in Sec. III rely on the existence of
the composite symmetry T S2z, which can still be preserved
although the individual T or S2z symmetry may be broken. If
so, then the previous arguments in Sec. III still apply and a
nodal surface can be guaranteed. Explicitly, this means that in
the presence of SOC, a nodal surface in the kz = π plane can
be protected by the combined symmetry T S2z in conjunction
with the absence of the PT symmetry in the system (note that
PT may be preserved in certain antiferromagnet).

We still take CsCrI3 as an example and now include SOC
in the DFT calculation. It is important to note that (i) if the
magnetic moments are aligned in a direction perpendicular to
thez direction, then the combined T S2z symmetry is preserved
(since the spins aligning in the x-y plane are flipped by both
T and S2z, and therefore are intact by T S2z), and (ii) for other
directions (e.g., along the z direction), the T S2z symmetry is
broken. The PT symmetry is broken for both cases. Then
according to our previous analysis, the nodal surface in the kz =
π plane should be preserved in case (i) but not in case (ii). This
is indeed confirmed by our DFT results. Figure 7(a) shows that
result with the moments aligned along the x direction, where
a nodal surface is observed in the kz = π plane. Figure 7(b)
shows that result when the moments are aligned along the z

direction, and one can see that the nodal surface is destroyed.

FIG. 7. Calculated band structures for CsCrI3 in the presence of
SOC, with magnetic moments along (a) the x̂ direction and (b) the ẑ

direction. The nodal surface is preserved in (a) but not in (b).

V. DISCUSSION AND CONCLUSION

We have discussed two classes of nodal surfaces in the
absence of SOC. They are essentially different, namely the
class-I surfaces are topologically charged, and two patches on
the surfaces related by P have opposite charges to satisfy the
Nielsen-Ninomiya no-go theorem [27,28]; however, the class-
II ones are mainly originated from the topological features of
screw symmetry, and therefore each degenerate point belongs
to a Möbius-strip band structure, all of which spread out as a
torus (a kx-ky sub-BZ). The class-I surfaces are not essential,
requiring band inversions in part of the BZ; whereas the class-II
surfaces are essential and guaranteed to appear solely by the
symmetry. In addition, the shape and location of the class-I
surfaces can vary in the BZ and can be tuned, e.g., by lattice
strain; whereas the the location of the class-II surface is fixed
at the BZ boundary plane as a result of the combination of time
reversal and screw rotation. The nodal surfaces in the examples
discussed in Secs. III and IV are generalizations of the class-II
surfaces, so they share similar characteristic features of the
class-II surfaces listed above.

We mention that both classes do not lead to any special
boundary gapless modes. Although the first class has the
nontrivial Z2 topological charge, similar to Weyl semimetals,
the codimensionality of nodal surfaces or the dimensionality
of sub topological insulators is zero, impossible to generate
any boundary state. It may be noteworthy that each nodal
surface considered here is a torus in the BZ, which cannot
be continuously deformed to be a point and hence should
be distinguished from a nodal surface that is topologically
a sphere deformable to a single point in the BZ [26]. (Note
that for class-I surfaces, a pair of surfaces may merge into
a single sphere when the system is strongly deformed.) We
also mention that although the 0D Z2 charge does not produce
any topological surface state, it is possible that additional
1D or 2D topological charges (having codimensions 1 and
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FIG. 8. (a) Crystal structure of Cu3Se2 and (b) the corresponding
Brillouin zone. In (b), �1, X1, Y1, and M1 label the four k points that
are above the points �, X, Y, and M and are located in the kz = π/2c

plane. (c) Band structure of Cu3Se2 (with SOC) along some generic
paths. The red arrows indicate the band degeneracy along the paths
on the two orthogonal nodal surfaces.

2) may exist and lead to nontrivial surface states in these
systems.

As we have mentioned, the nodal surfaces are distinct
from the usual Fermi surfaces because it is formed by the
crossing of two bands. As a result, the low-energy electrons
acquire an intrinsic pseudospin degree of freedom, differ-
ent from the usual Schrödinger fermions. Near a relatively
flat nodal surface, the low-energy effective model may be
written as

Heff = vzqzσz, (5)

where vz is the Fermi velocity, qz measures the deviation from
the nodal surface along the surface normal direction, and the
Pauli matrix σz represents the pseudospin, corresponding to
the two crossing bands. Equation (5) effectively describes 1D
massless Dirac fermions, where the pseudospin is locked to the
momentum. For transport along the z direction, we may expect
interesting properties such as the enhanced mobility due to the
suppression of back-scattering (for states around a single nodal
surface) from scatterers that preserve the pseudospin.

Regarding the class-II surfaces, if there are multiple two-
fold screw axis, then it is possible to have multiple nodal
surfaces on the BZ boundary planes. One example is shown in
Fig. 8 for the material Cu3Se2 known as the mineral umangite,
with the space group of P 421m (No. 113) [48,49]. As a typical
intermetallic compounds, Cu atoms are bonded closely both
with one another and with Se atoms. Two kinds of Cu atoms
exist in the structure, with Cu(I) at the 2a position (0,0,0)
and Cu(II) at the 4e position (x, 1

2 − x,z) with x = 0.145
and z = 0.763. The material experiences a transition to an

antiferromagnetic state at about 50 K [50]. Here we focus
on its paramagnetic phase above 50 K. The band structure
of Cu3Se2 is plotted in Fig. 8(c). The space group P 421m

contains two perpendicular screw axis S2x = {C2x | 1
2

1
2 0} and

S2y = {C2y | 1
2

1
2 0}. With preserved T , two mutually orthogonal

nodal surfaces can be found in the kx = π and ky = π planes
[as illustrated in Fig. 8(b)]. This is indeed observed in the
band structure in Fig. 8(c), which shows that the nondegenerate
bands along the generic paths �1-X1 and �1-Y1 cross at the two
nodal surfaces. A material example with three nodal surfaces
is also presented in Appendix C.

Finally, we mention that as a good NSSM material, the
nodal surface should be close to the Fermi level and formed
by the crossing between conduction and valence bands. This
condition imposes constraints regarding the electron filling of
the bands. The recent work by Watanabe et al. [51] has studied
the detailed filling constraints for realizing semimetal states for
nonsymmorphic space groups, which will offer useful guide-
lines for searching NSSMs. In this work, we have identified
several good candidate materials that satisfy the condition.
However, for some cases, like the case in the presence of SOC,
the examples we show are not ideal. For example, Ta3TeI7

discussed in Sec. III is actually a semiconductor. Nevertheless,
it serves the purpose to illustrate that a nodal surface can
indeed appear when the proposed symmetry requirements
are satisfied. Based on our theory, we expect better NSSM
materials to be discovered in future studies.

In conclusion, we have theoretically investigated the
NSSMs which host robust nodal surfaces formed by the
crossing of two bands close to the Fermi level. We clarify
the symmetry-topology protection of the nodal surfaces. In the
absence of SOC, we identify two classes of nodal surfaces
which are protected by different mechanisms. The class-I
surfaces are protected by a combination of inversion, sublat-
tice, and time-reversal symmetries and are characterized by
a Z2 index. The class-II surfaces are protected by a twofold
screw axis and the time-reversal symmetry. The two classes
differ in several aspects, including the surface shape, location,
and robustness against perturbation. The inclusion of SOC
generally gaps the class-I surface, and we show that the class-II
surface may be preserved provided that the inversion symmetry
is broken. Furthermore, we generalize the analysis to magnetic
materials. We find that class-II surfaces can exist in magnetic
materials both without and with SOC, given that certain
magnetic group symmetry requirements are satisfied. We have
identified several concrete NSSM material examples, which
will facilitate the experimental exploration of the intriguing
properties of NSSMs.
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APPENDIX A: TIGHT-BINDING MODEL AND Z2 INVARIANT FOR QGN(1,2)

As discussed in the main text, the low-energy physics mainly comes from electrons hopping among the eight sp2 sites, and
therefore the Hamiltonian of the tight-binding model, H = ∫

d3kψ
†
kH(k)ψk with ψk = (c1,c2, · · · ,c8)T , describes an eight-band

theory. After a gauge transformation to make the Hamiltonian periodic in kx and ky , we have

H(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2t1 cos
(

1
2kz

)
0 0 0 0 0 t2e

ikx

2t1 cos
(

1
2kz

)
0 t2e

iky 0 0 0 0 0

0 t2e
−iky 0 2t1 cos

(
1
2kz

)
0 0 0 0

0 0 2t1 cos
(

1
2kz

)
0 t2e

ikx 0 0 0

0 0 0 t2e
−ikx 0 2t1 cos

(
1
2kz

)
0 0

0 0 0 0 2t1 cos
(

1
2kz

)
0 t2e

−iky 0

0 0 0 0 0 t2e
iky 0 2t1 cos

(
1
2kz

)
t2e

−ikx 0 0 0 0 0 2t1 cos
(

1
2kz

)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A1)

Here the wave vectors are measured in the respective inverse
lattice constants, and t1 and t2 are the real hopping amplitudes
from site 1 to site 2 and from site 2 to site 3, respectively [see
Fig. 1(b)].

Performing the combined unitary transformation UPT U�

with

U� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)

and

UPT = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 i 0 0 0 0
0 1 i 0 0 0 0 0
0 i 1 0 0 0 0 0
i 0 0 1 0 0 0 0
0 0 0 0 1 0 0 i

0 0 0 0 0 1 i 0
0 0 0 0 0 i 1 0
0 0 0 0 i 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

FIG. 9. Comparison of band structures of the eight-band tight
binding model in Eq. (A1) (red dashed lines) and the DFT result
(blue solid lines). In the tight-binding model, the values t1 = 2.95 eV
and t2 = 1.30 eV are obtained from fitting the low-energy DFT band
structure.

the Hamiltonian becomes antidiagonal [i.e., H(k) =
antidiag(Q(k),Q†(k))] with the upper right lock being

Q(k) =

⎛
⎜⎜⎝

t2 sin kx 0 2t1 cos kz

2 t2 cos kx

0 t2 cos ky t2 sin ky 2t1 cos kz

2
2t1 cos kz

2 −t2 sin ky t2 cos ky 0
t2 cos kx 2t1 cos kz

2 0 −t2 sin kx

⎞
⎟⎟⎠.

(A4)

Then it is found that DetQ(k) = 4t4
1 (cos kz + 1)2 − t4

2 .
If |t2/2t1| < 1, then there are two nodal surfaces with
kz = ± arccos(t2

2 /2t2
1 − 1) related by T or P symmetry. It

is easy to check that DetQ(kz = 0) > 0 because |t2/2t1| < 1
(t1 = 2.95 eV and t2 = 1.30 eV, as obtained from the fitting
of DFT result in Fig. 9), whereas DetQ(kz = π ) < 0. Thus,
both nodal surfaces have the nontrivial topological charge
according to the formula in Eq. (1).

APPENDIX B: FIRST-PRINCIPLES CALCULATION
METHOD

The first-principle calculations are based on the DFT,
as implemented in the Vienna ab initio simulation package
[52,53]. The projector augmented wave method was adopted
[54]. The generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof (PBE) realization [55] was adopted
for the exchange-correlation potential. For all calculations,

FIG. 10. (a) Band structure for QGN(1,2) with SOC. The SOC
strength is artificially enhanced by 30 times, in order to show that the
SOC gaps the original nodal surfaces. (b) Enlarged view around the
original band crossing, corresponding to the region as indicated by
the red arrow in (a).
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FIG. 11. (a) Crystal structure of Rb2Se5 and (b) the corresponding
Brillouin zone. The insert in (a) shows the helical Se2−

5 chain. In (b),
�1 is the body center of 1/8 Brillouin zone; X1, Y1, and Z1 are the face
centers of the 1/8 Brillouin zone; U1, T1, and S1 are the midpoints
of the paths U-R, T-R, and S-R, respectively. (c) Band structure of
Rb2Se5 with SOC.

the energy and force convergence criteria were set to be
10−5 eV and 10−2 eV/Å, respectively. The BZ sampling was

performed by using k grids with a spacing of 2π × 0.02 Å
−1

within a �-centered sampling scheme. As the transition metal
d orbitals may have notable correlation effects, we have
validated our DFT results by the GGA+U method [56] (see
Appendix E). The key features are found to be qualitatively
the same as the GGA results. Hence in the main text, we
focus on the GGA results. For K6YO4, the optimized lattice
parameters (a = 9.59 Å, c = 6.69 Å) were used for the band
structure calculation. For the other materials discussed here,
the experimental values of their respective lattice parameters
were used in the calculation.

APPENDIX C: SOC EFFECT ON CLASS-I SURFACES

Here we consider the SOC effect on the class-I nodal
surfaces. Take the QGN(1,2) discussed in Sec. II A as an
example. Since the carbon is a light element with very weak
SOC. The band structure with SOC shows negligible difference
from that in Fig. 1(d) without SOC. In order to more clearly
demonstrate that SOC in fact gaps the nodal surface, we
artificially enhance the SOC strength in the DFT calculation by
30 times. The obtained band structure is plotted in Fig. 10. One
clearly observes that a gap is opened by SOC at the original
band-crossing point, destroying the class-I nodal surface.

APPENDIX D: MATERIAL EXAMPLE WITH THREE
NODAL SURFACES

In Sec. V, we have shown that the compound Cu3Se2

with two perpendicular screw axis can host two orthogonal
nodal surfaces on the BZ boundary planes. Here we consider
another example material Rb2Se5 with three perpendicular
nodal surfaces on the BZ boundary planes [57]. Its crystal
structure has the space group P 212121 (No. 19), which has
three twofold screw axes perpendicular to each other: S2x =
{C2x | 1

2
1
2 0}, S2y = {C2y |0 1

2
1
2 }, and S2z = {C2z| 1

2 0 1
2 }. The time-

reversal symmetry is preserved due to the absence of magnetic
ordering. There are four helical Se2−

5 chains in the unit cell,
and the Rb atoms are surrounded by the Se chains and related
by the screw axis.

The calculated band structure for Rb2Se5 with SOC in-
cluded is shown in Fig. 11(c) (only some generic paths are
shown here). We find that the material is a semiconductor
with a bandgap about 0.75 eV. Nevertheless, band crossings
appear in both valence and conduction bands. By examining
the band dispersion on the BZ boundary planes, one can find
that the bands cross at these planes in pairs. For example,
the nondegenerate bands along the three generic paths �1-X1,
�1-Y1, �1-Z1 all cross at the BZ boundary planes. Hence there
are three mutually orthogonal nodal surfaces as illustrated in
Fig. 11(b).

FIG. 12. Effects of the Hubbard U correction on band structures of (a) K6YO4 (without SOC) with U = 4.0 eV, (b) RbMo3S3 (without
SOC) with U = 4.0 eV, (c) TlMo3Te3 (SOC included) with U = 4.0 eV, (d) Ta3TeI7 (SOC included) with U = 2.0 eV, (e) CsCrI3 (without
SOC) with U = 5.0 eV, and (f) Cu3Se2 (SOC included) with U = 5.0 eV.
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APPENDIX E: HUBBARD U CORRECTION

To test the correlation effects of the transition metal d

orbitals, we performed the GGA+U calculations by taking
into account the on-site Coulomb interaction. The U values
proper for each transition metal element have been tested.

Figure 12 shows the representative results for the band
structures of K6YO4, RbMo3S3, TlMo3Te3, Ta3TeI7, CsCrI3,
and Cu3Se2. One can observe that the results for all these
compounds show little change in comparison with the GGA
results. Hence, we focus on the GGA results in the main
text.
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