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Thickness-dependent phase transition in graphite under high magnetic field
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Various electronic phases emerge when applying high magnetic fields in graphite. However, the origin of a
semimetal-insulator transition at B � 30 T is still not clear, while an exotic density-wave state is theoretically
proposed. In order to identify the electronic state of the insulator phase, we investigate the phase transition
in thin-film graphite samples that were fabricated on silicon substrate by a mechanical exfoliation method.
The critical magnetic fields of the semimetal-insulator transition in thin-film graphite shift to higher magnetic
fields, accompanied by a reduction in temperature dependence. These results can be qualitatively reproduced
by a density-wave model by introducing a quantum size effect. Our findings establish the electronic state of the
insulator phase as a density-wave state standing along the out-of-plane direction, and help determine the electronic
states in other high-magnetic-field phases.
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I. INTRODUCTION

A semimetal-insulator transition in graphite, discovered
in the early 1980s (Ref. [1]), has recently regained much
attention [2–7]. This transition is induced by high magnetic
fields of B � 30 T along the c axis (out-of-plane direction)
at low temperatures. Reflecting a low carrier density, only
four quasi-one-dimensional Landau subbands [(n = 0,↑),
(n = 0,↓),(n = −1, ↑), and (n = −1, ↓)] remain at the Fermi
level under high magnetic fields [8–10] [the so-called quasi-
quantum limit; see red lines in Fig. 1(b)], which should be
responsible for this electronic phase transition. Taking the
quasi-one-dimensionality and the electron-electron interaction
into account, Yoshioka and Fukuyama proposed the exotic
density-wave state, valley-density wave (VDW) state [11], as
illustrated in the following. Graphite has two energetically
equivalent band dispersions (so-called valleys) along H-K-H
and H′-K′-H′ lines in the reciprocal lattice (k) space, which
form an electron Fermi pocket around the K (K′) point, and
a hole Fermi pocket around H (H′) point, as can be seen
in Fig. 1(a). If we focus on one valley (e.g., H-K-H), it
forms a 2kF -type charge-density wave (CDW) along the c-axis
direction under high magnetic fields along the c axis. In
the counterpart of the valley (e.g., H′-K′-H′), it also forms
a CDW but is antiphase to the counter valley. This means
that, in total, the VDW has no spatial modulation of carrier
to cancel out the direct Coulomb repulsive interaction, which
is analogous to the spin-density wave (SDW) if we read the
spin degrees of freedom as the valley ones. Although there are
some differences in detail, all subsequent theories support the
formation of the density-wave state [12–14].

On the other hand, experimental verification of the density-
wave state was a challenging problem. First, if the ordered state
is VDW, it is impossible to directly observe it by utilizing,
for example, x rays, since the spatial charge modulation
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should be absent or negligibly small. Another common way
of investigating the density-wave state is to detect non-Ohmic
transport. The nonlinearity was actually found in the in-plane
[15] and out-of-plane transport [16], but its broad transition
from a low conducting state to a high conducting state was
ambiguous evidence for the sliding motion of the density
wave. In addition, it is not clear how to understand the in-
plane transport results in the scenario of the density-wave
standing along the out-of-plane direction. It is noteworthy that
swift neutron irradiation in graphite crystal was successful in
controlling the phase boundary [17–20]. In those experiments,
the transition line around B � 30 T in the phase diagram
shifted to higher magnetic fields almost in a parallel manner
with the introduction of disorders. This trend is basically
understood by applying the theory of the “pair-breaking effect,”
which is well-known in superconductivity [21]. This agree-
ment manifests that some kind of pairing state is involved in
the transition, whereas it is difficult to provide a comprehensive
interpretation of the formation of the density-wave state owing
to concomitant carrier doping.

Recent discovery of a new electronic phase above B >

53 T offers a more confusing problem [2]. According to
the Slonczewski-Weiss-McClure model, which is known to
accurately reproduce the band structure deduced from the
quantum oscillations [22], the (n = 0, ↑) subband escapes
from the Fermi level at B = 53 T (Refs. [12,20,23]). Therefore,
it was believed that the anomalous electronic state will exist
only between B � 30 T and 53 T, as the (n = 0, ↑) Landau
subband is believed to be responsible for the density-wave
formation in Ref. [11]. In fact, the behavior of the in-plane
resistivity seems to reenter the normal metallic state at 53 T
(Ref. [23]). However, according to Fauqué et al., another
high-resistivity state was found above 53 T by a longitudinal
transport measurement (Rzz), and the reentry of the conducting
state needs to be as large as B = 75 T (Ref. [2]). The authors
proposed a new sequence of the Landau subband detachment
to qualitatively explain the phenomena, but there is no clear
consensus as to that scenario so far [3,5]. Even if other
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FIG. 1. (a) Schematic view of Brillouin zone and Fermi surfaces
at B = 0 in graphite. Electron pockets and hole pockets are formed
around K (K′) and H (H′) points, respectively. Valleys along H-K-H
and H′-K′-H′ lines are energetically degenerated. The size of Fermi
pockets is exaggerated for clarity. (b) Calculated Landau subbands in
graphite under magnetic field B = 30 T along the c axis. Only four
Landau subbands are at the Fermi level εF . Calculation is based on the
Slonczewski-Weiss-McClure model with γ3 = 0 (Refs. [8–10]). Red
lines indicate the dispersions for the bulk (thick enough) system, and
blue markers are for the thin-film system. Width of horizontal light
blue and light red bars indicate kBT at low and high temperatures,
respectively (see main text). The density-wave state characterized by
qz = 2kF is expected to appear in the bulk system, while it is expected
to be unstable in the thin-film system owing to the sparse kz states.

subbands are responsible for the phase transition, a reasonable
explanation for the anisotropic conducting state in the new
phase, and the reason for the location of the endpoint at
B = 75 T, are absent.

To unveil the true evolution of the electronic state under
a high magnetic field, it is significant to prove the electronic
state as the density-wave state between B � 30 T and 53 T.
In this study, we investigate the thickness dependence of the
semimetal-insulator transition at B � 30 T. According to basic
solid-state physics, the interval of k points along the z direction
kz (z||c), �kz, is written as �kz = 2π/d, where d is the thick-
ness of the system. If d is sufficiently large compared with the
lattice constant c, the dispersion can be regarded as continuous
[red lines in Fig. 1(b)]. With a reduction of thickness d, the
dispersion is no longer continuous owing to the quantum size
effect, as shown by blue markers in Fig. 1(b). If some nesting
vector of qz (the vector connecting kz points) is responsible

for the phase transition in bulk graphite, the formation of the
density-wave state tends to be inhibited in the thin-enough
sample owing to the sparseness of the kz points. In fact, neither
mono- nor bilayer system (graphene) shows an insulator transi-
tion in high magnetic fields. Suppose that a bandwidth of a few
tens of millielectronvolts in the Landau subband is divided into
a hundred points, and the energy spacing is a few Kelvin, which
is comparable to the phase transition temperature. Therefore,
this level spacing effect is expected to appear on the order
of hundreds of unit-cell-thick systems (roughly 70 nm). We
note that, in contrast to the neutron irradiation experiment, this
method is expected not to introduce additional disorders or
carriers, which is an advantage of the simple interpretation.
In fact, we confirmed it in our 80-nm-thick film through the
evaluation of the residual resistivity ratio (RRR) and Dingle
temperature (TD). The higher RRR and the smaller TD indicate
high purity of samples. The observed values were RRR � 6
and TD = 3 − 7 K, respectively. These values are reasonably
in good agreement with those in bulk samples (RRR > 10 and
TD = 0.5 − 4 K, respectively [24,25]). Although some amount
of crack is possibly introduced in the mechanical exfoliation
process, these results indicate that the quality of our sample
is still reasonable even after the exfoliation process. In this
study, by comparing the critical magnetic field Bc for different
thickness samples, we found that the magnetic-field-induced
phase becomes unstable for thin-film samples.

II. EXPERIMENTAL METHODS

Thin-film graphite samples were obtained by mechanical
exfoliation from Kish graphite crystals and were transferred
onto the silicon substrate, in the same manner as the original
graphene preparation [26,27]. Here, insulating silicon sub-
strates were utilized in order to avoid heating by the eddy
current under the pulsed magnetic field. The thickness of each
microcrystal on the substrate was identified by atomic-force
microscopy, in which we selected the flat surface samples.
The typical dimensions of the microcrystal were 50 × 50 ×
0.1 μm3. The electrical contacts for in-plane resistance mea-
surements were formed by standard electron-beam lithography
and vacuum evaporation of gold.

High magnetic fields were generated by our portable non-
destructive pulse magnet system, which consists of home-
wound coil cooled by liquid nitrogen, a capacitor bank with
a maximum charge energy of 20 kJ, and a helium cryostat
with a lowest temperature of 1.6 K. The highest magnetic field
reached B � 40 T at a duration of 10 ms. Because the time
dependence of the magnetic field was very steep and noisy in
the ascending branch, we only show the descending branch
(see Appendix B in detail.)

The in-plane resistance (R) was measured by applying a
small ac electric current (Iac) at a frequency of 25 kHz under
the magnetic fields (B) along the c axis (perpendicular to the
plate) at low temperatures (T ). The resistance was determined
by the numerical lock-in technique (see Appendix B in detail.).

III. RESULTS

Figures 2(a) and 2(b) are the magnetic-field dependences
of the in-plane resistance at several temperatures in samples
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FIG. 2. In-plane resistance as a function of magnetic field along
the c axis in (a) 173-nm-thick and (b) 80-nm-thick graphite at
T = 1.6,2.0,3.0,4.2, and 5.4 K. Several dip structures up to 10 T
are Shubnikov–de Haas oscillations. In both samples, the critical
magnetic field of the semimetal-insulator transition increases with
elevating temperatures. Critical fields in thinner samples are higher,
and show small temperature dependence.

with d = 173 nm and 80 nm, respectively. Both samples
show trends similar to those of the bulk sample. Namely,
a large magnetoresistance appears up to 10 T, concomitant
with clear Shubnikov de-Haas oscillations, followed by a
negative magnetoresistance between 10 T and 30 T. A sharp
transition to the insulating state can be observed at around
30 T. These results indicate that both samples can be viewed
as three-dimensional systems. In fact, mono- and bilayer
graphenes show different sequences of the Shubnikov de-Haas
oscillations, and the semimetal-insulator transition is absent
at around 30 T (Ref. [28]). With decreasing temperatures,
the transition rapidly shifts to lower magnetic fields. This
temperature dependence of the transition is qualitatively the
same as that of the bulk result [23]. On the other hand, we can
see some differences between the two samples. In the thinner
sample, (i) the value of the critical magnetic field Bc shifts
higher, and (ii) the temperature dependence of Bc becomes
small. These characteristics are clearly visualized in the B − T

phase diagram, as shown in Fig. 3(a). For comparison, that
of the bulk system is also shown, and is taken from Ref.
[17]. When the thickness is reduced, the phase boundary line
between the semimetal and insulating states (i) shifts to higher
magnetic fields, and (ii) the slope of it becomes steeper. The
second trend is in stark contrast to the phase diagram found in
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FIG. 3. (a) Phase boundary of the semimetal-insulator transition
in B − T plane for each graphite sample, obtained from Fig. 2. The
bulk line is taken from Ref. [17]. By reducing sample thickness,
the phase boundary shifts to higher magnetic fields, and the slope
becomes steep. (b) Simulated phase boundaries for several thick-
nesses. Two characteristics of the thinner system are qualitatively
reproduced.

neutron irradiated graphite, where the boundary almost shifts
to higher fields in a parallel manner. The difference probably
comes from an introduction of disorders and charge carriers.
We note that a previous report for a 130-nm sample [29]
does not contradict our results, although the applied magnetic
fields are not sufficient to determine the transition in that
measurement. Recently, the transition was observed at B = 38
T in the highly oriented pyrolytic graphite (HOPG) sample
with d = 35 nm at T = 4.2 K. This result is consistent with
our phase diagram.

IV. DISCUSSION

The presence of thickness dependence implies that an
ordered state along the out-of-plane direction evolves. To
examine whether this ordered state is attributable to the for-
mation of the density-wave state, we calculated the thickness
dependence of Bc in the simple density-wave state model [30].
In the case of a quasiquantum limit [only four spin-split Landau
subbands of (n = 0, ↑↓) and (n = −1, ↑↓) are at the Fermi
level], the density-response function χ (q) = ρ(q)/V (q) can
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be evaluated by

χ (0)(qx = 0,qy = 0,qz)

= 1

2πl2

∑

kz

f (E0↑(kz + qz)) − f (E0↑(kz))

E0↑(kz) − E0↑(kz + qz)
. (1)

Here, ρ(q) and V (q) are the Fourier components of the carrier
density and perturbation potential, respectively, E0↑ denotes
the (n = 0, ↑) Landau subband energy dispersion, f (E) is the
Fermi-Dirac distribution function, l = √

h̄/eB is the magnetic
length, h̄ = h/2π is Planck’s constant divided by 2π , and e is
the elementary charge. According to Ref. [11], the (n = 0, ↑)
Landau subband is relevant for the density-wave transition.
Therefore, we focus on the (n = 0, ↑) Landau subband, and
for simplicity, the Fermi energy is fixed to the value of the
bulk system, regardless of the thickness. The energy dispersion
of the subband E0↑(kz) is calculated by the Slonczewski-
Weiss-McClure model [8,9] with γ3 = 0 in Ref. [10], as this
term is not effective in a high magnetic field. The condition
for the density-wave transition is that max [χ (0)] reaches a
critical value 1/ũ (Ref. [11]), where ũ is an effective exchange
interaction. In a bulk system, i.e., in the limit of the continuous
kz, we can easily evaluate Eq. (1) by substituting the summation
in the integral. As a result, we obtain the so-called “2kF

instability,” namely, χ (0) divergently increases at qz = 2kF ,
and the peak rapidly decreases with elevating temperatures.
On the other hand, in a thin-film system, as kz is discrete
with a spacing of �kz = 2π/d, we directly sum all possible
kz and kz + qz pairs at each qz in Eq. (1). We note that
only an integer multiple of �kz is allowed for qz, so qz is
also discrete. In the N = 300 unit cell (u.c.)-thick system
(N = kz/�kz = d/c, where c is the lattice constant along the c

axis), the results are quite similar to those in the bulk, as it is still
thick enough. However, in thinner cases such as N = 30, 20,
and 10-u.c. systems, the values at the peak become smaller.
In addition, the temperature dependence of the peak height
becomes progressively smaller by reducing the thickness (see
Appendix C). These two features mean that if we assume
the critical condition max [χ (0)(T ,B)] = 1/ũ is thickness in-
dependent, the density-wave transition should occur at lower
temperatures in thinner systems in some fixed magnetic fields.
By determining some adequate value of 1/ũ, the simulated
phase diagram is depicted as Fig. 3(b). Figure 3(b) qualitatively
reproduces the trend of the phase boundary pointed out in the
experimental phase diagram of Fig. 3(a) [see (i) and (ii) above].
Taking into account the agreement of the characteristics of
the phase boundary, we strongly suggest that the insulating
state that appeared above B � 30 T in graphite is the density-
wave state. Note that we do not confirm whether it is the
valley-density-wave state. Although our simulation is based on
the band dispersion of the Slonczewski-Weiss-McClure model
[8,9], the conclusion is not affected by the details of the band
structure, as shown in the following discussion.

To look into the quantum size effect on the density-wave
state, we discuss the mechanism for the shift of Bc and the small
temperature dependence. The first feature, (i) the shift of Bc,
is attributable to the boundary condition for the density-wave
state. If we compare thick and thin samples at some fixed
magnetic field around 30 T, the thick sample has a pair of
kz and kz + qz just at the Fermi level, while in the thin sample,

such pairs cannot be found in some cases owing to the sparse
kz [see Fig. 1(b)]. This means that the thin-film system needs to
tune the magnetic field to find a pair of kz and kz + qz. Because
the value of max [χ (0)(T ,B)] monotonically increases with B,
as indicated by Eq. (1), the thin-film system needs a higher
magnetic field to find a pair to achieve max [χ (0)(T ,B)] � 1/ũ.
In real space, this feature corresponds to the formation of
the density wave with a fixed-end boundary condition. In the
thick system, where the boundary condition is not relevant,
the formation of the density wave is not restricted by the
characteristic length of the density wave ∼π/kF . On the other
hand, as the node position of the density wave is expected to
come at the boundary, a mismatch of d and ∼π/kF will make
it difficult for the system to enter the density-wave state. In
fact, the simulated Bc(T ) nonmonotonically behaves in the
fixed εF calculation [not shown in Fig. 3(b)], although in
reality the Fermi energy will go up and down as the magnetic
fields increase. The second feature, (ii) the small temperature
dependence of Bc(T ), originates from the sparseness of the
states along the energy direction in the Landau subbands,
instead of that along the kz direction. Because the energy
spectra are no longer continuous by the quantum size effect,
the distribution function becomes irrelevant to the system.
More specifically, if we draw horizontal bars with two different
widths of kBT , as indicated in Fig. 1(b) by light blue (lower
temperature) and light red (higher temperature), the number of
points on E(kz) overlaid by these bars are almost the same
in the thin-film system, while remarkably different in the
thick-enough system owing to the different energy spacing.
Hence, the condition satisfying the density-wave transition is
not affected by the temperature, resulting in the steep phase
boundary in Fig. 3(b).

Finally, the threshold of the thickness is discussed, below
which the quantum size effect becomes relevant. Surprisingly,
the relatively thick system of d = 173 nm already deviates
from the bulk phase boundary in our experimental results, but
this value is on the same order of 70 nm, the rough estimation
mentioned above. Our density-response function calculation
also supports this result. Hence, we can safely attribute the
phase boundary shift to the quantum size effect, although a fac-
tor of difference remains. In fact, our density-response function
calculation shows that a 300-u.c. system, which corresponds
to d � 200 nm, shows the same result as the bulk one. This
quantitative refinement is required by a modification of the
nesting vector or a selection of subband. Further investigation
is expected for the quantitative agreement.

V. CONCLUSION

In conclusion, we observed a thickness-dependent elec-
tronic phase transition at B � 30 T in graphite. The transition
in thin-film graphite on silicon substrate was detected by the
in-plane transport under a pulsed magnetic field. The thickness
dependence of the transition indicates that the ordered state
along the out-of-plane direction evolves. In contrast to bulk
graphite, the critical magnetic field in thin-film graphite shifts
higher with reduced temperature dependence. These features
are understood by the quantum size effect on the density-
wave transition, and the phase diagram is in reasonably good
agreement with the simulated one based on the density-wave
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state. As a result, we strongly suggest that the insulating state
appearing at B � 30 T is the density-wave state. This thinning
approach, which controls the phase transition through level
spacing without introducing defects or carriers, will help us
understand the entire phase diagram of graphite.
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APPENDIX A: EFFECT OF THE SUBSTRATE ON THE
TRANSITION

In order to confirm no additional effect on the transition
coming from the substrate, we performed a measurement of
the relatively thick sample with d = 173 nm. Figure 4 shows
the magnetic field dependence of the in-plane resistance for
Iac = 5,10, and 100 μA at T = 4.2 K, in addition to that
for Iac = 5 μA at T = 2 K. (These data were obtained by a
commercial analog lock-in amplification. Owing to the long
time constant of the low-pass filter, the absolute value of
the magnetic field is not reliable, and the magnetic field
dependence of the resistance looks dull.) In this sample, the
transition is clearly observed around B � 30 T at Iac = 5 and
10 μA, while it disappears at a higher Iac of 100 μA. In a
previous report, a high dc electric current suppresses the jump
of resistance at the transition [15]. In our measurements, a
higher ac electric current breaks the transition, which seems
similar to the dc results, although it is difficult to distinguish
from the Joule heating effect. In this article, we showed the
results obtained by small-enough (dependent on the sample
size) ac electric current. Another characteristic in Fig. 4 is that
the transition shifts to a lower magnetic field when cooling
to T = 2 K. These two features are the same with what was
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and descending branches are indicated by broken and solid lines,
respectively.

observed in bulk samples [21,31,32]. Hence, the origin of the
anomaly in resistance must be the same with that in the bulk,
and we safely conclude that there is no additional effect from
the substrate in this kind of sample.

APPENDIX B: NUMERICAL LOCK-IN TECHNIQUE

In-plane resistances were obtained by processing ac data
with the numerical lock-in technique. Figure 5 shows raw ac
data and the dc component extracted from it by the numerical
lock-in method. The raw ac data were obtained by a difference
amplifier to pick up ac voltage induced by a small ac electrical
current. They were recorded by a fast oscilloscope (1MSa/s).
By multiplying two components of a sinusoidal signal and sub-
sequently filtering with a digital low-pass filter in a numerical
manner, we deduce the amplitude of the dc component. As
mentioned in the main text, the ascending branch of ≈2 ms
is too short for transport measurement, although it is roughly
the same as the descending branch. In addition, the switching
noise, as can be seen at 0 ms, is significant. This is why we
display only the descending branch for the resistance. If we
use a long time constant in the low-pass filter, it removes not
only noise but also the fine structure of the data. In addition,
the dc component extracted from the ac signal will not be
synchronized with other dc signals. Because the magnetic field
is measured by a pick-up coil (dc signal), this is significant for
determining an accurate critical field. We set the time constant
to be as short as possible. Moreover, in order to minimize the
difference between dc and ac data, we modulate the dc data
[i.e., B(time) × cos(2πf × time)], where f = 25 kHz is the
same frequency as that of the resistance measurement, and
perform exactly the same numerical-lock-in process as the ac
data. The resultant data, exhibited in Fig. 2, are finally obtained
by moving-window averaging.

APPENDIX C: DENSITY-RESPONSE FUNCTION χ (0)(qz)
IN GRAPHITE UNDER HIGH MAGNETIC FIELDS

The simulation of the phase diagram depicted in Fig. 3(b)
is provided by an evaluation of the density-response function
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χ (0)(qz), as displayed in Eq. (1). Although some other possible
channels exist, we focus on the (n = 0, ↑) Landau subband
for simplicity. The band dispersion is calculated based on
the Slonczewski-Weiss-McClure model for each magnetic
field. In a thin-film system, the dispersion cannot neglect the
discreetness, so it is natural to evaluate the Fermi energy at
each thickness and each magnetic field. However, in order
not to lose the essence, we simply fix it by the bulk value.
The band dispersions for the bulk and thin-film systems
are exemplified in Fig. 1(b). With these band dispersions,
χ (0)(qz) is numerically estimated. Figure 6 shows examples
of B = 30 and 40 T at several temperatures for 300, 30, 20,

10-u.c., and bulk systems. In bulk and thick-enough (300-u.c.)
systems, χ (0)(qz) has a peak structure at q = 2kF , and it is
rapidly suppressed with elevating temperatures. On the other
hand, these peak heights shrink in thin-film systems (30, 20,
and 10-u.c. thick), and the temperature dependence becomes
moderate. These features result in the two characteristics in
the phase diagram, as discussed in the main text. Note that the
peak position deviates from 2kF in thin-film systems owing to
the discreteness of qz. As discussed in the main text, the critical
condition is that max [χ (0)(T ,B)] reaches some critical value
1/ũ. In this simulation, we set the common condition as 1/ũ ∝√

B for all N systems to reproduce the bulk phase diagram.
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