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Charge ordering and nonlocal correlations in the doped extended Hubbard model
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We study the extended Hubbard model away from half filling on a two-dimensional square lattice using cluster
dynamical mean field theory on clusters of size 8. We show that the model exhibits metallic, compressible
charge-ordered, and insulating charge-ordered phases. We determine the location of the charge-ordering phase
transition line at finite temperature and the properties of the phases as a function of doping, temperature, local
interaction, and nearest-neighbor interaction. An analysis of the energetics of the charge-order transition shows
that the charge-ordering transition mainly results in a rearrangement of local and nonlocal potential energy. We
show the doping evolution of the spectral function from the isotropic metal via a charge-ordered metal to a
charge-ordered insulator with a big gap, and study finite-size effects of the approximation.
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I. INTRODUCTION

The energetic competition between electron repulsion
due to the Coulomb interaction, which tends to localize
electrons, and kinetic effects, which favor electrons itineracy,
leads to a rich interplay of competing phases in strongly
correlated systems, where both contributions are of comparable
magnitude [1].

In lattice model calculations, the Coulomb interaction is
often approximated as a purely local term, resulting in models
such as the Hubbard model [2–4]. However, nonlocal terms of
the interaction are always present in real systems, necessitating
a careful treatment of all interactions for quantitative results
[5,6], along with the development of powerful numerical meth-
ods that treat both general interactions and strong correlations
[7–9]. As these nonlocal interactions increase in strength, they
lead to qualitatively new physics, including symmetry-broken
charge-ordered states.

Charge-ordered states are ubiquitous in nature. Since their
early observation by Verwey [10] in magnetites, they have been
found in Wigner crystals [11,12], high-Tc cuprates [13–17],
manganites [18–21], cobaltates [22], nickelates [23–26], two-
dimensional organic materials [27–30] in La1−xSrxFeO3
[31,32], layered dichalcogenides [33], and other, including
quasi-one-dimensional [34,35], systems.

Charge-order effects resulting from electronic interactions
can be studied theoretically on model systems that are both
simple enough that different physical phenomena can be
disentangled, and complex enough that they exhibit the salient
aspects of correlation physics in the presence of nonlocal
interactions. The extended Hubbard model, which includes
nearest-neighbor density-density interactions in addition to the
local Coulomb repulsion, but which neglects all non-density-
density terms and all Coulomb interactions beyond the nearest
neighbor, is such a minimal model.

In a previous paper, Ref. [36], we performed an analysis
of the two-dimensional extended Hubbard model within the
dynamical cluster approximation (DCA) [37] on clusters of

size 8 and larger. We performed a systematic study of the
properties of the charge-ordered and charge-disordered uni-
form phase at half filling and for finite temperature. Our results
showed that the increase of intersite interactions V for fixed
local interactions U leads to the establishment of a charge-
ordered (CO) phase which is characterized by a checkerboard
arrangement of electrons with nonzero staggered density. The
charge-ordered phase persists up to a critical temperature TCO

that depends strongly on the strength of V and U , and can be
destroyed by increasing U for fixed V .

In this paper, we show how these findings change when
the number of particles is doped away from half filling. We
explore the phase diagram as doping, nonlocal interaction V ,
local interaction U , and temperature T are varied. We analyze
the behavior of spectral functions and the gap formation mech-
anism, the behavior of the order parameter, compressibility
effects, as well as the energetic competition between kinetic,
local potential, and nonlocal potential terms in detail. Our
analysis shows that the establishment of a charge-ordered
phase rapidly lowers the nonlocal interaction energy, at the
cost of substantially raising the local interaction contribution.
While the results analyze the competition between charge
order and the isotropic metallic state in detail, our interaction
strengths stay below the Mott-insulating limit and long-range
antiferromagnetism is suppressed.

The remainder of this paper will proceed as follows. In
Sec. II, we will give an overview of the model and our method.
Section III will analyze the phase diagram in detail. Section IV
will discuss the evolution of the order parameter, Sec. V the
spectral function, and Sec. VI will show the energetics of
the charge-order phase transition as a function of doping.
Section VII contains a brief analysis of finite-size effects, and
Sec. VIII will present conclusions.

II. MODEL AND METHOD

In this paper, we use the model, method, and formalism of
Ref. [36]. We repeat some of the method aspects here in order
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to keep it self-contained but refer the reader to Ref. [36] for a
more detailed explanation.

The extended Hubbard model on a two-dimensional square
lattice is given by the Hamiltonian

H = − t
∑

〈ij〉,σ
(c†iσ cjσ + c

†
jσ ciσ ) + U

∑

i

ni↑ni↓

+ V

2

∑

〈ij〉,σσ ′
niσ njσ ′ − μ̃

∑

iσ

niσ , (1)

where t is the nearest-neighbor hopping amplitude, U and
V are the on-site and nearest-neighbor Coulomb interactions,
respectively, and μ̃ denotes the chemical potential. c

†
iσ (ciσ )

is the creation (annihilation) operator for a particle with spin
σ on lattice site i, and niσ = c

†
iσ ciσ is the number operator

on site i. The system is half filled at μ̃ = μHF = U
2 + zV ,

(z is the coordination number), and in the remainder of this
paper we specify the chemical potential with respect to half
filling, such that μ̃ = μHF + μ and the system is half filled
for μ = 0. Throughout this paper we use dimensionless units
U/t, V/t, βt , and μ/t , and set t = 1.

Early studies of the extended Hubbard model in two di-
mensions with lattice Monte Carlo [38], exact diagonalization
[39,40], weak [41] and strong [42] coupling perturbation
theory, as well as high-temperature series expansion [43]
mainly focused on the interplay of spin, charge, and supercon-
ducting degrees of freedom. Later calculations, some of them
performed with nonperturbative embedding methods, were pri-
marily motivated by four aspects: by applications to the physics
of the organic superconductors [44,45], aspects of which are
believed to be described by a quarter-filled extended Hubbard
model; by the exploration of superconducting properties in the
presence of nonlocal interactions [46–55]; by methodological
development [56–59]; and by the fundamental question of
the “screening” effect that nonlocal interactions have on the
normal state physics of models with large local interactions
[58–62]. A study of the charge-order phase away from half
filling on the two-dimensional extended Hubbard model over
a large doping regime was done in Ref. [63] using the local
extended dynamical mean field approximation and was limited
to zero temperature. Very recently, a study of the model in the
very large doping regime on a triangular lattice has appeared,
making connection to NaxCoO2 [64].

We approximate the solution of this lattice model with the
dynamical cluster approximation (DCA) [37,65]. This method
captures short-ranged spatial correlations nonperturbatively,
while all correlations outside the cluster are neglected and can
enter the symmetry-broken state [37,66]. The method is con-
trolled, in the sense that the inverse 1/Nc of the cluster sizeNc is
a small parameter, and becomes exact in the limit of Nc → ∞.
Results obtained within the dynamical cluster approximation
on the Hubbard model with only local interactions are now
regularly extrapolated to the thermodynamic limit [3,4,66–
70], where they provide unbiased solutions of interacting
fermionic lattice models that have been validated against other
numerical methods [3]. They are also used as reference data to
calibrate and cross-validate ultracold atomic gas experiments
[71]. However, in this paper we mainly present results for
Nc = 8, which in the two-dimensional Hubbard model has

been found to capture much of the interesting momentum-
dependent pseudogap physics [72–74]. Section VII contains a
brief discussion of finite-size effects beyond Nc = 8.

The DCA is based on a partitioning of the Brillouin zone
into Nc patches each centered around a momentum K [37].
The many-body self-energy �(k,ω) is then expanded into
basis functions φK (k),K = 1, . . . ,Nc which are chosen to
be 1 for k inside “patch” K and zero otherwise, so that the
self-energy is approximated as �(k,ω) ≈ ∑Nc

K φK (k)�(K,ω)
[75]. Self-energies of this form can then be obtained from the
self-consistent solution of a cluster quantum impurity problem.
The DCA coarse-graining procedure also approximates the
nearest-neighbor interaction V by a renormalized coarse-
grained form V̄ = sin(π/Nc)/(π/Nc)V . For details of this
interaction coarse graining see Ref. [76] and Ref. [77].

To explicitly study the effect of charge ordering we extend
our Hamiltonian with a symmetry-breaking term by adding a
staggered chemical potential μi = μ0e

iQri with Q = (π,π ) to
Eq. (1):

Hμ0 = H +
∑

iσ

μiniσ . (2)

This term breaks the original bipartite lattice into two sublat-
tices A and B with μi = ±μ0 for sublattice A (B), respec-
tively, thereby doubling the unit cell. In this paper, we only
consider solutions for μ0 → 0. We achieve this by adding
a small (μ0/t = 0.05) staggered chemical potential in the
first iteration. This staggered potential is switched off in the
subsequent iterations and the system is allowed to evolve
freely. Eventually, the process converges to a solution with
either a vanishing staggered density δn = 0, which indicates a
parameter regime where the electrons are distributed uniformly
over the lattice, or a state with nonzero staggered density
δn 
= 0, indicating the charge-ordered solution.

The main numerical work in solving the DCA equations
consists of solving the quantum cluster problem, i.e., ob-
taining an approximate self-energy �(K,iωn) for a given
noninteracting Green’s function. We use the continuous-time
auxiliary-field quantum Monte Carlo algorithm (CT-AUX) as
a cluster solver [78]. CT-AUX is based on the combination
of an interaction expansion [79] combined with an auxiliary
field decomposition of the interaction vertices. A detailed
description of the algorithm is given in Refs. [69,80] and the
adaptation to nonlocal density-density interactions is described
in Ref. [36]. Unlike most other methods, CT-AUX treats
nonlocal terms to all orders in a nonperturbative fashion.
An explicit frequency dependence of “effective” “screened”
interactions, as required in methods based on the single-
site dynamical mean field theory [58,60,81–83], does not
arise.

III. PHASE DIAGRAM

We first briefly discuss the results obtained at half filling
(μ = 0) and presented in Ref. [36]. The phase diagram in
the space of on-site interaction U and nearest-neighbor in-
teraction V shows metallic behavior for small U and small
V , Mott-insulating behavior for large U and small V , and
charge order for large V . This basic shape of the phase
diagram is consistent within a large range of methods, and in
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FIG. 1. Phase diagram showing half-filled charge-ordered insu-
lator (HF-COI), charge-ordered metal (CO), and isotropic metal (M),
in the space of nearest-neighbor interaction V and chemical potential
μ. Left panel: On-site interaction U/t = 0. Middle panel: U/t = 2.0.
Right panel: U/t = 4. All data are obtained for cluster size Nc = 8
and temperature T/t = 0.32.

particular with recent results using extended dynamical mean
field theory [84], the GW approximation in combination with
dynamical mean field theory [60,85], and the so-called dual
boson perturbation theory [58]. In contrast to the predictions
from early analytic theories [86–88], a nonzero strength of V

is required to drive the system to the ordered phase at U = 0.
Upon increasing the interaction strength, the charge-order line
stays above the mean field prediction of U = 4V but, at least
for U/t up to 1, closely approaches it.

We now turn to the doping evolution of the phase diagram.
Figure 1 shows the evolution of this charge-order phase
boundary upon varying the chemical potential μ, where μ = 0
denotes the half-filled state. While the model is particle-hole
symmetric around μ = 0, we focus in this paper on hole doping
and denote x = 1 − n as doping, where n denotes the density.
Results for the system without on-site interaction (U = 0) are
shown in the left panel. Weak (U/t = 2) and intermediate
(U/t = 4) interaction strength results are shown in the middle
and right panels. All results are obtained at a temperature of
T/t = 0.32.

Consistent with Ref. [36] and earlier results [58–60], a
nonzero interaction strength of V/t ∼ 0.4 is needed to estab-
lish charge order. As temperatures are higher than in Ref. [36],
the minimal interaction strength for the onset of charge order is
larger. As the chemical potential is increased, the charge-order
phase boundary shifts to larger V (blue line). Raising the
on-site interaction to weak (U/t = 2) and moderate (U/t = 4)
strength shifts the onset of charge order gradually to higher V .

At high interaction strength V , the charge-ordered state is an
incompressible, half-filled, bandlike insulator with a large gap
in the density of state. Figure 1 denotes this regime as HF-COI
(half-filled charge-ordered insulator). This regime is separated
from the uniform (isotropic) metallic phase by a compressible
“metallic” charge-ordered state, which we denote as CO (red
line).

At the temperatures studied, the transition from non-half-
filled to half-filled state and the transition from charge-ordered

FIG. 2. Phase diagram in the space of nearest-neighbor interac-
tion V and doping x = 1 − n showing charge-ordered metal (CO) and
isotropic metal (M) phases. Left panel: On-site interaction U/t = 0.
Middle panel: U/t = 2.0. Right panel: U/t = 4. All data are obtained
for cluster size Nc = 8 and temperature T/t = 0.32.

to isotropic state are all continuous. No jump in order parameter
or hysteresis could be identified. The model is known to
exhibit first-order transitions between the metallic state and
the isotropic Mott insulator, both in single-site approximations
to the extended Hubbard model [89] and in cluster approxi-
mations to the Hubbard model without nonlocal interactions
[73,78]. However, these phase transitions take place at local
interaction strengths that are larger than the ones studied here.

Figure 2 shows the data of Fig. 1 replotted against doping
x = 1 − n rather than chemical potential. The left panel shows
U/t = 0, the middle panel U/t = 2, and the right panel
U/t = 4. In this representation, the half-filled charge-order
insulating regime is compressed to the x = 0 line. It is evident
that once the critical V for charge order is reached, a charge-
ordered phase is established almost independently of doping, as
long as x � 20%. Further increase of doping eventually leads
to the destruction of the charge-ordered phase, and the system
becomes a uniform metal. Upon increasing the local interaction
strength U , the critical value of nearest-neighbor interaction V

increases due to the competition between local and nonlocal
interactions, but the phase boundary remains near x ∼ 20%
and a slight back bending is visible for larger U , indicating
that the regime of doping shrinks as V is further increased.
Numerical difficulties with the impurity solver currently make
regimes of larger nonlocal interaction strength inaccessible.

In order to establish the temperature and doping parameter
space for the charge-order phase, which corresponds to the
phase diagram typically measured in experiments [33], we now
explore the temperature dependence of the charge-order regime
shown in Figs. 3 and 4, as a function of chemical potentialμ and
doping x. The data are obtained for two representative nearest-
neighbor interaction strengths V/t = 0.76 and V/t = 1.1,
which correspond to CO metal and HF-COI, respectively. At
high temperature, the system is in a metallic state (M), at low
temperature in a charge-ordered state (CO). For doping up to
10%, the charge-order onset temperature is almost independent
of doping. As doping is gradually increased beyond 15%,
the onset temperature is rapidly suppressed and, within the
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FIG. 3. Phase boundaries for V/t = 1.1 (blue line) and V/t =
0.76 (red line) in the space of temperature T and chemical potential
μ showing charge-ordered (CO) and isotropic metal (M) phases. All
data are obtained for cluster size Nc = 8 and local interaction strength
U/t = 2.0.

parameter range we could reliably study, no charge order is
found beyond around 20% doping.

In analogy to the data shown in Figs. 1 and 2, the data
in Fig. 5 show the phase boundary between charge order
and metallic states as a function of nonlocal interaction V

and chemical potential μ. To highlight the temperature de-
pendence, we also show data at a temperature that is twice
as large. As in Fig. 3, the regime supporting charge order
shrinks substantially as temperature is raised and thermal
fluctuations suppress charge order. In addition, the “reentrant”
back-bending behavior as a function of V is only visible at low
temperature.

IV. ORDER PARAMETER

The phase boundaries of Figs. 1 through 5 were obtained by
analyzing the site-dependent density as a function of external

FIG. 4. Phase boundaries for V/t = 1.1 (blue line) and V/t =
0.76 (red line) in the space of temperature T and doping x showing
charge-ordered (CO) and isotropic metal (M) phases, for U/t = 2.0.
All data are obtained for cluster size Nc = 8.

FIG. 5. Phase boundaries for T/t = 0.64 (blue line) and T/t =
0.32 (red line) in the space of nearest-neighbor interaction V and
chemical potential μ (left panel) / doping x (right panel) showing
charge-ordered (CO) and isotropic metal (M) phases. All data are
obtained for clusters of size Nc = 8 and local interaction strength
U/t = 2.

parameters such as μ or V . A typical example is given in
Fig. 6, where the densities in sublattices A and B, nA and
nB , are plotted as a function of chemical potential, for on-site
interaction strength U/t = 2 and four different nonlocal inter-
action strengths. As the chemical potential is raised towards
half filling, a spontaneous symmetry breaking of the sublattice
densities is visible, indicating the establishment of charge
order. As mentioned previously, no first-order hysteresis could
be found in our simulations, indicating that all transitions are
continuous. Larger nearest-neighbor interactions lead to an
earlier onset of the charge order and correspondingly a larger
polarization of the density.

The order parameter for charge order, δn = nA − nB , is
shown in the left panel of Fig. 7, and the total density nave =
1
2 (nA + nB) in the right panel of Fig. 7. In the uniform phase,
δn = 0, whereas δn 
= 0 in the charge-order phase. The data

FIG. 6. Sublattice densities nA and nB as a function of chemical
potential μ, showing spontaneous establishment of charge-order sym-
metry breaking, for U/t = 2.0, Nc = 8, temperature T/t = 0.32,
and nearest-neighbor interaction strengths V indicated.
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FIG. 7. Order parameter δn = nA − nB (left) and the average total
density nave = nA+nB

2 (right) as functions of chemical potential μ for
V/t = 0.76,0.84,1, and 1.1, at temperature T/t = 0.32, U/t = 2,
and on clusters of size Nc = 8.

are shown as a function of chemical potential μ and for a
range of nonlocal interactions V , at constant on-site interaction
U/t = 2 and temperature T/t = 0.32. These data are obtained
directly from the sublattice densities shown in Fig. 6.

The total density nave, shown in the right panel of Fig. 7,
shows a clear deviation from the linear slope at the position
where charge order is established (δn 
= 0). In addition, for
larger intersite interaction strength, V/t = 1.0 and V/t = 1.1,
a pinning of the nave vs μ curve to half filling with nave = 1 is
visible, indicating an incompressible band insulator–like state
(with a robust gap in the density of states) near half filling.
As the nonlocal interaction strength V is increased, the slope
of the nave(μ) curve rapidly increases on the the ordered side
in the vicinity of the phase transition, indicating that first-order
coexistence between CO and uniform metallic state may be
possible at even larger V .

The HF-COI phase boundary of Fig. 1 (red line) was
determined by setting a cutoff value of n � 0.995. As we
will show in Sec. V, this criterion based on the density also
coincides with the region in which the system has a large
insulating gap.

The increase of the slope of the nave(μ) curve in Fig. 7
and, consequently, the narrowing of the region between
the charge-ordered insulator (nave = 1) and isotropic metal
(δn = 0) are directly responsible for the reentrant behavior
observed in Figs. 2 and 4.

The compressibility κ = ∂nave
∂μ

, Fig. 8, here obtained via
numerical derivative of the nave(μ) curve, shows that the
compressibility exhibits a clear maximum at the charge-order
onset. This maximum becomes more pronounced as V is in-
creased. The value of κ quickly approaches a roughly constant
large-μ value on the uniform side of the transition. Consistent
with expectation, the half-filled charge-ordered insulating state
shows a strongly suppressed compressibility.

The temperature dependence of the order parameter δn

is shown in Fig. 9. Similarly to increasing V , decreasing
temperature increases the size of the order parameter and
the region supporting the charge-order phase. The half-filled
charge-ordered insulator is only present in our data for

FIG. 8. Compressibility κ = ∂nave
∂μ

as a function of chemical po-
tential μ for nearest-neighbor strengths indicated. Data obtained for
U/t = 2.0 on a cluster with Nc = 8 and at temperature T/t = 0.32.

T/t = 0.32, showing that high temperatures melt the half-
filled insulator before the charge order is fully destroyed.

V. SPECTRAL FUNCTIONS

Analytically continued local spectral functions, Fig. 10,
give further insight into the evolution of the charge-order
transition as a function of doping. For clarity, we limit
ourselves to a single scan in doping, using fixed values of
U/t = 2.0, V/t = 1.1, and T/t = 0.32. These are the data
corresponding to Fig. 6.

At large doping (not shown), the system is an isotropic
Fermi liquid with a small self-energy near zero, so that no
suppression of the density of states near zero is visible. As x

is lowered from the uniform side towards the onset of charge
order (purple panel, x = 0.196), the density of states develops
a clear suppression near zero indicative of strong charge-order
fluctuations. However, a symmetry breaking is not yet visible.
Reduction of x to 0.143 (light blue panel) and 0.075 (orange
panel) shows the establishment of symmetry breaking but a

FIG. 9. Order parameter δn (left panel) and total average den-
sity nav (right panel) at temperature T/t = 0.32 (blue curves) and
T/t = 0.64 (red curves) for U/t = 2, Nc = 8, and for interactions
V/t = 1.1 (squares) and V/t = 1.0 (circles).
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FIG. 10. Density of states (DOS) for a set of chemical potentials from μ/t = −0.8 to μ/t = −2.4, as a function of frequency. Full lines:
Sublattice A. Dashed lines: Sublattice B. Values are obtained for T/t = 0.32, V/t = 1.1, and U/t = 2.0. For corresponding densities see
Fig. 7; for compressibilities see Fig. 8.

finite density of states remains at the Fermi energy, indicating
a charge-order metal. This region coincides with the region
of large compressibility visible in Fig. 8. As doping is further
reduced, the peak-to-peak distance of the minority and majority
occupancy spectral functions (full and dashed line) gradually
widens and a full gap is established by x = 0.037. At this point,
further doping transfers spectral weight from below the gap to
above the gap, while the lower gap edge stays pinned to the
Fermi energy and a large density of states is present just below
of the Fermi energy. Finally, as x reaches values near zero, the
Fermi energy detaches from the gap edge and moves towards
the middle of the gap (at x = 0, not shown), while the minority
and majority bands become fully particle-hole symmetric.

The results in Fig. 10 are obtained via analytic continuation
from noisy quantum Monte Carlo results. In this instance, we
used a Padé continuation method, which we cross-checked
against an implementation of the stochastic analytic continua-
tion method [90]. While analytic continuation does not capture
subtle features of the spectral functions, it is generally reliable
for the global features (existence of a gap or of the first major
peak, weight integrated over a large area, etc.) interpreted in
the paragraph above.

VI. ENERGETICS

Figure 11 presents an analysis of the energetics of the
charge-order transition as a function of chemical potential. The
top left panel shows the total energy Etot for the four nonlocal
interaction strengths V indicated and for U/t = 2.0, T /t =
0.32. Also shown, as dashed line, is the isotropic (NC) state
where charge order has been artificially suppressed. The phase

transition is visible in the top left panel as a slight change of
slope and as a deviation between the symmetry-broken and the
isotropic state.

The total energy consists of two parts, a single-particle
“kinetic” part 1

Nc

∑
K (εK − μ)nK (note that different practi-

tioners use different definitions of the “kinetic” energy) and
an interacting part consisting of the contributions from local
and nonlocal interaction terms. The top right panel shows the
doping evolution of the kinetic part. The phase transition is
clearly visible in the data, indicating that the large kinetic
energy term at low doping is rapidly reduced upon entering the
ordered phase. This indicates the reduction of the mobility of
electrons once the charge order is established. Nevertheless,
the contribution of this term to the total energy is small in
comparison to the interaction contribution.

The bottom two panels disentangle the interaction con-
tributions to the total energy. The bottom left panel shows
contributions from the local interaction U , while the bottom
right panel shows contributions from the nonlocal interaction
V . Note the overall magnitude of the change in comparison
to the kinetic part. We first focus on the local interaction
energy contribution HU . The charge-order insulator has a
high double occupancy at half filling, and therefore a large
contribution of the local interaction energy. As the charge
order is melted by doping, the double occupancy is rapidly
reduced and therefore the local interaction energy contribution
is reduced. This behavior of the energetics is opposite from
what would be expected in a Mott insulator, where the double
occupancy is generally rapidly suppressed upon entering the
insulating state, but qualitatively similar to what is expected at
an antiferromagnetic transition.
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FIG. 11. Energetics. Top left panel: Total energy per particle. Top right panel: Kinetic/single-particle energy. Bottom left panel: On-site
contribution to the potential energy. Bottom right panel: Nonlocal contribution to the potential energy. Dotted red lines for V/t = 0.76 denote
the metastable (NC) solution where charge order is suppressed. Error bars, where indicated, denote errors larger than the symbol size.

In contrast, when compared to the uniform phase, the
nonlocal interaction energy HV in the charge-ordered phase is
strongly suppressed in the ordered phase by the cost of increase
of local interaction HU due to the increased double occupancy
at a given site. Therefore, the charge-order transition mainly
reduces the nonlocal interaction energy at the cost of increasing
the local interaction energy, while the total change to the kinetic
energy is much smaller [36].

VII. ESTIMATION OF FINITE-SIZE EFFECTS

The dynamical cluster approximation is controlled, in the
sense that 1/Nc is a small parameter. Away from criticality,
local observables such as the order parameter or the total energy
per particle are expected to converge ∼1/Nc. At criticality,
where the correlation length is expected to be much larger than
the system size, convergence is expected to be slow. Within
our approximation, we cannot perform a rigorous finite-size
scaling at the critical temperature. However, from a limited
range of relatively small cluster sizes we can estimate the

variation of the critical region with cluster size and illustrate the
variance of quantities such as the energy or the order parameter.
Figure 12 shows such a study for the order parameter and the
critical temperature on clusters of size 8, 16, and 20. Visible
are deviations on the order of 5% in the location of the critical
doping. The size of the order parameter obtained on the larger
clusters quickly converges to the value obtained for Nc = 8. A
rigorous finite-size extrapolation, as it is done in the context
of high-temperature cold atom calculations, is not possible for
these parameters with current techniques.

VIII. CONCLUSIONS

In conclusion, we have performed a comprehensive study
of the finite-temperature phase diagram of the charge-ordered
phase away from half filling of the two-dimensional extended
Hubbard model using an eight-site DCA. We have studied
the behavior of the order parameter δn and constructed the
phase boundaries as a function of doping x, local interaction U ,
nearest-neighbor interaction V , temperature T , and chemical
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FIG. 12. Size of the order parameter as a function of doping as
cluster size is varied from Nc = 8 to Nc = 16 and Nc = 20, with
V/t = 0.76, U/t = 2, T /t = 0.32. For these parameters, a variation
in the critical doping of around 5% is visible. Away from the critical
point, the order parameter quickly converges with system size.

potential μ in detail and have delineated regimes in which
the system forms a half-filled charge-ordered incompressible
insulator, a compressible (“metallic”) charge-ordered state,
and a Fermi liquid metal. We have demonstrated that charge

order survives doping away from half filling up to around 20%
at lower temperatures, and that increasing temperature causes
the destruction of the charge order. We have shown that the
evolution of the spectral function as a function of doping shows
interesting spectral weight transfer from below the gap to above
the gap upon doping, and we have analyzed the changes to the
various energetic contributions to the system as charge order
is established or destroyed.

Our study was limited to intermediate interaction strengths
(U/t up to 4), and excluded infinite-range antiferromagnetic
fluctuations but included short-range fluctuations of all types.
Some of this limitation was due to the fact that quantum Monte
Carlo impurity solvers for systems with nonlocal interactions
suffer from a strong sign problem, even at half filling. In the
future, it will be interesting to use advances in Monte Carlo
methods and many-body theory [8,91–94] to use this formal-
ism to examine the effect of strong nonlocal interactions on the
Mott transition, and to examine the putative quantum critical
behavior of the extended Hubbard model at low temperature.
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