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Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
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The time-dependent full counting statistics of charge transport through an interacting quantum junction is
evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact
noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions
on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions.
We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature
is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing
behavior caused by correlations between single-electron transfer events.
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I. INTRODUCTION

Mesoscopic quantum dots, molecules in junctions, and
other small quantum systems coupled to baths are often
studied in transport experiments. It is possible to measure
not only the electronic current through such systems, but
also its noise and higher-order moments. The complete set
of moments determines the full counting statistics (FCS) of
the system, which grants direct access to otherwise concealed
properties: for example, the entanglement entropy, the fidelity,
and thermoelectric efficiency fluctuations.

Apart from special limits, theoretical modeling of FCS in
fermionic systems has so far been restricted to either noninter-
acting situations or approximations whose accuracy is difficult
to gauge. This difficulty is exacerbated in the experimentally
relevant cases where strong electron-electron correlations and
nonequilibrium effects are in play. A controlled and fully
quantum description of the current and its moments is therefore
sorely needed.

In this paper, we provide such a description for a model
of interacting fermions in a junction, within a numerically
exact inchworm quantum Monte Carlo (iQMC) calculation. By
computing the generating function of lead population change
(Fig. 1) we gain access to all moments of population transfer,
first-passage time distributions (FPTDs), and n-electron trans-
fer distributions. We analyze Fano factors and consider the
shapes of the distributions, which provide remarkably detailed
information about the dynamics of single tunneling events. We
extract indications of queuing effects in the presence of strong
interactions.

The paper proceeds as follows. Section II will motivate the
full counting statistics, and Sec. III provides a brief overview
of the main definitions and concepts used in FCS. In Sec.
IV we describe how FCS can be obtained within iQMC,
specializing to a particular model. Next, we present results for
noninteracting (Sec. V) and interacting (Sec. VI) systems. The
effect of interactions, temperature, and voltage on the first and
second charge cumulants is discussed, and we further explore
how first-passage times and n-particle passage probabilities

depend on the initial preparation. Finally, we discuss our
conclusions in Sec. VII.

II. BACKGROUND AND MOTIVATION

The transfer of charges across a small system, such as a
molecular electronic junction or a mesoscopic quantum dot,
is fundamentally a stochastic process [1]. Like any stochastic
process, it is fully characterized by time-dependent probability
distributions [2]; in this case, P (�n,t), where�n is the number
of charges transferred by time t [3]. Fluctuations in the electron
current have long been known to provide experimentally
accessible information not contained in the expectation value
of the current [1,4], such as dwell times [5] and transmission
probabilities [6].

Current noise, the second moment of the current, has been
of interest as a way to investigate reflection processes and
traversal times in molecular junctions [7–10] and propagation
of correlated electron-hole pairs in photon-assisted transport
[11–13]. A great deal of work has focused on fluctuations in
periodically driven systems, including the prediction [14,15]
and discovery [16] of noiseless Lorentzian pulses, or “levi-
tons.” Quantum noise has also been used to extract effective
quasiparticle charges e∗ of transmitted electrons due to Cooper
pair formation in superconducting junctions (e∗ = 2e) [17–
19], the quantum Hall effect (e∗ = e/3) [20], or two-particle
inelastic backscattering processes in the Kondo regime (e∗ =
5e/3) [21–26].

The noise-to-signal ratio, also known as the Fano factor
F , can be used to characterize charge transfer statistics. It
takes the value F = 1 when the charge transfer is Poisso-
nian (completely uncorrelated), as generally occurs for small
transmission probabilities [27] and weak coupling between the
molecule and bath [28]. Super-Poissonian shot noise (F > 1)
has been observed in single [29] and double [30,31] quantum
dot junctions and is generally associated with strong electron
bunching and quasiparticle formation [1] that may occur in the
transient [32] or steady-state [24,26] regimes. In addition, the
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FIG. 1. Real and imaginary parts of the generating function of
lead population change Z(λ,t) at inverse temperature β = 50/�, for a
strongly correlated quantum junction in the zero-bias (left) and finite-
bias (right) cases.

Fano factor can be tuned so that it is sub-Poissonian (F < 1) in
quantum dot [33,34] and graphene nanoribbon [35] structures.

Instead of focusing only on the second moment of the cur-
rent, it is possible to consider the full counting statistics (FCS)
associated with the individual charge transfer events from an
underlying moment-generating or characteristic function [2],
and recover all higher-order moments and cumulants. This idea
was pioneered by Levitov and Lesovik [14,36], who evaluated
the steady-state FCS for noninteracting systems.

The FCS formalism for charge can be connected to en-
tanglement entropy [37] and fidelity [38] in noninteracting
systems, and was also generalized to a heat and work FCS
giving access to efficiency fluctuations in thermoelectric junc-
tions [39,40]. Parallel with the development of the field of
spintronics, the FCS of spin currents has been developed in
regular metallic lead junctions [41–44] and magnetic tunnel
junctions (MTJs) [45–47], and can be applied, for example,
to the detection of spin-singlet pairs in the electron counting
statistics [42,48]. In the steady state, the second cumulant
can be used to compute the zero-frequency current power
spectrum [49,50], and in recent years a theory of FCS has
been proposed which also gives access to frequency-dependent
noise spectra [34,51,52]. Theoretical [53–55] and experimental
[56] investigations have demonstrated that the generating
function satisfies steady-state fluctuation-dissipation relations
equivalent to the condition for detailed balance, although recent
work indicates violation of detailed balance when bound states
are established with circular probability currents in the steady
state [57] and modification of detailed balance when the system
is undergoing transient evolution [58]. It has also been shown
that for noninteracting electrons, the zeros of the generating
function all lie on the negative real axis [59–61], so that
the position of zeros in the complex plane can shed light on
interaction effects in the transport [62].

Recently, the time dependence of higher-order cumulants
has become accessible to experiment [52,63,64], motivating
the study of transient cumulant generating functions and
related objects which reveal more information on dynamics
than the current or particle number. One such quantity, which

is closely related to the generating function, is the waiting time
distribution (WTD). The WTD is the probability distribution
characterizing the time separating successive charge detection
events [65–67]. Experimentally, WTDs can be used to study
the effect of coherence [68] and complex internal molecular
structures such as double quantum dot [69–72] or normal-
superconducting junctions exhibiting Andreev reflection [73–
75], as these effects can alter the traversal times for electrons
crossing the system. At the level of practical quantum electron-
ics, these dynamical effects determine the maximum operation
rate for devices [76].

Despite this flurry of theoretical activity, computing the
FCS for generic interacting fermionic systems has so far
proven to be challenging. In noninteracting systems, there
now exist robust approaches to the study of both steady-
state and transient FCS, including an appealing coherent
state path-integral nonequilibrium Green’s function formal-
ism (PI-NEGF) [45,77–79] which can be perturbatively ex-
tended to interacting cases [79–81]. Exact results are avail-
able for steady-state FCS and noise characteristics of the
AIM in the Fermi-liquid regime and at the Toulouse point
[22,23,82–85]. The Fermi-liquid theory is, however, valid
only for low voltages and temperatures [21,84,86–89]. Sev-
eral approximate approaches to FCS in interacting systems
have been successfully employed in appropriate regimes: a
noncomprehensive list includes various perturbative expan-
sions [39,48,50,53,83,88–94] and quantum master-equation
approaches [51,55,57,66,68,95–101]. Nonperturbative numer-
ical approaches also exist, but for models which do not capture
the full complexity of interacting fermionic transport. These
include hierarchical equations of motion in the spin-boson
model [102] at high temperatures, and the density matrix
renormalization group for the interacting resonant level model
at its self-dual point and at zero temperature [103–105]. Also,
an equilibrium determinant QMC method was recently applied
to cold atomic gases [106].

To date, no numerically exact method has accessed FCS in
a generic nonequilibrium interacting fermionic model; nor is
a method currently available which is (even in principle) suit-
able for arbitrary temperatures, bias voltages, and interaction
strengths. In fact, this is largely true even for the calculation
of the second cumulant, or noise. In this paper, we provide
such a numerically exact method for computing the FCS, based
upon the recently developed inchworm diagrammatic quantum
Monte Carlo (iQMC) method [107].

III. FCS: THEORY AND GENERAL CONSIDERATIONS

In a charge detection experiment, one studies a system
in which some regions, labeled �, are called “leads.” Lead
� is found to contain n�(t) electrons on any given measure-
ment of its total population at time t . The change in charge
�n� = n�(t) − n�(t0) on the lead is measured between some
initial time t0 and the measurement time t > t0. The FCS
formalism aims to construct a generating function Z(λ,t) for
the probability distribution characterizing �n�, determined by
the associated operator �N̂� (we suppress lead index � from
now on). For this purpose, an auxiliary counting field λ is
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introduced, such that

Z(λ,t) ≡ 〈eiλ�N̂ 〉 =
∑

�n∈Z
P (�n,t)eiλ�n. (1)

Here, P (�n,t) is the probability that the measured number
of electrons has changed by the integer �n after time t . The
distributions P (�n,t) can be obtained from the generating
function via

P (�n,t) =
∫ π

−π

dλ

2π
Z(λ,t)e−iλ�n, (2)

and all moments Mk(t) and cumulants Ck(t) can be extracted
by taking successive derivatives with respect to λ:

Mk(t) ≡ 〈(�N̂ )k〉 = lim
λ→0

∂kZ(λ,t)

∂(iλ)k
, (3)

Ck(t) ≡ lim
λ→0

∂k ln Z(λ,t)

∂(iλ)k
. (4)

The Mk and Ck contain equivalent information; in particular,
we note that C1 = M1 and C2 = M2 − M2

1 relate the first
and second moments. Of particular interest [45,77] is the
probability distribution for no charges passing across the
junction, which defines the idle time probability 	(t):

	(t) ≡ P (0,t) =
∫ π

−π

dλ

2π
Z(λ,t). (5)

This can be used to extract the first-passage time distribution
W (t):

W (t) = −d	(t)

dt
, (6)

which describes the probability distribution of the time sepa-
rating initialization of the counting experiment from the first
detection of a charge transfer event [66].

The counting statistics of any operator Â(t) can be evaluated
by way of an effective Hamiltonian transformation originally
formulated by Levitov and Lesovik [36]. We will primarily
be interested in the special case Â(t) = N̂L. The generating
function for the moments of a change �a in the value
associated with �Â(t) is given by [49]

Z(λ,t) = Tr[ρ̂0Û
†
− λ

2
(t,t0)Û λ

2
(t,t0)], (7)

in terms of the modified, operator-specific propagator Ûγ (t,t0),
which is defined by [49]

Ûγ (t,t0) ≡ eiγ Â(t)Û (t,t0)e−iγ Â(0). (8)

The modified propagator itself can be written as a time-
ordered integral with respect to a modified Hamiltonian:

Ûγ (t,t0) = T exp

[
− i

h̄

∫ t

t0

dτ Ĥγ (τ )

]
, (9)

where

Ĥγ (t) = eiγ Â(t)Ĥ (t)e−iγ Â(t) − h̄γ ∂t Â(t). (10)

This satisfies the relation ih̄∂t Ûγ (t,t0) = Ĥγ (t)Ûγ (t,t0). We
express the generating function of Eq. (7) as a time-ordered
integral over the full Keldysh contour C = (C+,C−), composed

of an “upper” branch C+ and a “lower” branch C− [108]. Using
the contour representation, Z(λ,t) is given by the compact form

Z(λ,t) = Tr

{
ρ̂0T̂C

[
exp

(
− i

h̄

∫
C
dz Ĥγ (z)

)]}
, (11)

where T̂C orders times later on the contour to the left.
The auxiliary field γ takes a different value on each branch:

γ (z) = λ

2
, z ∈ C+,

γ (z) = −λ

2
, z ∈ C−.

(12)

When λ = 0, it is immediately apparent that the generating
function Z(λ,t) = 1 for all t . In general, Z(λ,t) is periodic in
λ with a periodicity of 2π . Any value of λ �= 2πj for j ∈ Z
means that the Hamiltonian depends on the contour branch,
such that time-reversal symmetry is explicitly broken.

IV. MODEL AND MONTE CARLO ALGORITHM

A. Model and observables

We now specialize the discussion to the concrete case of
the nonequilibrium Anderson impurity model (AIM) [109].
The model’s Hamiltonian can be written as follows:

Ĥ = ĤD + ĤB + ĤV . (13)

ĤD describes a small, interacting “dot” subsystem; ĤB depicts
a set of large, noninteracting lead subsystems; and ĤV is
a hybridization Hamiltonian coupling the dot and the leads.
These three terms take the following form:

ĤD =
∑

σ

εσ d̂†
σ d̂σ + Ud̂

†
↑d̂↑d̂

†
↓d̂↓, (14)

ĤB =
∑
kσ,�

εkσ,�â
†
kσ,�âkσ,�, (15)

ĤV =
∑
kσ,�

(Vkσ,�â
†
kσ,�d̂σ + H.c.). (16)

Here, the d̂σ denote dot annihilation operators labeled by a spin
index σ , while the âkσ,� operators signify lead annihilation
operators labeled by a spatial index k, spin index σ , and
lead index �. We assume two leads, denoted � = L,R. The
εσ represent dot level energies, and the charging energy
U determines the strength of Coulomb repulsion between
electrons. In this paper, we set εσ = −U

2 (the particle-hole
symmetric case, to which our method is not in any way limited).
The hybridization parameters Vkσ,� couple the lead states to
the dot and the εkσ,� enumerate the energies of lead states. The
system is initially prepared in the state ρ0 = ρL ⊗ ρD ⊗ ρR ,
a decoupled equilibrium state of Ĥ0 ≡ ĤD + ĤB in which
the chemical potential in the leads is given by μL = V/2,
μR = −V/2. ρD is chosen to be in one of the four eigenstates
of HD: the empty state |0〉; the singly occupied spin-up and
spin-down states |σ 〉, with σ = ↑, ↓; and the doubly occupied
dot state |↑ ↓〉. These states will be denoted by the label φ in
what follows.
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The εkσ,� and Vkσ,� are completely determined by the
coupling density

��(ω) = π
∑

k

|Vk,�|2δ(ω − εkσ,�). (17)

We choose this to be a flat band with a smooth cutoff [110]:

��(ω) = ��

(1 + eν(ω−�c))(1 + e−ν(ω+�c))
. (18)

In what follows, we set �� = 1
2 such that � ≡ ∑

�

�� = 1

determines our unit of energy. We take the leads’ band cutoff
�c to be 10�, and their edge width 1

ν
to be 0.1�.

At the initial time t0 = 0 of the simulation, a coupling
quench is performed and the subsystems are suddenly coupled
by the introduction of HV into the Hamiltonian. This kind
of switch-on is often referred to as the partitioned approach,
and has been contrasted in the quantum transport literature to
partition-free approaches (such as a voltage quench) in which
the dot-lead coupling is established before a bias is added to
the lead energies [111]. We note in passing that a partition-
free voltage quench has also been explored within inchworm
QMC [112], by augmenting the finite Keldysh branches with
an imaginary-time Matsubara branch, thus obtaining the full
Konstantinov-Perel’ contour [113].

In the present context, we are interested in the FCS for
this model. We therefore set Â(t) → N̂L in the modified
Hamiltonian of Eq. (10), where N̂L ≡ ∑

kσ â
†
kσ,Lâkσ,L is the

particle-number operator in lead L. This counting function
describes the moments of population changes (rather than
currents), but also provides access to the mean time-dependent
current flowing out of the lead, IL(t) = 〈dN̂L(t)/dt〉, by way of
a time derivative. The current noise and higher-order cumulants
can only be accessed at steady state. For example, the noise

SLL(ω = 0) ≡ lim
t→∞

∫
dτ 〈�ÎL(t + τ )�ÎL(t)〉, (19)

where �IL = IL − 〈IL〉, is related to the long-time limit of the
second cumulant [49]. We can therefore write

lim
t→∞IL(t) = lim

t→∞
C1(t)

t
, (20)

SLL(ω = 0) = lim
t→∞

C2(t)

t
. (21)

From the first and second cumulants, one can define the time-
dependent Fano factor for the population [114]

F (t) = C2(t)

C1(t)
. (22)

In the long-time limit, this converges to the Fano factor (up to
a scaling factor of 2q) [5,34] for the current,

SLL

2qIL

= SLL

SP

= lim
t→∞

F (t)

2q
. (23)

This is the Fano factor usually observed in steady-state trans-
port experiments, where q is the charge of an individual carrier
and SP = 2qIL is the Poisson value of the shot noise [1,5,29].

B. FCS with inchworm Monte Carlo

Within the modified Hamiltonian picture of Sec. III, the
problem of evaluating a generating function can be mapped
onto that of evaluating the time dependence of a unit operator
propagated by the modified Hamiltonian. For the AIM with
N̂L as the counting field, using the Baker-Hausdorff lemma
and the fact that N̂L commutes with Ĥ0 one can show [45]
that the modified Hamiltonian of Eq. (10) is equivalent to the
AIM, but with lead-molecule coupling terms that acquire a
branch-dependent phase:

Ĥγ (z) = eiγ (z)N̂LĤ e−iγ (z)N̂L

= Ĥ ({Vkσ,�(z; λ)}),
(24)

Vkσ,�(z; λ) =
{

Vkσ,�e
i λ

2 δ�L , z ∈ C+
Vkσ,�e

−i λ
2 δ�L , z ∈ C−.

(25)

The generating function in Eq. (11) may then be evaluated
by a standard Keldysh hybridization expansion [110,115,116].
Whereas usually in such expansions an operator corresponding
to some observable is applied at the fold of the Keldysh contour,
here no such operator is needed, and the full counting statistics
are given directly in terms of a modified propagator:

Zφ(λ,t) = pφφ(t+,t−; λ). (26)

In this expression, pφφ′(z1,z2; λ) is analogous to the dressed
restricted propagators used in propagator noncrossing ap-
proximations [117–119], in bold-line QMC [120–124], and
in inchworm QMC [107,112,119,125,126], but modified to
include the auxiliary field via Eq. (25):

pφφ′(z1,z2; λ) ≡ 〈φ|TrB{ρ0e
−i

∫ z1
z2

Ĥλ(z)dz}|φ′〉,
Ĥλ(z) ≡ Ĥ0 + ĤV ({Vkσ,�(z; λ)}).

(27)

When pφφ′(z1,z2; λ) is expressed in the interaction picture
and expanded in powers of the hybridization, it becomes a
weighted sum over configurations C, defined by the set of
contour times at which hybridization events (including dot and
lead operators) occur. Each configuration sampled at a given
diagram order n corresponds to the insertion of n hybridization
lines connecting 2n “kink” times on the Keldysh contour where
a particle of given spin σ is added to or removed from the dot.
We illustrate a diagram of order n = 0 and another of order
n = 3 in Fig. 2, where the full propagator is represented by
a thick black line, the bare atomic propagator by a thin black
line, and paired hybridization events by wiggly lines.

The full propagator can then be rewritten as a sum over dia-
grams, which can be stochastically sampled by diagrammatic
Monte Carlo algorithms [127]:

pφφ′(z1,z2; λ) =
∞∑

n=0

∑
C

w
(n)
loc(C)w(n)

hyb(C; λ). (28)

Here, the first summation is over the expansion order n and the
second summation is over all configurations C = {z1, . . . ,z2n}
corresponding to the 2n kink times at a given order. The
wloc are products of interacting (but purely local) atomic state
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FIG. 2. Diagrammatic expansion of the full propagator (upper
half of the panel) and the corresponding term in the propagator
with contour branch indices exchanged. Thick lines denote a full
propagator, thinner lines a bare propagator, wiggly lines a pair of
hybridization events, and the “X” the fold in the Keldysh contour.
The elements marked in red are those modified by the counting field,
resulting in the breaking of time-reversal symmetry for λ �= 0.

propagators:

w
(n)
loc(C) = (−i)(n+−n−)

2n−1∏
i=0

p
(0)
φiφi+1

(zi,zi+1),

p
(0)
φφ′(z1,z2) = 〈φ|TrB{ρ0e

−i
∫ z2
z1

HDdz}|φ′〉. (29)

Their sign depends on the number of kinks on each branch
of the contour, n+ and n− = 2n − n+. The whyb denote a
determinant given by a sum over all possible lead operator
pairings X. Each term in this sum is given by the product of
hybridization functions �̃λ = ∑

� �̃λ
� at the corresponding set

of time pairs, with the sign given by the permutation generating
that pairing [127]:

w
(n)
hyb(C; λ) =

∑
X

sign(X)
n∏

i=0

�̃λ(zi,zXi
). (30)

These hybridization functions, which are dressed by the
counting field in a contour-time-dependent manner, must be
specified on the z1 and z2 axes:

�̃λ
� (z1,z2) = e−iλ(1−δνν′ )δ�LθC(z1 − z2)�>

� (z1,z2)

+ eiλ(1−δνν′ )δ�LθC(z2 − z1)�<
� (z1,z2). (31)

Here, θC is the Heaviside function ordering times along the
Keldysh contour; ν,ν ′ ∈ {C+,C−} are the branch indices of z1

and z2, respectively; and L is the lead for which FCS is being
evaluated. Due to the modified coupling in Eq. (25), the phase
factors in the dressed hybridization function (31) cancel when
z1 and z2 lie on the same branch, such that only hybridization
lines that cross the folding time tmax of the Keldysh contour are
modified by the counting field (see the red elements in Fig. 2).
The undressed lesser and greater hybridization components

�<
� (t1,t2) = −i

∫ ∞

−∞

dω

π
e−iω(t1−t2)��(ω)f (ω − μ�),

�>
� (t1,t2) = i

∫ ∞

−∞

dω

π
e−iω(t1−t2)��(ω)[1 − f (ω − μ�)] (32)

can be expressed in terms of the level width function ��(ω) as
defined in Eq. (17), and are parametrized only by the physical
times t1 and t2 corresponding to the contour times z1 and z2.

Exact numerical approaches to the investigation of dy-
namics in quantum many-body systems typically suffer from
an exponential scaling of computational cost with time. In
real-time Monte Carlo methods, this manifests in the dy-
namical sign problem: an exponential growth of stochastic
errors with increasing time. However, the inchworm algo-
rithm, as applied to the real-time hybridization expansion
[110,115,116,121,127,128], has been shown to bypass the
dynamical sign problem in a wide variety of parameters. This
was not only shown for the AIM [107,112], but also in the
spin-boson model [119,125] and, within the dynamical mean
field approximation, for lattice models [126].

Here, the inchworm algorithm is used to efficiently sum
the expansion described above, by reusing data obtained from
propagators on shorter time intervals to construct propagators
on longer time intervals [107]. In the top panel of Fig. 3, a
snapshot of an intermediate step in the inchworm procedure
is illustrated for a branch-independent Hamiltonian without
a counting field. Each of the z1 and z2 axes shown consists
of an “unfolded” Keldysh contour containing times ordered
according to the structure [t+0 , . . . ,tmax, . . . ,t

−
0 ]. In each inch-

worm step, propagators are extended along one time direction
(this is called “inching”), marked by the green arrows going
to the right. In dark gray, we show time points unneeded for
the calculation (as we can always select one contour time to
appear later on the contour than the other). The white squares
correspond to equal time propagators, which can be evaluated
analytically. The blue squares correspond to time arguments
for which the propagator is already known from previous
steps, while the light red squares correspond to arguments at
which the propagator may be evaluated immediately, given the
currently known propagators. The dark red squares represent
values to be computed at a later step. In light gray, we show
time points which can be obtained from reflection about the
z1 = −z2 axis (marked by a white dashed diagonal line), which
can be seen as time-reversal symmetry: the propagators on one
side of this symmetry element can be obtained from those on
the other via the relation

pφφ′(z1,z2) = p∗
φ′φ(z̃2,z̃1). (33)

Here, a contour time argument marked by a tilde z̃ denotes the
same physical time as that of z, but on the opposite contour.

Due to time-reversal symmetry, in the original formulation
of the inchworm algorithm the total number of propagators
computed is 1

4 ( t
Δt

)2, as only one quadrant of the two-time
plane needs to be explicitly evaluated. Extending a propagator
to the right in the quadrant used is identical to extending a
symmetrically placed propagator up in the mirrored quadrant,
so that time-reversal symmetry is also maintained in the
inching direction.

In diagrammatic terms, time-reversal symmetry is illus-
trated in Fig. 2. In the upper part of Fig. 2, the cross-branch
hybridization line corresponds to a factor of �>(tb,ta) in the
propagator, which depends only on physical times and not on
the branch indices. When the contour branches of all times
appearing in this diagram are flipped, one obtains the expansion
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FIG. 3. Schematic illustration of an intermediate step in the
inchworm in the inchworm propagation scheme when (top) time-
reversal symmetry applies, and (bottom) when it is broken by the
counting field. Here, each square denotes a propagator restricted to
lie between two time arguments. Dark gray squares are unnecessary
propagators, white squares are trivial propagators, blue squares are
known propagators from previous steps, and red squares are unknown
propagators. The lighter red squares are propagators which can be
calculated in the present step, with the green arrows representing
propagation direction. The dashed white line marks the symmetry
element of time reversal, and the white circles are two propagators
connected by time reversal, as illustrated diagrammatically in Fig. 2.

in the lower part of Fig. 2. For example, the hybridization factor
�>(ta,tb) is replaced by �>(tb,ta) = −[�>(ta,tb)]∗. All other
factors are similarly conjugated, and so Eq. (33) holds.

By contrast, in the presence of the counting field we evaluate
the propagator for nonzero λ, and the two contour-reflected di-
agrams are modified as illustrated by the red elements in Fig. 2:
the dressed cross-branch hybridization factor, denoted by the
red wiggly line, is replaced by eiλ�>(ta,tb) (upper diagram)
and eiλ�>(tb,ta) = −eiλ[�>(ta,tb)]∗ (lower diagram). Due to
the unconjugated prefactor eiλ, Eq. (33) is no longer valid, and
the two quadrants to either side of the z1 = −z2 line must be
evaluated separately, as illustrated in the lower panel of Fig. 3.
Since we no longer mirror the data or enforce the symmetry,
an additional spurious numerical breaking of time-reversal
symmetry due to the asymmetry in inching direction can occur.
To avoid this, we inch to each time point from the two possible
directions and set the result to the average (illustrated by the

green arrows, now going both right and up). This increases
the number of simulations by an additional factor of 2, so that
( t
Δt

)2 are needed in total, but the overall quadratic scaling with
the time step remains. We have found that bidirectional inching
generally provides higher quality data for a given amount of
computer time, even without the counting field.

V. BENCHMARK AND VALIDATION FOR THE
NONINTERACTING SYSTEM

A. Noninteracting FCS

In the absence of interactions (when U = 0), the FCS
following the coupling quench can be exactly obtained by
the path-integral nonequilibrium Green’s function (PI-NEGF)
method, which provides an exact solution in the absence of
electron-electron interactions [45]. The generating function for
a noninteracting AIM is given by the ratio of two Fredholm
determinants:

Z(λ,t) = det (G̃−1(z1,z2))/ det (G−1(z1,z2)). (34)

Here, G is the matrix of two-time Green’s functions for the full
molecular junction in Keldysh-rotated space [108,129], such
that the times z1,z2 correspond to pairs of times on the Keldysh
contour with a folding point at tmax = t . The Green’s function
is given by

G−1(z1,z2) = g−1(z1,z2) − �L(z1,z2) − �R(z1,z2), (35)

where g denotes the Green’s function of the isolated dot and
G̃ = G − (�̃L − �L) is a modified Green’s function that de-
pends upon the counting field λ in the left lead. When expressed
in the Keldysh-rotated representation, the two hybridizations
are related via

�̃�(z1,z2) = exp

(
iσx

λ

2

)
��(z1,z2) exp

(
−iσx

λ

2

)
, (36)

where σx is the Pauli spin matrix. It is easy to show that this is
equivalent to Eq. (31) when the Keldysh rotation is reversed.
Further details on the implementation of Eq. (34) can be found
in Refs. [45,77,78]. It was also shown in these works that
the expression (34) correctly reduces to the Levitov-Lesovik
formula for the generating function in the long-time limit
[14,36], which can be written as

Z(λ,t) = exp

{
t

∫
dω

2π

∞∑
k=1

(−1)k+1

k
Tr[T (ω)

×{(eiλ − 1)[1 − fR(ω)]fL(ω)

+ (e−iλ − 1)[1 − fL(ω)]fR(ω)}]k
}
. (37)

Here, f� denotes the Fermi function of lead � and T (ω) is
the transmission probability for electrons to pass through the
molecule.

In this work, the PI-NEGF generating function is computed
for the noninteracting case without spin degeneracy, as in
Ref. [45]. However, we are interested in the AIM. The U = 0
generating function for the AIM can be constructed from that
of the single-electron model as a product:

Z
(AIM)
σ,σ ′ (λ,t) = Z(dot)

σ (λ,t)Z(dot)
σ ′ (λ,t). (38)
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FIG. 4. Real and imaginary parts of the generating function from
iQMC (left) compared to the exact result (right) at U = 0�, V = 0�,
and β = 50/�.

The σ , σ ′ subscripts denote the two spins. In the cases to
be shown here, the system is initially decoupled from the
leads with the dot in the unoccupied state |0〉, such that in the
noninteracting calculations, each independent model begins
with an unoccupied dot. The dot-bath coupling is then turned
on at the quench time t0 = 0.

B. QMC results for the noninteracting system

To verify the correctness of the iQMC method, we begin
by performing calculations for the noninteracting case U = 0
and comparing the results with exact results obtained from
the PI-NEGF method. This formalism provides us with an
independent verification of the method: as the iQMC calcu-
lation is based on a hybridization (rather than an interaction)
expansion, the noninteracting case is nontrivial and embodies
a rigorous test of the method’s accuracy [115]. In Fig. 4, we
present the time evolution of Z(λ,t). The two panels on the
left are generated from iQMC, while the two panels on the
right are exact results. As might be expected, Z(λ = 0,t) = 1
is satisfied to within the numerical errors. The following
symmetry relations are also apparent:

Re[Z(λ,t)] = Re[Z(π − λ,t)],

Im[Z(λ,t)] = −Im[Z(π − λ,t)]. (39)

We note that the time evolution of both real and imaginary parts
of Z exhibit monotonic decay towards zero after a transient
time scale on the order of 1/�.

In order to explore the correspondence between the nu-
merical data and the exact result in more detail, we plot a
series of cuts across the data in Fig. 5. Each curve shown here
corresponds to a different value of λ in the interval [−π,π ].
The results from iQMC are shown in solid red, together with
exact data in dashed black. The two sets of curves appear to be
in very good agreement, with slight numerical deviations (on
the order of 1%) in the iQMC results visible at long times.

The introduction of a finite voltage causes the components
of the generating function to strongly oscillate as a function of
time, as shown in Fig. 6. This indicates oscillations in cumu-
lants of all orders, reflecting a universal phenomenon predicted
by Flindt et al. in Ref. [63] and later observed experimentally

FIG. 5. Real and imaginary parts of the generating function from
iQMC (solid red) compared to the exact result (dashed black) at U =
0�, V = 0, and β = 50/�.

[64]. Physically, the introduction of a finite-bias enhances the
short-time “ringing” behavior, as has previously been observed
for the lowest cumulant (the current) [118,130]. As the FCS
in the presence of a voltage bias is substantially richer, it is
instructive to consider a detailed comparison of specific cuts
again (see Fig. 7). Remarkably, it is observable from this figure
(which used less computational resources than Fig. 5) that at
higher voltages it is easier to converge the numerics. This is a
notable property of real-time iQMC [122,131], which makes
its regime of efficient applicability different from that of, e.g.,
low-energy wave-function methods.

Knowledge of the generating functional provides access to
all moments and cumulants in principle, but the numerical
exercise of obtaining them in practice may not be trivial. One
of the main technical difficulties stems from the fact that within
iQMC, the relative error in these data is generally larger at small

FIG. 6. Real and imaginary parts of the generating function from
iQMC (left) compared to the exact result (right) at U = 0�, V = 10�,
and β = 50/�.
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FIG. 7. Real and imaginary parts of the generating function from
iQMC (solid red) compared to the exact result (dashed black) at U =
0�, V = 10�, and β = 50/�.

λ values. This is for two reasons: first, part of the statistical
iQMC error is independent of the value of the observable.
This source of error is strongly mitigated by the inchworm
algorithm, but not completely removed, and results in noisy
numerical derivatives. Second, there is a small systematic
error due to the time discretization. This error is difficult to
fully converge, and can sometimes be significant: for example,
consider how the imaginary part of Z(0,t) visibly deviates from
its exact value of zero in the lower panel of Fig. 5.

Therefore, if we evaluate λ derivatives of Z(λ,t) in the
limit of small λ by a finite difference formula limλ→0

dZ(λ,t)
dλ

�
Z(�λ,t)−Z(0,t)

�λ
, the value of �λ cannot easily be taken to

zero without investing unjustified amounts of computer time.
Furthermore, the oscillatory form of the function hints that an
increasingly small value will be needed as one propagates to
longer times.

However, the dependence of the moments and cumulants
on �λ can be understood at long times by considering the
Levitov-Lesovik formula for the current cumulant generating
function S(λ) ≡ lim

t→∞
ln Z(λ,t)

t
, with Z(λ,t) given by Eq. (37). If

this is inserted into the finite-difference derivative with respect
to a small shift �λ, and the integrand is expanded to linear
order in �λ, one arrives at the following expressions for the
logarithmic and direct derivatives:

d ln Z(λ,t)

d(iλ)

∣∣∣∣
λ=0

= lim
�λ→0

t

∫
dω

2π

× Tr[T (ω)[fL(ω) − fR(ω)]], (40)

dZ(λ,t)

d(iλ)

∣∣∣∣
λ=0

= lim
�λ→0

1

i�λ

[
exp

{
i�λt

∫
dω

2π
Tr[T (ω)

× [fL(ω) − fR(ω)]]
}

− 1

]
. (41)

FIG. 8. First cumulants of the particle number in the nonin-
teracting case U = 0 are shown, as obtained from iQMC. Finite-
difference derivatives of ln Z (thick lines) and of Z (dashed lines) are
plotted against the essentially exact benchmark PI-NEGF logarithmic
derivative for �λ = 0.001 (red crosses). The inverse temperatures are
β = 0.4/� (top) and β = 50/� (bottom).

Thus, for finite but small �λ the first cumulant [which corre-
sponds to Eq. (20)] exhibits no dependence on �λ, whereas
the first moment oscillates at long times as exp (∼ i�λt).
This implies that numerical derivatives taken from ln Z will
converge at a finite �λ in the long-time limit, while the error
in numerical derivatives taken directly from the generating
function will diverge.

To see this in practice, consider Fig. 8. Here, dot populations
normalized by time [C1(t)/t] are plotted. These plots were
obtained from both the logarithmic (thick black lines) and
direct (dashed black lines) derivatives with a symmetric bias
of V = 1�. Cumulants are obtained from both derivatives for
�λ = 0.6 and compared with the exact result (red crosses)
obtained from PI-NEGF at �λ = 0.001. This is done for high
temperatures (β = 0.4�, upper panel) and low temperatures
(β = 50�, lower panel). As suggested by the preceding analy-
sis, the convergence to the �λ → 0 limit is substantially faster
when logarithmic derivatives are taken. While the direct and
logarithmic derivatives are in agreement at short times, the
direct derivative diverges from the exact result at long times.
Without performing a full error analysis, it is difficult to deter-
mine whether the logarithmic derivative differs significantly
from the exact result. At low temperatures, convergence is
slower, and the steady-state value (equivalent to the long-time
limit of the left current) increases.

We repeat this analysis for the normalized second cumulants
C2(t)/t of the population in Fig. 9. The second cumulant
C2(t) increases linearly with time [49,63], and is related
at long times to the current noise in the left lead SLL via
Eq. (21). The cumulant extracted from the iQMC data is in
excellent agreement with the exact result event for relatively
large values of �λ when the cumulant is obtained from the
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FIG. 9. Second cumulants of the particle number in the noninter-
acting case U = 0� are shown, as obtained from iQMC. Cumulants
obtained from finite-difference derivatives of ln Z (thick lines) and of
Z (dashed lines) are plotted against the essentially exact benchmark
PI-NEGF logarithmic derivative for �λ = 0.001 (red crosses). The
inverse temperatures are β = 0.4/� (top) and β = 50/� (bottom).

logarithmic derivative, but requires convergence to decreasing
�λ at smaller times when the direct derivative is used. We note
that due to the symmetry of Eq. (39), it is in principle only
necessary to evaluate ln Z(λ,t) at one value of λ to evaluate
both the first and second cumulants. In practice we used λ = 0
and 0.6 to eliminate some of the systematic errors due to the
finite-time discretization.

VI. RESULTS IN THE PRESENCE OF INTERACTIONS

We continue to discuss quantities of physical interest, as
obtained from our calculations. In what follows, we will
show noninteracting results for comparison, which could be
compared to the PI-NEGF data as in the previous section. Such
comparisons were performed and agreement was found, but for
the sake of brevity this is no longer shown from here onwards.
Furthermore, we do not perform the full (and costly) error
analysis needed to rigorously define confidence intervals in
the inchworm algorithm [107,112], but roughly estimate that
numerical errors are on the order of several percent.

A. FCS and shot noise

The FCS in the presence of interactions is shown at two
voltages in Fig. 1, at equilibrium and in the presence of a bias
voltage. At first glance, this looks only subtly different from
the noninteracting results in Figs. 4 and 6. However, these
seemingly small changes in the contour plot encode entirely
different physics. To see this, we will explore some of the
properties that can be derived from the FCS.

First, we study the effect of interactions and temperature on
the noise and Fano factor. Figure 10 shows the evolution of the

FIG. 10. Evolution of C2(t) (upper panel) and the Fano factor
F (t) = C2(t)/C1(t) (lower panel) for voltage V = 1� and initial
condition |0〉. To the right extreme of the plot, we show the asymptotic
values of these quantities, obtained from linearly fitting the cumulants
at long times. The exact values of the noninteracting noise and Fano
factor from Levitov-Lesovik theory are shown as filled circles.

time-normalized second moment C2(t)/t in the upper panel.
In the lower panel, the population Fano factor F (t) defined
in Eq. (22) is shown, at fixed voltage V = 1� and for the
initially empty dot state. The high- (low-) temperature plots
are shown in red (black), and the interacting (noninteracting)
results are distinguished by solid (dashed) lines. To the right
extreme of the plot, the asymptotic values of the noise and Fano
factor are shown. These were obtained from the coefficient of
a linear fit to the first and second cumulants C1(t) and C2(t),
in accordance with the definition of the steady-state current
and noise defined in Eqs. (20) and (21). In addition, filled
circles mark the Levitov-Lesovik values for the noninteracting
quantum noise and Fano factor, obtained from the standard
Landauer-Büttiker theory [1,10] via Eqs. (37) and (38). We
note that the linear fits (which are not shown here) give reliable
values to within 1% in this case, and in the noninteracting case
are perfectly consistent with the Levitov-Lesovik values. The
quality of the fits improves with the length of time simulated.
In addition, we note that asymptotic values shown to the right
of Fig. 10 are independent of the initial condition.

At high temperatures (red lines), the absolute magnitude of
the noise, and also the Fano factor, is enhanced with respect
to the low-temperature (black lines) case. This is due to the
contribution to the second cumulant of thermal or Nyquist
noise, which vanishes at small values of kBT [1,10]. We note
that at high temperatures there is an asymptotic divergence
between the solid and dashed red curves in the upper panel,
as the noise appears to be suppressed by the presence of
interactions. In the low-temperature case, the interacting shot
noise is enhanced with respect to the noninteracting value, thus,
we observe a crossover from noise suppression to enhancement

115109-9



RIDLEY, SINGH, GULL, AND COHEN PHYSICAL REVIEW B 97, 115109 (2018)

FIG. 11. The FPTD W (τ ) at inverse temperature β = 50/� for
U = 0�, at V = 0 (upper) and V = 10� (lower). Insets show the
integral over the data.

as the temperature is reduced. At low temperature, the quantum
noise is mainly attributed to the presence of a finite bias [1,17].
While the thermal-to-shot noise crossover is well described
by scattering theory in the noninteracting case, it is far more
complex in the presence of strong interactions.

The low-temperature data corroborate well-known theo-
retical results by Lesovik [132] and others [133–135], later
confirmed by experiment [136], that the presence of inelastic
scattering processes in the junction causes excess noise at low
temperatures and finite voltages. In particular, inelastic co-
tunneling processes have been considered, in which electrons
tunnel onto and off the dot simultaneously with the creation of a
virtual dot state. These leave the dot in an excited state, and have
been shown to enhance the noise [97,137,138]. When these
virtual tunnel states involve correlated electrons of opposite
spin, a Kondo singlet is formed [139]. At high temperatures,
the interaction induces Coulomb blockade on the dot, reducing
the number of available transport channels. This suppresses
both the current and the noise, such that the Fano factor takes
a similar value to that in the noninteracting case (lower panel,
red lines). The presence of a large temperature suppresses the
formation of coherent states required for inelastic spin-flip
and cotunneling processes to occur [140–142]. However, as
the temperature is lowered, we enter the Kondo regime. The
Kondo effect increases the inelastic spin-flip rate and facilitates
spin fluctuations on the dot, enhancing the noise and resulting
in an overall increase in the Fano factor compared to the
noninteracting case (solid black lines in Fig. 10).

B. First-passage time distribution

In Figs. 11 and 12 we plot the FPTD, as defined in Eq. (6), in
the unbiased (V = 0) and biased (V = 10�) cases. The inverse
temperature in all plots is β = 50/�, and the dynamics for four
different initial states of the dot is shown. Note that the initially

FIG. 12. The FPTD W (τ ) at inverse temperature β = 50/� for
U = 8�, at V = 0 (upper) and V = 10� (lower). Insets show the
integral over the data, with the upper inset also containing a result at
higher temperature (dashed line).

half-occupied states |σ 〉 are collected into the same line (shown
in red), as the particle-hole symmetric parameters ensure their
physical equivalence. Within our data, the two half-filled initial
conditions are indeed identical to within numerical errors (not
shown).

We begin with the noninteracting problem, Fig. 11. Here,
a maximum occurs at �t of order ∼1, corresponding to the
most probable first-passage time τfp, i.e., the time at which it
is most likely to measure the first change in the left lead’s
occupation. The first-passage probability decays to zero at
long times, as the likelihood that the first particle transfer
has been detected at very long times becomes vanishingly
small. In the unbiased case (top panel), the effect of initial
condition on the first-passage time distributions is minimal. In
particular, the unoccupied (black) and fully occupied (green)
initial conditions are identical in the presence of particle-hole
symmetry. This is not the case for the biased system (bottom
panel), where electrons are driven out of the left lead. The bias
voltage breaks the symmetry between the left and right leads.
Therefore, since we are examining the FPTD of the left lead,
the symmetry between the doubly occupied and unoccupied
initial states is also broken. As the initial occupation of the
dot increases in going from the |0〉 to the |σ 〉 and | ↑↓〉 states,
the probability density shifts to longer times. A second peak
appears in the distribution, corresponding to the first tunneling
event on the left lead occurring after an electron has traveled
from the dot onto the right lead. This demonstrates an initial
condition-dependent “queuing” effect in the FPTD, which is
reminiscent of classical queuing [143].

The insets of Fig. 11 display the integral over W (τ ), which
by Eq. (5) is equal to the probability 1 − P (0,t) that when
the total charge of the left lead is measured at time t , it has
changed from its initial value. In an unbiased system, the
electron flow across the terminals, as well as the probability
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that the electron count in the left lead has changed from its
initial value, is due entirely to thermal fluctuations and the
delocalization dynamics of the wave function, and may saturate
at a value between one and zero (see upper inset). As the bias V

is increased, however, the active driving causes this probability
to reach unity rapidly (as in the the lower inset).

Figure 12 is identical to Fig. 11, except for the presence
of a finite Coulomb repulsion energy U = 8�. At very short
times, when the time dependence is linear, the symmetrized
interaction has essentially no effect on the FPTD. However,
this changes dramatically at time scales substantially smaller
than 1/�. Comparing the interacting unbiased case, shown in
the upper panel, with the corresponding noninteracting result
in Fig. 11, it is clear that the magnitude of the resonant peak
and the value of τfp are increased for the doubly occupied and
unoccupied initial states |0〉 and |↑ ↓〉, whereas both quantities
are decreased for the half-occupied initial states |σ 〉. This can
be understood in terms of Coulomb blockade physics: at short
times, involving the transfer of the first electron, no difference
between the initial conditions is observed. However, in the |σ 〉
case, the suppression of the even charge states by the interaction
causes the transfer of a second electron in the same direction
to be energetically unfavorable. The opposite occurs in the |0〉
and |↑ ↓〉 states.

Another striking difference between the interacting case
and its noninteracting counterpart (top panels of Figs. 12 and
11, respectively) is the long tail appearing in the FPTD of
the initially magnetized states |σ 〉. The effect of this tail is
prevalent in the inset, where very slow relaxation to unity
is observed (we show times up to t = 8/� to emphasize the
slow relaxation). This can be attributed to the stabilization of
local moments [144] and slow spin dynamics [145] associated
with the Kondo regime, to which the system is equilibrating
at these parameters. For comparison, the red dashed line in
the upper inset of Fig. 12 shows dynamics for the |σ 〉 initial
states at β = 1/�, where the Kondo effect is suppressed by
temperature; the relaxation is then faster.

In the lower panel of Fig. 12 we apply a bias voltage of
V = 10� to the interacting system. At such a large voltage,
electrons are chiefly injected into the dot from the left lead
and ejected into the right lead, simplifying the analysis of
the effects of interaction on the queuing. In the case of the
half-occupied initial conditions |σ 〉, the first peak is suppressed
relative to the second in the presence of interactions because
the energy penalties discussed above decrease the likelihood
of electron injection from the left lead before the original
electron escapes into the right lead. Similarly, the first peak
for the doubly occupied initial condition becomes larger than
the second because the process where two electrons are ejected
on the right before the first electron is injected on the left is
energetically suppressed. Remarkably, the slow spin relaxation
related to Kondo physics is substantially reduced in the inset for
the |σ 〉 initial states at this high voltage. This is consistent with
claims that a small remnant of Kondo physics can survive at
high voltages [124,146,147], but requires further investigation.

C. n-particle probabilities

The FPTD, related to P (0,t), sheds light on the dynamical
response of the system to all possible particle tunneling events.

FIG. 13. The time-dependent probabilities for �n = 1 (upper)
and �n = 2 (lower), for the interacting case U = 8� (solid lines)
and noninteracting case U = 0� (dashed lines), with initial conditions
shown in the inset. Bias and inverse temperature are set to V = 10�

and β = 50/�, respectively.

It does not distinguish between events in which different
numbers of particles are transported. However, the full count-
ing statistics contain much more information: it is possible
to access P (�n,t) for every �n. It is of interest to search
for manifestations of correlated transport in these detailed
distributions. We also consider the most probable time at which
the particle number changes by �n, given by the maximum of
the corresponding distribution. We denote this time by τ (�n)

mp .
In Fig. 13, we begin by considering the probability for

the particle number in the left lead to have changed by
�n = 1 after time t , for each possible initial condition and for
the interacting (solid lines) and noninteracting (dashed lines)
cases. We once again apply a bias voltage of V = 10�, so
that it is energetically favorable to move charges from the
left lead onto the dot, and charges from the dot to the right
lead. Regardless of the presence of interactions, the peak of
the probability distributions P (1,t) for the different initial
conditions is shifted to longer times by an increasing number
of electrons initially on the dot. In the noninteracting case, this
simply reflects the fact that the empty dot has more transport
channels open to electron traversal events than a partially or
fully filled dot. If the initial state is fully occupied, transport of
the first electron is forbidden by the Fermi rule until at least one
dot electron has tunneled to (with high probability) the right
lead. The effect of Coulomb charging depends on the initial
occupation: when the dot begins empty, interaction does not
change the position of the maximum, but somewhat enhances
the total probability that a single tunneling event was measured
at any time, reflecting a reduction in the probability of detecting
higher values of �n. In this case, there is no initial “queue” for
electron tunneling onto the dot, and the interaction makes the
first electron tunneling event more energetically favorable, then
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FIG. 14. Top panel: the probabilities P (�n,t) with �n =
0, . . . ,6, for the unoccupied initial state |0〉, at V = 10� and β =
50/�. The solid lines correspond to the interacting case U = 8�,
and dashed lines correspond to the noninteracting case U = 0. Bottom
panel: the interpeak distance τ (�n)

mp − τ (�n−1)
mp as a function of �n, for

U = 8� (black) and U = 0� (red).

suppresses the second. For all other initial states, the Coulomb
repulsion shifts the distribution to longer times, as electrons
on the left lead cannot enter the dot without “queuing” for
electrons on the dot to first tunnel to the right lead.

In the lower panel of Fig. 13, we repeat the above analysis
for the probability that at time t , a change�n = 2 in the particle
number is measured on the left lead. P (2,t) is shifted to longer
times by the interaction for all initial conditions because the
transfer of the second electron must be preceded by that of the
first, such that it always encounters some Coulomb repulsion.

The top panel of Fig. 14 shows a sequence of P (�n,t) for
�n = 0, . . . ,6, focusing on the unoccupied initial state. At
short times, we see perfect agreement between the interacting
and noninteracting results, as no interaction can take place
before some electrons occupy the dot. Increasing the value
of �n shifts the �n > 1 peaks to longer times, which makes
sense physically since a change involving �n = N electrons
implies all processes leading to a change of �n = N − 1
electrons have already occurred. We note that we do not show
backscattering events �n < 1, which have a small but finite
probability even in the presence of a large voltage. In the
unbiased system (not shown), backscattering events are of
equal importance to the forward scattering events.

The rich, detailed information on population densities
shown in Fig. 14 lends itself to a quantitative analysis of

electron transfer processes. In the lower panel of the same
figure, we study the variation of the distance between maxi-
mally probable times τ (�n)

mp − τ (�n−1)
mp as a function of �n, for

the interacting (black curve) and noninteracting (red curve)
cases. As we propagate to longer times, this quantity can be
considered a proxy for queuing effects at the single-electron
level at steady state: it describes the typical waiting time
between subsequent tunneling events. As �n increases, the
peak-to-peak distance stabilizes to a roughly constant value.
The long-time value in the noninteracting case is of order
1/�, as might be expected for a simple rate process where the
only relevant time scale is the coupling between the dot and
baths. However, the peak-to-peak distance in the interacting
case is significantly larger: as each electron enters the dot, it
suppresses the next electron from entering by virtue of the
Coulomb repulsion. Interestingly, while the point at which
each distribution begins to differ significantly from zero is
only weakly modified by the interaction, the width of the
distributions, and the weight at their tail end are almost
immediately enhanced. This may indicate that fluctuations
play an increasingly important role in the population transfer
dynamics as the strength of the interaction is increased.

VII. CONCLUSIONS

We presented a numerically exact calculation of full
counting statistics for a nonintegrable model of interacting
fermions, in this case the nonequilibrium Anderson impurity
model. Using the inchworm quantum Monte Carlo method,
we obtained the generating function Z(λ,t) at a variety of
physical parameters ranging from the noninteracting case to
the strongly correlated Kondo regime. This provides access
to currents, which have been accessed before by numerically
exact methods, but also to other experimentally measurable
quantities which were not. This includes the current noise at
steady state, the Fano factor, all higher moments and cumulants
of population transfer event, and the complete time-dependent
probability distributions for n-electron transfer events.

The method was applied to a coupling quench, where a dot
is suddenly attached to the leads at time zero and allowed to
evolve to equilibrium or to a nonequilibrium steady state. After
performing benchmark comparisons in the noninteracting limit
to verify the accuracy of our results, we explored the effects of
electron-electron interactions and nonequilibrium bias voltage
on the full counting statistics and the properties derived thereof.
We observed the signatures of the Coulomb blockade and
Kondo effects in the noise and Fano factor, and found transient
queuing effects depending on the choice of initial condition
in the FPTD. By considering the individual, time-dependent
probability distributions for the occurrence of n tunneling
events, we were further able to argue that such queuing effects
persist at steady state. Rather than simply being associated
with a lower effective tunneling rate, the rapid widening of the
probability densities in the presence of interactions suggests
that fluctuations play a significant role in the interacting
dynamics.

With the availability of a reliable scheme for calculating
the full counting statistics of generic interacting impurity
models, a variety of important research questions can now
be addressed. Some immediately relevant examples include
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quantum thermodynamic topics, such as the verification of
quantum fluctuation-dissipation theorems and the calculation
of efficiency fluctuations in quantum devices, and the evalua-
tion of noise and Fano factors beyond the Fermi-liquid regime.
We observed queuing effects, but it would also be interesting
to look for bunching effects in the presence of an effectively
attractive interaction. As the noninteracting physics enters
entirely through the hybridization function, it is also feasible to
consider the counting statistics of impurities embedded in more
realistic noninteracting models of materials and nanosystems,
one interesting example being magnetic impurities in graphene
nanoribbons [148,149].

Spin-dependent FCS in quantum junctions has only recently
been treated in the noninteracting case [46], and spintronic
applications are anticipated. The method we have presented
can easily be generalized to access spin-dependent counting
statistics and multilead moments: one could then go beyond
the analysis of Fig. 14 to consider the time-dependent proba-
bility that the left lead lost (e.g.) one spin-up electron, while
simultaneously the right lead gained two spin-down electrons.
In this context, the long-term survival of spin fluctuations at
time scales where the mean magnetization has died out would
embody a remarkably clear signature of strong correlation
physics. Generalization to include bosonic degrees of freedom
is also possible, enabling treatment of thermoelectric systems
or coupling to an optical continuum. The method could further

be extended to frequency-dependent power spectra and related
conductance spectra [150,151], which can be used to study
photon absorption and emission processes [152–155]. Addi-
tionally, noise in periodically driven systems with interactions
could now be investigated, enabling performance tuning of
correlated nanoelectronic devices [156].

To summarize, the full counting statistics of strongly corre-
lated nonequilibrium quantum impurity problems can now be
obtained numerically. This provides unprecedented insight into
the stochastic nature of electronic transport at the resolution of
single tunneling events, and allows simulation of a variety of
experiments for which no systematic theory was previously
available.
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