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Transmission through a potential barrier in Luttinger liquids with a topological spin gap
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We study theoretically the transport of the one-dimensional single-channel interacting electron gas through
a strong potential barrier in the parameter regime where the spin sector of the low-energy theory is gapped by
interaction (Luther-Emery liquid). There are two distinct phases of this nature, of which one is of particular interest
as it exhibits nontrivial interaction-induced topological properties. Focusing on this phase and using bosonization
and an expansion in the tunneling strength we calculate the conductance through the barrier as a function of the
temperature as well as the local density of states (LDOS) at the barrier. Our main result concerns the mechanism of
bound-state-mediated tunneling. The characteristic feature of the topological phase is the emergence of protected
zero-energy bound states with fractional spin located at the impurity position. By flipping this fractional spin,
single electrons can tunnel across the impurity even though the bulk spectrum for spin excitations is gapped.
This results in a finite LDOS below the bulk gap and in a nonmonotonic behavior of the conductance. The
system represents an important physical example of an interacting symmetry-protected topological phase, which
combines features of a topological spin insulator and a topological charge metal, in which the topology can be

probed by measuring transport properties.
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I. INTRODUCTION

Following the prediction and experimental discovery of
topological insulator materials over the last decade [ 1-7], much
of the experimental and theoretical effort in recent years has
turned towards investigating related topological phenomena in
strongly correlated materials. Major progress in understanding
these phases has been achieved for systems in one spatial
dimension, where a formal mathematical classification of all
symmetry-protected phases has been developed [8—12]. More
recently, a generalization of these methods to systems with
dimensionality d > 1 was proposed [13-15].

While the complete classification of one-dimensional (1D)
symmetry-protected topological phases has constituted an im-
portant breakthrough, it is not sufficient by itself to determine
physical properties of such systems. In particular, predictions
for transport properties of strongly correlated topological
materials are highly desirable as they often offer the most
straightforward way to experimentally probe for systems with
nontrivial topology.

An important model system for studying transport prop-
erties in a strongly correlated symmetry-protected topolog-
ical phase is the one-dimensional (1D) electron gas with
time-reversal symmetry, electron-electron interaction, and spin
anisotropy [16-20]. As is well known, the spin and charge
degrees of freedom of the 1D electron gas decouple in the low-
energy Luttinger liquid theory which describes the behavior
of gapless collective bosonic excitations [21,22]. In a certain
parameter range, the modes in the spin sector get dynamically
gapped out due to electron-electron backscattering processes
which grow under the renormalization flow. On the other hand,
the charge sector remains gapless. There are two distinct phases
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with a spin gap a topologically trivial phase characterized
by quasi-long-range charge density wave (CDW) correlations
and a topologically nontrivial phase with quasi-long-range
spin density wave (SDW) correlations. The latter can only be
realized in systems that break spin SU(2) symmetry. While
both phases are identical with respect to their thermodynamic
properties, they exhibit different topological behavior. In par-
ticular, only the SDW phase exhibits zero-energy boundary
bound states (BBS) which carry fractional spin [16,17]. The
peculiarity of both the SDW and CDW phase is that the
excitations in the spin sector are gapped while the charge sector
remains gapless. As such, these phases are inherently distinct
from noninteracting topological insulators, which do not have
gapless modes. It is worth noting that in the present case, if the
charge sector were to become gapped, then the CDW or SDW
would become long-range order and the symmetry protecting
the topological state would be spontaneously broken, so the
gapless charge sector is essential for the nontrivial topology in
this quasi-long-range order SDW phase [20].

The subject of this paper is the transport through an impurity
in the topological phase described above. It turns out that, in
addition to the nontrivial boundary spectrum, the topological
SDW phase also exhibits novel transport properties distinct
from both the conventional Luttinger liquid and trivial CDW
phase. In particular, the bulk transport of the system remains
ballistic in the low-temperature limit even in the presence of
impurities as long as the time-reversal symmetry is preserved
and interactions are not too strong. More precisely, a single
impurity acts as an irrelevant perturbation as long as K, > %
where K. denotes the Luttinger liquid parameter in the charge
sector.

©2018 American Physical Society
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GA I - two-particle scattering
IT - edge-state-mediated tunneling
III - single-particle scattering
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FIG. 1. Sketch of the temperature dependence of the conductance
of a topological spin-anisotropic 1D electron system in the presence of
an impurity. Regime III corresponds to the Luttinger liquid phase, with
the subscripts a and b denoting a weak and strong impurity potential,
respectively. Regimes I and II correspond to the topologically gapped
SDW phase with a weak and strong potential barrier, respectively. The
lines denoted by A and B show the behavior of the conductance for
two sets of parameters. In the case B, the impurity remains weak under
the RG flow and the transport behavior crosses over from region III,
to I directly as temperature is lowered. On the other hand, in the case
A, the impurity potential becomes strong under the RG flow, which
leads to multiple crossovers III, — III, — II — I between regimes
with different transport characteristics. The transport mechanisms in
different regimes are discussed in detail in the main text.

The schematic behavior of the bulk conductance of the
SDW phase in presence of a single nonmagnetic impurity as
a function of the temperature is shown in Fig. 1. This figure
combines the results of the present work with previously known
results. An overview of the different transport regimes of the
system is depicted in Fig. 2.

In region III, which is the regime of temperatures much
higher than the spin gap A, the system effectively behaves as
a Luttinger liquid in the presence of a single impurity. The
transport properties in this regime are well known [23,24]:

FIG. 2. Schematic diagram of transport regimes of a topological
spin-anisotropic 1D electron system in the presence of an impurity in
the parameter plane spanned by the bare conductance Gy, and the
temperature 7. The full black lines separate regimes I-III which are
defined in the main text and in the caption of Fig. 1. The dashed red
and blue lines (marked by A and B, respectively) correspond to an
impurity that s initially weak (G close to 2¢%/ h) or strong (Grare <K
2¢%/ h), respectively; the corresponding temperature dependencies of
the conductance are sketched in Fig. 1.

for repulsive interactions, the impurity represents a relevant
perturbation which causes the conductance to decrease as a
power law as temperature is lowered. The exponent of this
power law differs depending on whether the impurity potential
is weak (region III,) or strong (region III,). Here, we consider
the impurity strength as a dynamical energy scale that flows un-
der the renormalization group (RG), and refer to an impurity as
strong (weak) at a particular temperature (or energy scale) if the
conductance of the corresponding system at that temperature is
much smaller than (close to) the quantum conductance 2¢2/ h.
The region I, which describes a weak impurity at temperatures
T < A, has been analyzed by two of us in Ref. [17]. It was
found that the conductance at lowest temperatures behaves
ballistic with small power-law corrections at finite temperature.
Physically, these corrections stem from tunneling of singlet
electron pairs across the impurity: due to the excitation gap for
spin—% particles, the lowest energetically allowed excitations
are electron spin-singlet pairs.

Thus, an impurity may become strong under the renormal-
ization group (RG) in the range of relatively high temperatures
T 2 A, regime III,. Contrary to this, a weak impurity becomes
weaker at low temperatures, 7 << A. This poses a question of
the properties of the topological phase (7' < A) with a strong
impurity. The analysis of this regime, which is denoted by II
in Figs. 1 and 2, constitutes the main subject of this work.

The intermediate regime II that we explore here represents
a vicinity of a strong-coupling fixed point, where both the
impurity strength and the bulk gap have flown to strong
coupling under the RG. This intermediate regime appears if
the impurity flows to strong coupling before the gap develops
(corresponding to the line A in Figs. 1 and 2). In contrast,
if the initial impurity is very weak, the interaction flows to
strong coupling first and opens a bulk gap. In this case the
impurity remains weak and the system crosses over directly
from regime I11, to regime I (cf. line B in Figs. 1 and 2). Using
the weakness of the electron tunneling across the barrier in the
strong impurity regime II, we will determine the temperature
dependence of the conductance as well as the tunneling density
of states near the edge.

Our central findings concern the transport mechanism in
the regime II and the associated physical observables. On
the one hand, we find that although spin-% excitations are
gapped in the bulk, single-electron tunneling can take place
via flipping the fractional spin of the boundary bound states.
On the other hand, the bound states are energetically split
due to the finite tunneling amplitude, with the energy splitting
growing proportionally to the tunneling. As tunneling increases
with lowering temperature, there exists a critical scale where
the energy splitting becomes of the order of the bulk gap.
At this energy scale, the single-particle tunneling becomes
frozen out and a crossover to pair-tunneling-mediated transport
(regime I) occurs. The overall temperature dependence of
the conductance is strongly nonmonotonous (see Fig. 1). The
underlying physics of the problem is also visible in the behavior
of the local density of states (LDOS), which has a finite subgap
contribution due to the edge states that is gradually shifted
in energy towards the bulk density of states as temperature
is lowered. The finite subgap LDOS and the nonmonotonic
behavior of the conductance may thus serve as experimental
probes of a nontrivial topology of the system.
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The paper is organized as follows. In Sec. II we introduce
the model we are going to study. Next, we calculate the
tunneling conductance across the impurity potential barrier
to leading order in the tunneling amplitude in Sec. III. To
gain more physical insight into the transport results, we show
that the model exhibits boundary bound states and calculate
their energy as a function of the tunneling strength across
the impurity in Sec. IV. Finally, we study the local density
of states in Sec. V and summarize our findings in Sec. VI. For
completeness, we present in the Appendix the renormalization-
group (RG) analysis and the phase diagram of the model under
consideration in the whole range of interaction couplings.

II. MODEL

Let us introduce the model we are going to study. We
consider an interacting 1D electron gas in the presence of
short-range electron-electron interaction and a single impurity
located at the origin. The effective low-energy Hamiltonian
of this model can be expressed in bosonized language as
H = H; + Hs + Hinp, with

Ve ©
H.=—° dx [(8, D) + K*(3.6.)*], 1

Us > 2 2 2
H, = dx (0, D, K2(0,0;
47TK3/_OOX[( ) * S( )]
o0 2
856 5 / dx cos2dy,
(2ra)y J
& [T
Hipp = — — dx cos O  cos D 8(x). 3)
ma J_o

The bosonic operators @, and 6, in the charge and spin
sectors are related to fermionic operators, describing modes
linearized around the Fermi momentum kg, as [21]

K .
Vo = 9 i 5[ Pcto—nle—not] )

2ma

Here, 0 =1, | = +,— denotes the electron spin, n = +,—
the electron chirality, «, are Klein factors which ensure the
correct fermionic anticommutation relations, and a is the short-
distance cutoff of the theory. The boson operators obey the
commutation relations

[0:60,(x), @ (x)] = iwd, w8(x — x'), 5)

where u,u’ € {c,s} denote the charge and spin sector.

The Hamiltonian in the charge sector, Eq. (1), describes
collective gapless excitations with charge +e and velocity v,.
The Luttinger parameter K. is a measure of the strength of
electron-electron interactions. Note that we consider electrons
at incommensurate filling, so no umklapp terms are present in
the model.

On the other hand, spin excitations in the bulk are described
by the sine-Gordon model (2). Here, the cosine term originates
from electronic backscattering processes and can lead to the
formation of a gap. More precisely, the coupling constants
in the spin sector, K; and gyg, are subject to a Berezinskii-
Kosterlitz-Thouless—type RG flow. A crucial assumption of
our discussion is that the SU(2) symmetry in the spin sector
is broken, so that the parameters are not constrained along the
separatrix of the RG flow but can be treated independently.

Physically, this corresponds to the presence of some type of
Ising anisotropy in the underlying microscopic model.

In the regime K; < |gsg|/ (47%vy) the bulk cosine term in
Eq. (2) is relevant and the system develops a spin gap. The
excitations in the spin sector are then gapped solitons and anti-
solitons that carry spin % and — %, respectively. Throughout this
work, we restrict ourselves to the parameter regime K, > %

For K < % propagating breather (soliton-antisoliton) bound
states would exist which are not considered here, although we
would not expect this to qualitatively change the properties
of the state that we discuss. In fact, it was shown [25] that
breathers have no effect on the LDOS in a similar model for a
spiral Luttinger liquid.

For completeness, we derive the phase diagram of the model
equations (1)—(3) in the Appendix. For the purposes of the rest
of the text, however, it is sufficient to say that we are in a
phase where the bulk cosine term in Eq. (2) is relevant and
the system develops a spin gap, while the charge sector of
the theory remains gapless. Such a phase is often termed as a
Luther-Emery liquid [26].

Thermodynamically, the sign of the coupling constant g,
is not important, and there is a duality g, — —gsg. It should
be stressed, however, that the topological nature of the gapped
phase depends crucially on the sign of this coupling constant. In
fact, one can define a topological index Q = sgn(gsg) which
takes the value Q = +1 in the topological and Q = —1 in
the topologically trivial phase. Throughout this paper, we
will assume gy > O since we are interested in studying the
topological phase.

Lastly, the term (3) in the Hamiltonian describes a time-
reversal-symmetric impurity potential with a strength g,. Note
that this term mixes the charge and spin sectors. We assume
g» > 0, but actually the physical results do not depend on the
sign of g;. Indeed, there exists a unitary transformation that
shifts &, — @, + 7, which changes the sign of the coupling
constant g, in (3) but commutes with the kinetic term (1).

While we will discuss the model defined by Eqs. (1)—(3) in
the context of spinful electrons [17], we note that other physical
systems are also described by the same low-energy Hamil-
tonian. Examples include cold-atom systems [27], coupled
superconducting wires [16,28,29], coupled edges of quantum
spin Hall insulators [20,30], ladder models [31,32], and Kondo
chains [33,34]. The common ingredient in all these models is
Ising spin anisotropy. We also refer to these earlier works for
the relationships between the parameters in the low—energy
effective theory equations (1)—(3) and any given microscopic
system.

III. TUNNELING CURRENT ACROSS A LARGE
POTENTIAL BARRIER

In this section we will discuss the transport properties of
the model introduced in Egs. (1)—(3) in the regime II of Fig. 1.
To be more precise, we want to analyze the conductance in the
regime where both the impurity potential g,/v; > 1 and the
bulk interaction potential gsg/vs > 1 are strong.

First, we derive an effective model in the regime g,g/vs >
1. If correlations in the bulk are strong, the spin field will
establish a mean field ®3P°Y = /2 in order to minimize the
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potential energy of the bulk term (2). Quantum-mechanical
fluctuations around this ground state can be described semi-
classically by writing ®(x,7) = <I>§DW + §P,(x,7) and ex-
panding the action of the model to quadratic order in fluctu-
ations §®;. This yields the following bulk action in energy-
momentum space:

Sbulk[q>Ca8q)s]

1
_ ®,(q.0) (0 + v2q*
o E fw| (g0 (o? +12g?)
8@,(q.0) 2 (0 + 122 + A?), (6
b /wq| [ (0 +v2g* + A2, (©)
where A = (87 V2K, gsg)l/ 2 /a denotes the excitation gap of

the spin fluctuations. In terms of the fluctuations, the impurity
potential takes the form

Simp[ P, 8P| =

8 [ dr cos ,(0,7)sin 5d,(0,7). (7)
a

Next, we integrate out all fields except those at the origin to
obtain an effective local action:

e Serldeds] = / Do, / D®; 8[q.() — (0,7)]
% 8[%(1) _ 6¢X(0’T)]E*Shu]k[q)ﬁvsq;'x]7Simp[q)(75q)s].

®)

Performing the Gaussian functional integration, we arrive at
the result

Sett = Z /’Cu(w)|qu(w)|2 + Slmp[CICvQV] )

n=c,s

with the kernel functions

Ke(w) = K. o], (10)
Ky(w) = IK Va? + A2 an

s

As was pointed out by Furusaki and Nagaosa [24], this
type of action is equivalent to that of a quantum Brownian
particle moving in a periodic cosine potential and coupled
to a dissipative environment. However, unlike in the gapless
Luttinger liquid, only the low-lying charge excitations cause
the damping in our model (as long as we are interested only
in energies below the gap). The reason for this is that spin
excitations are gapped and thus can not contribute to the
damping.

To avoid UV divergencies it is necessary to introduce a
high-frequency cutoff which corresponds to a finite mass of
the Brownian particle. Since we are interested in the physics
on energy scales below the gap A, we choose the cutoff to be
of the order of A.

In the limit of a large impurity potential, the electron
transport can be viewed as a tunneling from a minimum of
the potential (7) to an adjacent minimum. The corresponding
tunneling amplitude y (at the new ultraviolet cutoff scale A)
provides a natural expansion parameter. The relationship be-
tween the tunneling strength and the barrier strength is nonuni-
versal [35], so we will consider y to be a phenomenological

parameter. In the following, we will calculate the conductance
perturbatively in leading order in the tunnneling amplitude
y by using Fermi’s golden rule. The analysis generalizes the
discussion of Ref. [24] to the case of a gapped spin sector.

It is useful to rewrite the partition function by introducing a
set of quadratic oscillator degrees of freedom {x;;} and {xo}:

7 — /D[q“qs]e*Scrr[qqu]
=1] f DIqe.qs.x1j.x] e~ J47 b busdaead - (12)

with

2
nmj I’I11 gl'
L= Z|: ! 12] wlj'xlj +glj-xquc + 21"’11'.;)2 q3:|
j®1;

2
m2k 82k
+ Z %k"‘ w2kx2k+g2kx2kqs+—2 q;
2morwy;

+ —(cos q.singg — 1). (13)
Ta

The introduced oscillators are characterized by the spectral
functions

T 82

L) ==Y 52 —w)), (14)
2 ; mp;ji;
2
s 82k
L) =5y —E5Q - wy). (15)
2 Mooy *

The identity in Eq. (12) with the Lagrangian in (13) holds
if these spectral functions fulfill the following integral

equations:
dQ J,(Q) o?
Ky = | =—t——. 16
o) = [GHED (16)

It can be checked that this is the case if we choose

Jo(w) =

Js (w) =

! [\/aﬂ “A2O(w— A) + zAwé(a))]. (17)
T K 2

The tunneling probability to lowest order in the (phenomeno-
logically introduced) tunneling matrix element y is obtained
using Fermi’s golden rule for tunneling between neighboring
minima of the potential [24]. We consider the minima (q.,q;) =
(0, — %) and (7, 5). The probability is given by

Po,-2)—(x,2)
=27y Y [ fli) e PHS(E; — Ei — eV)/ > et
if i
e . . .
— '}/2/ dt (e—letelHit>i eleVl’ (18)
—00

where V is the applied voltage, 8 = 1/T is the inverse temper-
ature, and |i) (| f)) represent eigenstates of H; (H), defined
in Egs. (19) and (20) below, with eigenvalues E; (Ef). The
thermal average is defined as (X); = Tr(Xe #H)/Tr(e=FPH).
The initial and final state Hamiltonians are obtained from £ in
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Eq. (13) by setting (g.,q5) = (0, — ) and (7, 7), respectively.
After quantizing the oscillator modes we find

1 1
H; = Za)lj <ajaj + 5) + Z I:CUZk (b}:bk + z)
Jj k

2,2
T 82k t T8k
-2 +b)+—] (19)
2«/2m2ka)2k k k Smgka)gk
t 1
Hp =3 | aja;+5
J
2,2
g T8y
+ ¢(aj —l—aj) + —112
1/27711]‘61)11' 2m1ja)1j
! 1
1
+ ; |:a)2k (bkbk + 5)
+&(b + b0+ ﬁ} (20)
2«/2m2ka)2k k k SMQka)%k '

The two Hamiltonians are related to each other via
the translation of the oscillator coordinates xi; — xi; +

iTg]j/,/Zm]ja)]j and Xop —> Xop + JTng/«/2m2kw2k, which
corresponds to the transformation Hy = UTH;U with the
unitary translation operator

81
U:ex —_—
P E o
J myjwy;

T 82k

+ 3 =22l —p) . 1)
;‘/21112]((1)%,{ ‘ ‘

With the help of this relation, the transition probability is
evaluated as

o0 OOda)
Po = o =y> | dtexpl|ieVt— — [Jo(w)
0,—3)—> (@, %) Y pjlte s (1)2 clw

—0Q o0

(a; —a;)

+ Jo(@)I{[1 — cos(wr)] coth(Bw/ 2)}]- (22)

In the same way the probability of the reverse process (q.,qs) =
(,5) = (0, — %) is obtained

o0
5 it i
Paz)»0-5H =¥ / dr (e Mttty  emieVt

—00
=e 7Py 1)) . (23)

Here, the last line represents the detailed-balance condition.
The net current across the impurity potential is given by the
difference of the tunneling probabilities

Je=2e(Po.-1)~x.2) = P51 0.-1))
oo
d
=2ey?(1 — e—f‘ev)/ dt exp |:ith -7 /—(;)[JL-(w)
o w

+ Jy(w)]e” /A ((1 — cos wt) coth %‘")} (24)

where the factor 2 in front comes from the spin degeneracy and
we introduced the ultraviolet cutoff e~“!/2. From this result

we obtain the conductance at the voltage V — 0 as a function
of the temperature:

G(T) = 2e*y*8 /Dodt exp |:—7T /i)—c;)[.]c(w)

+ ‘]S(w)]eflwl/A <(1 — cos wt) coth ‘376())]
F(i) y\2 (=T 2
@) e

where I'(x) denotes the Euler gamma function.
It is instructive to rewrite the conductance in Eq. (25) as

%2 2
G(T) e2(£)2<%> = ezyA(zT), (26)

with the renormalized tunneling amplitude at energy €

~ 2e*m3/?

vo=(£) @n

Equation (27) shows that the tunneling is enhanced in regime I1,
aslong as interactions are not too strong, i.e., as longas K, > %
Thus, the conductance increases in region Il as temperature is
decreased, as shown in Fig. 1. The physical reason for this
behavior will be discussed in detail in the following sections.
For now, let us just point out that the spin Luttinger parameter
K does not appear in the exponent in Eq. (27). As has been
discussed above, this is because the spin degrees of freedom in
the bulk are gapped and thus do not contribute to the physics
at energies below the gap.

We have checked explicitly that the topologically trivial
CDW phase shows a different behavior of the conductance.
In this phase the conductance to order y? is exponentially
suppressed as G o t>exp(—A/T) for temperatures below
the spin gap and shows the usual Luttinger liquid behavior

G o TR %2 for temperatures above the gap. The main
contribution to the conductance at 7 < A in this phase is due
to tunneling of singlet pairs and arises only in the order O(y*)
in the perturbative expansion of the conductance.

To gain a better understanding of the physics governing
transport in the regime II (strong barrier) of the topologically
gapped phase, we next study the edge state spectrum and the
single-particle density of states in this regime.

IV. BOUNDARY BOUND STATE

In the preceding section we have seen that, unlike in a
disordered Luttinger liquid, the strong impurity fixed point is
unstable in the presence of weak tunneling if the spin sector is
topologically gapped. As we will see, this is crucially related
to the boundary states that emerge at the impurity position in
the presence of a bulk gap. We refer the reader to Ref. [36]
for a related discussion of the effect of boundary states on the
transport in two-subband quantum wires.

In this section, we discuss the properties of the boundary
bound state of the model in Eqgs. (1)—~(3). This is most conve-
niently achieved by mapping the model to two copies of the
boundary sine-Gordon model.

In the strong impurity regime g,/vs > 1, the charge and
spin fields at the origin develop expectation values which
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—27
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FIG. 3. Schematic plot of the mean field configuration of the spin field of a semi-infinite 1D system with an impurity at the origin
in the topological SDW phase (left) and the trivial CDW phase (right). Left: as we discuss in the main text, the pinning value of the field at
the boundary and in the bulk are different due to the competition between the local impurity potential and the bulk interaction potential. In the
figure we assume a mean field value ®;(x = 0) with 0 < ®,(x = 0) < m. The solid lines denote the possible mean field configurations for an
infinitely strong impurity potential (g, — 00). Both states are degenerate and thus a transition from one to the other, which is associated with a
boundary bound state for spins, costs zero energy. The degeneracy of the two states is lifted for a large but finite impurity potential (g, — 00)
as shown by the dashed lines. The bound state associated with a transition between the two states hence is at finite energy given in Eq. (30).
This state remains bound to the impurity position as long as 7 K, < ®&,(x = 0) < m. Right: in the CDW phase there is no competition between
the potential energy at the impurity and in the bulk. Hence, the mean field configuration is trivial (&, = 0, solid line) and no boundary bound
state exists. The low-energy excitations are conventional gapped (anti)solitons shown as dotted lines which are not bound to the boundary.

minimize the potential energy of the impurity, Eq. (3), Einp
—gp 08 ;(0) cos D.(0). We remind the reader that we as-
sumed g, > 0 and thus the energy is minimized by any
combination ®.(0) = nmw, ®;(0) = mm where n + m is an
even integer. The discussion which follows is analogous for
any of these degenerate minima, so to be concrete, we choose
n=m=0,ie., ®.(0)=0and $;(0) =0.

While the above discussion is correct for the charge mode
as there is no other term competing with these minima, this
is not the case for the spin mode, where the bulk sine-Gordon
term in Eq. (2) which is also in the strong-coupling regime
is minimized by a different value of ®,;. We therefore must
study the spin sector more closely. By setting the charge field
to its mean field value and redefining the spin fields as &; —
(®; — )/2 the model maps to two copies of the boundary
sine-Gordon model with the action

Ss = Ss,l + Ss,2s (28)

vy
T 167K,

8sG 0
— 3 dx | dt cos &
Qmra) J_s

1
_ & dt cos (5(% — n))

2ma

0
/ dx / dt [v;7%(0: D) + (0, D5)’]

(29)

x=0

The action S; » is defined identically to Eq. (29) but for fields
with coordinates x > 0.

Let us first discuss the spectrum of Eq. (29) which describes
a semi-infinite wire with a spin gap and an impurity at the
origin. Note that we adopted the convention to fix the bulk mean
field to integer multiples of 2. Since we consider g, > 0
we thus had to shift the spin field by 7. Consequently, the

mean field value at the impurity site is now also shifted from
zero to ®,(0) = m. In contrast, no such shift would have been
necessary for g < 0, i.e., in the trivial CDW phase. In the
trivial phase the constant mean field ®(x) = 0 simultaneously
minimizes both the bulk interaction potential and the impurity
potential. The mean field configurations of the spin field in
both the SDW and CDW phases are shown in Fig. 3. In the
SDW phase the mean field value close to the impurity has to
change by +m which correspond to boundary bound state with
accumulated spin S, = [ dx py(x) = [dx 3, D /4w = £1/4
close to the origin. No such state exists in the CDW phase and
the excitations with the lowest energy are gapped (anti)solitons
corresponding to a £2 kink and thus carry spin :I:%.

More technically, it has been shown [37-39] that the model
in (29) supports a boundary bound state with energy

7 — PY

Egps = Assin ¥, = —2
BBS X X 22K,

(30)

given that 1 K; < ®% < 7, where ®% = ®,(0,7) denotes the
value of the mean field solution at the origin. For 7 < ®¢ <
(2 — K;)m there exists an analogous state with the same energy.
In particular, in the case of fixed boundary conditions, which
can be obtained from (29) in the limit g, — o0, the mean field
takes the value q)? = @,(x = 0,7) = 7 and thus the energy of
both boundary bound states (30) is exactly zero. This was also
discussed in previous works in a different framework [16,17].

As we have already mentioned in the CDW phase we have
@Y = 0 and hence the condition for the existence of a bound
state is never fulfilled.

The physical nature of the bound state has been discussed
by Ghoshal and Zamolodchikov [40]. For 0 < CID? < 1 the
classical ground state of the sine-Gordon model is charac-
terized by the asymptotic behavior (V) — 0 as x — —o0.
Classically, there exists another stable state with &% — 27
as x — —oo. This state is expected to be stable in the quantum

115107-6



TRANSMISSION THROUGH A POTENTIAL BARRIER IN ...

PHYSICAL REVIEW B 97, 115107 (2018)

theory as well if the parameter @Y is not too small (compared
with the parameter 7 K; governing quantum fluctuations).
Exactly for ®° = 7 both states are degenerate and the energy
of the boundary bound state vanishes. The flipping between
degenerate bound state configurations thus costs no energy and
allows single electrons to tunnel across the barrier although
the bulk spin sector has an excitation gap for single spins.
To summarize, an infinitely strong impurity effectively cuts
the wire into two sections. Each section hosts two degenerate
zero-energy boundary bound states which can carry spin %

or —i making the ground state of the whole wire fourfold
degenerate. Below, we focus on two of these states which
correspond to antiparallel alignment of fractional spins at the
boundary of each semi-infinite wire. Transitions between these
states correspond to an electron tunneling across the barrier.
Having understood the g, — oo limit, we turn to a more
physical setup with a finite potential barrier due to the impurity,
which is equivalent to a small but finite tunneling amplitude
y for electrons. Let us first study how a finite barrier strength
affects the classical ground state of (28). By minimizing the
action Sy, Egs. (28) and (29), we obtain the equations of motion

D,
9; @, = sin ®; — g,8(y) cos ER (31)

with dimensionless coordinate y = (ZKSgSc,/vsﬂaz)%x and
the dimensionless parameter g, = (87 v,K;/ gsg)% g». We
solve Eq. (31) by an appropriate ansatz. For y > O and y < 0,
the solution should have a form of the bulk soliton. Requiring
the asymptotic condition ®?(y) — 27 as |y| — oo, we get

4arctane V1,
4 arctan e’ 2,

y <0,

y > 0. (32)

PP (y) = {

The constants y; and y, are determined by the matching
conditions at y = 0:

P(0+) = d(0-), (33)

D0
8,02(0+) — 8,02 (0—) = —g; cos s2< P

The first condition is simply the continuity of the solution
and the second is obtained by integrating the equation of
motion (31) over an infinitesimal interval around the origin.
Applying these conditions, we find y; = y, = arsinh(4/g}).
In particular, in the strong-barrier limit g, > 1, we obtain
O (x =0) >~ 7 — 8/gp, and thus the energy of the bound
state (30) takes the form

2gsG 1
E(z) =A|/—— 35
BBS T K (1 — K2 g )

The calculation for the solution with asymptotics ®{V — 0 is
analogous and yields E}(;];S = E]%;S.

From the problem of tunneling across a delta-function
potential barrier for noninteracting particles we know that the
tunneling amplitude is inversely proportional to the barrier
strength. Interactions renormalize the tunneling but do not
change this relation. Thus, we conclude that, in the presence of

weak tunneling through the barrier and at a finite temperature,

the renormalized energy of the boundary bound state scales as

Epps(€) o< [g5(€)] " o |y(e)] oc e, (36)

where the scaling of y(e€) was determined in Eq. (27). The
linear scaling of Epgg with the renormalized tunneling am-
plitude y(€) can be also understood from a simple physical
reasoning. For an infinite barrier (g, = oo, y = 0), there are
zero-energy bound states on each side of the barrier. At finite
(but small) y (¢), they get split acquiring an energy proportional
to the renormalized matrix element y (¢). Hence, if K. > %, the
energy splitting grows according to Eq. (36) as temperature is
decreased. One observable where this splitting can be directly
seen experimentally is the local density of states, which will
be discussed in the next section.

V. LOCAL DENSITY OF STATES

As we have discussed in the previous sections, the transport
in the regime II of Fig. 1 is governed by bound-state-mediated
single-electron tunneling which leads to an increase of conduc-
tance as temperature is lowered. On the other hand, we know
that at lowest temperatures (regime I), where the conductance
is nearly perfect (ballistic), the transport is governed by pair
tunneling of spin singlets. In order to study the crossovers
between the different transport regimes, we now consider the
local density of states in the regimes I-III.

The observable of main interest in this section is the local
tunneling density of states of electrons at the impurity position,
which is defined as

1 .
viw)=—— lim
T iw,—w+i0+

Im G(x1,x0,00)l 5, =ry=0—-  (37)

Here, w, are fermionic Matsubara frequencies, and the Green’s
function of electrons is given by

G(xix2,00) = Y Golx1,%2,0,). (38)
o=t

Here, we defined
_ikp(xi—x2) ~RR —ikp(x1—x2) ~LL
G, = frtn—x GRR 1 ikp(x) X2Ga
+eik,.-(xl+x2)G(IfL +e*ik1:(x1+X2)GéR’ (39)

with the chiral fermionic Green’s functions

Gl = — (0| e ¥y, o (x1, DY), (x2,0)]0),  (40)

where |0) is the ground state. Upon bosonization, the Green’s
function factorizes into a product of correlation functions in
the charge and spin sectors, yielding in the x — 0 limit

G+(0,0,71) = — Lgc(r)gs(r). (41)
2ra
In the following, we will discuss the form of the Green’s
function [i.e., of the functions g. and g, in Eq. (41)] and the
resulting LDOS in the regimes I-III of Fig. 1. A schematic
plot of the LDOS in the different transport regimes is given in
Fig. 4.
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FIG. 4. Plot of the LDOS (at the position of the impurity) for a spin-anisotropic 1D electron gas in the presence of a single impurity in the
different transport regimes of Fig. 1. Parameters are chosen as K, = 0.8 and K; = 0.5. Regime III corresponds to the Luttinger liquid phase.
In the regimes III, and III, the relevant energy scales are much larger than A so that the value of the gap is irrelevant for the discussion of the
LDOS. The density of states shows a power-law behavior with a zero-bias anomaly that is cut off by the finite temperature. The power-law
exponent depends on whether the impurity has flown to strong coupling (III,) or stays at weak coupling (III,). In regime II the system is in the
gapped SDW phase with a strong impurity. The LDOS shows a subgap contribution due to the presence of topological edge states at the impurity
position. In regime II we only focus on frequencies w < A (at w 3> A contributions that have not been included will produce conventional
Luttinger liquid behavior). Regime I shows the LDOS for the SDW phase with a weak impurity.

A. Region IIT

We begin with the high-temperature regime (region III). In
this regime, the system is in the Luttinger liquid phase and the
form of the Green’s function at the impurity position is well
known [21]:

G(x,7t) = T/2v, T/2v, i| x.

4 e
QQma)l—ee—os Sgn(r)[sinnTlrl] [sinnT|r|
(42)

Here, the factor 4 in front results from the summation over spin
and electron chirality. The exponents «,. and «; are functions
of the Luttinger parameters in the charge and spin sector,
respectively. They read as o, = (K, + K, /2 for a weak
impurity (regime III,) and o, = ﬁ for a strong impurity
(regime III},). The corresponding exponents are often referred
to as bulk and boundary exponents, respectively. The density
of states is obtained by plugging the Green’s function (42) into
the definition of the LDOS, Eq. (37). The resulting expression

reads as

- 4 m \[2maT\* (2mwaT \*""
v (w) = —— cos
v, 4K, Vs Ve

Rel B(—i—2 +a“+a51 O(w)
< @ YT

(< lZnT > , O — 0 w),
43)

where B(x,y) is the Euler beta function. A plot of the LDOS
in the regimes II1a and IIIb is presented in the two lower panels
of Fig. 4.

B. Region I1

In thisregime, the bulk of the system is gapped and the impu-
rity potential is large. The large impurity potential effectively
acts as a boundary potential so that we have to calculate the
LDOS with open boundary conditions. The charge partin (41)
can be calculated in this case using standard open-boundary
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bosonization methods [38,41,42]. The correlation function in
the charge sector is that of a gapless Luttinger liquid at a
hard-wall boundary:

naT/vCi|2Kc. 44)

sinntTt

gc(T) = [

On the other hand, the integrability of the sine-Gordon model
on the half-line allows for a calculation of the correlation
functions in the spin sector using the boundary state formalism
introduced by Ghoshal and Zamolodchikov [40] together with
a form factor expansion. This procedure has been performed in
Ref. [38] where the authors calculate the local chiral Green’s
functions. The correlation function in the spin sector consists
of three parts

g(0) = () + gl (0) + gb(x). (45)

Let us first discuss the first two terms g° and g! which de-
scribe one-particle contributions of the form factor expansion.
The first term corresponds to the free propagation of a massive
(anti)soliton and the second term describes a single collision
of such a particle with the boundary. Terms that involve a
higher number of particles in the intermediate state as well as
higher-order corrections due to the boundary lead to subleading
corrections: since these processes require the excitation of
more gapped particles, they take place at higher energies [38].
Since we are only interested in frequencies w < A, we can
discard those terms. Explicitly, the terms g and g! read as

Q@ =2 [eos (T ) Ko + Kip@] @)

and

do b4
1 _ . —Al|t|cosh6
g, (1) = Zl|:/—2n K(G +l—2>e

do T
—K(9 -_) —Alt|coshf
+/2n +12 e

4eik /ﬁ K(9 +i£)e—A|r\coshGe—9/2
2 2

telf /d—e K(Q n iz)eA”COSheee/z]. 47)
2 2

Here, K, (x) denotes the modified Bessel function of the second
kind, Z; is a normalization constant which was obtained
in Ref. [43], and K(0) is the so-called boundary reflection
amplitude. In particular, at the exactly solvable Luther-Emery
point K = %, this function is given by K(6) = i tanh % We
stress that the dependence of the Green’s function in (45) on K
is only contained in the form of the reflection amplitude K (6),
the normalization constants Z;, as well as another constant
B to be defined below in the discussion of the bound-state
contribution g°.

A plot of the bulk contribution to LDOS, which is obtained
by only taking into account the terms g° and g! in the
Green’s function in (45), is shown in Fig. 5. The most salient
properties of the bulk LDOS are as follows. First, as a natural
manifestation of the gap, the LDOS vanishes exponentially
for energies below A. Second, we observe a peak structure at
energies just above the gap. We note that the peak is not sharp
(i.e., not a § function). This is because the electronic Green’s

RS

FIG. 5. Plot of the LDOS of the bulk states in regime II for K, =
0.8, K, = 0.5 for different temperatures. The inset shows the peak
structure of the contribution v!(w) which arises from the term g! in
Eq. (45).

function is a convolution of a gapped spin part and a gapless
charge part and thus the LDOS is associated with excitations
involving at least two “elementary” constituents. Technically,
the peak arises due to the contribution g! in (45) shown in the
inset of Fig. 5 which describes the propagation of the electron
to the boundary where it is reflected and then propagates back
to the point of measurement.

Returning to the full expression for the Green’s function, the
last term in Eq. (45) describes the contribution of the boundary
bound state and reads as

gh(r) = 2213[1 + cos %]e—EBBS‘f', (48)

with Eggs and x given in Eq. (30), and B > 0 denoting a real
constant. For example at the Luther-Emery point, K; = %, it
is given by B = —2 cos ®°. The contribution to the LDOS at
the impurity position arising due to the boundary bound state
can be calculated analytically. The calculation is standard [21]
and yields

8Z,B T Y Epps) 2mwaT 7
cos -
72v, 4K, @ EBoBs Ve

Relp(—;@—Loss 1 1 (49)
X K€ —_] — .
"“oxr T4k, T 2K,

The contribution v”(w) arising from the bound state is
plotted in Fig. 6 for different temperatures. We observe that the
boundary contribution is finite below the bulk gap, vanishing
only below the threshold energy Egps given by the energy
splitting of the edge states. Since the energy splitting increases
with lowering temperature according to Eq. (27), the threshold
for the LDOS shifts towards the bulk gap until it merges with
the bulk LDOS at temperatures ~7*, where Egps(T*) = A.
This temperature scale characterizes the crossover tempera-
ture from the edge-state-mediated tunneling (at 7* < T < A,
regime II) to the singlet pair tunneling (at 7 < T, regime I).
The total LDOS in the regime II, including both the bulk and
boundary contributions, is plotted in the upper right panel of
Fig. 4.

vb(a)) =
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FIG. 6. Plot of the LDOS of the edge state in regime II given
in Eq. (49) for different temperatures and for K. = 0.8. The LDOS
vanishes below the edge-state energy Egpgs(7) defined in (36). Note
that for K, > % this threshold energy increases as temperature is
decreased. At the critical temperature when Egps(7*) = A, the
contribution disappears into the bulk LDOS signaling the crossover
from regime II to regime 1.

C. Region I

In this regime, the bulk of the system is gapped and the
impurity potential is weak. Therefore, to lowest order we
calculate the LDOS in the absence of the impurity potential.

The charge part of the Green’s function (41) is thus given
by the “bulk” expression

K 1
waT /v, ]2 T2
—] (50)

sintTt

gc(T) = |:

and the spin part is given by second term in Eq. (46) only:

27,
8:(1) = —=Ki(A7). 61V}

We note that technically this term arises from the RR and LL
components of the chiral Green’s function in (40). The off-
diagonal chiral components G®* and G*R vanish in regime
I since left and right moving electrons are independent in the
absence of a boundary.

The LDOS in this regime can be obtained numerically by
using Eqgs. (41), (50), and (51). The results are plotted in the
upper left panel of Fig. 4.

VI. CONCLUSION

In this work, we have studied theoretically transport prop-
erties of a 1D electron gas with strong correlations that
dynamically gap out the spin degrees of freedom of the
low-energy theory, in the presence of a time-reversal-invariant
impurity. The effective low-energy Hamiltonian of the model is
defined by Egs. (1)—(3). The resulting topological SDW phase
is characterized by topologically protected bound states located
at the impurity position which carry fractional electron spin.

The key results of this paper concern the behavior of the
conductance through the impurity and of the LDOS in different
transport regimes; see Figs. 1 and 4, respectively. The results

are obtained by using a combination of bosonization and
perturbative expansions in different limiting regimes.

At temperatures far above the bulk gap A in the spin sector,
i.e., in the regime III of Fig. 1, the conductance shows behavior
typical for a gapless Luttinger liquid in the presence of an impu-
rity. At sufficiently high temperatures, the transport is ballistic
with small power-law corrections due to elastic scattering of
single electrons off the impurity dressed by Friedel oscillations.
The density of states shows a power-law behavior with a
zero-bias anomaly that is cut off by the finite temperature. The
power-law exponent of both the conductance and the LDOS
depends on whether the impurity has flown to strong coupling
or not. A strong impurity effectively corresponds to a boundary
and leads to different exponents of the transport observables.
The weak impurity regime is denoted by III, and the strong
impurity regime by III,, in the figures.

We have focused on the range of moderately strong in-
teractions with % < K, < 1and % < K < 1. Upon lowering
the temperature, both the impurity potential and the soliton
interaction potential in the spin sector then flow to strong
coupling under the renormalization. The corresponding strong-
coupling fixed point describes two separate 1D subsystems,
each with a gap A for spin excitations. This regime is denoted
by Ilin Fig. 1. The transport in this regime takes place via weak
tunneling processes, with amplitude y, between the ends of
the two subsystems. In view of the topological character of the
system, a boundary bound state energetically located within the
bulk gap emerges at the end of each subsystem. Due to the finite
tunneling between both subsystems, the edge states are ener-
getically split around zero energy by Epps defined in Eq. (30).

The dominant transport mechanism in this regime is the
single-electron tunneling mediated by the boundary states.
Even though single-spin excitations are gapped in the bulk,
they can be created or annihilated by flipping the edge spin
which has an energy cost of order of the splitting. This is clearly
visible in the density of states, depicted in Fig. 6. The DOS has
a subgap contribution above a threshold value of Eggg due to
the contribution of the edge state. We note that while the edge
state gives a delta-function contribution to the DOS in the spin
sector, the electron DOS is obtained as a convolution of the
DOS of the spin and charge sectors and thus the subgap peak
is not sharp.

It is important that the energy splitting is not constant but
scales with temperature |y (T)|. Crucially, we find that the
tunneling in the regime II is enhanced according to Eq. (27).
Thus, upon lowering the temperature, the energy splitting
of the boundary state gradually increases until finally the
edge DOS merges with the bulk DOS at temperature 7%,
defined by Epps(7*) = A. Simultaneously, the strength of
the impurity potential, which scales oc|y(T)|~!, is reduced,
ultimately flowing back to a weak impurity fixed point. This
signals a crossover to a phase where the spin sector is gapped
but the impurity potential is weak, denoted by I'in Fig. 1. In this
regime, the single-electron tunneling is energetically forbidden
due to the bulk gap for spin—% excitations. This is clearly visible
in the DOS in regime I of Fig. 4, which shows a hard-gap
behavior. The leading transport channel in this regime is then
the tunneling of singlet pairs across the impurity. Since this is
a much weaker second-order process, the conductance shows
ballistic behavior with weak power-law corrections.
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We briefly discuss now what happens if we relax the
1

conditions 5 < K. < 1 and % < K, < 1; see Appendix for a
more detailed presentation based on the RG analysis. If K, <
%, which corresponds to very strong repulsive interactions,
pair scattering becomes relevant and the 7 = 0 fixed point is
insulating. It is curious that this same limitation also occurs for
helical edge states of a two-dimensional topological insulator
when interactions are considered [44]. If K. > 1, which will
occur in superconducting realizations of this model [16], there
is no change to regions I and II below the spin gap. However,
if K. 4+ K; > 2, then the impurity is no longer relevant, even
above the spin gap. This means first that the conductance as a
function of temperature will be monotonic, and second that the
regime II where the impurity is still strong at an energy scale
of A will be more more difficult to reach. If K; < % which
would correspond to very strong Ising anisotropy, we would
expect that the basic physics we have discussed will remain the
same, however, there may be some quantitative changes due
to breather modes in the spin sector that have not been taken
into account in this work. Finally, if K; > 1, then generally
the system is not in a spin-gapped phase. [More accurately, the
border is K; = 1 only for infinitesimally small backscattering
gsG; a finite gy slightly shifts the border (see Appendix).]

In conclusion, the discussed quasi-long-range order SDW
phase is an example of a strongly correlated symmetry-
protected topological phase that exhibits features fundamen-
tally different from noninteracting topological phases. We have
discussed signatures of these properties both in the LDOS near
an impurity and in the behavior of the conductance. We note
that although an impurity is irrelevant in the RG sense and
will always flow to weak coupling as 7 — 0, there are certain
parameter regimes where the impurity is strong below the gap,
demonstrating boundary states in the LDOS. This physics is
rather universal and should be experimentally observable in
any of the physical systems listed in Sec. II.

A further peculiarity of the system that we have studied
is that it has features characteristic for a topological insulator
(bulk gap with a topological edge state) only in the spin sector.
The charge sector remains gapless. However, as our results
show, the charge transport also exhibits remarkable topological
properties. Indeed, we have shown that even in the presence of
a strong impurity [meaning a (renormalized) impurity strength
greater than the gap, implying G « 1 atintermediate T', regime
II] the conductance becomes ballistic in the low-temperature
limit. Thus, the system combines features of a topological
insulator (symmetry-protected topological phase) in the spin
sector with those of a topological metal in the charge sector.

In short, our results on the conductance and the LDOS can
be used to experimentally probe the nontrivial topology in the
system. We hope that our work will stimulate experimental
activity in this direction, both in the condensed-matter and in
the cold-atom realizations of the topological phase that we have
theoretically explored.
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APPENDIX: RENORMALIZATION-GROUP EQUATIONS

In this Appendix we develop the renormalization-group
(RG) analysis of the model (1)—(3) and discuss the correspond-
ing phase diagram in the full range of Luttinger liquid constants
K. and K;.

The complete action of the model with the Hamiltonian
(1)—(3) reads as

S = 8StL + S5 + Ssg + Simp + Scohs (AD)

where

1 1 ) 2
S = EXH:K—M/CZ r(Vou),

8 2 2
S = 5y [ (620 = (00)’)
d’r
Si6 = A [ st/

d
Simp = —Jimp / T2 o5/, (0.72)) cos(V DT 0.12),

Scoh

d
/ 2 i oSBT 0,(0.)

+ himp.c COS(V/87 4, (0,r2))]. (A2)
Here, we defined the dimensionless coupling constants A =
gsc/(@m?vy) and Aimp = &b/ (7w vy), as well as the coordinates
r = (r1,r)T = (x,v,7)T. The bosonic fields are related to the
convention used in the main text by rescaling ¢ = ®/+/27.
The dimensionless velocity difference § = 1 — v, /vy, while in
principle present, turns out not to be important as it neither
flows under RG nor influences any of the other flow equations,
We therefore will simply drop it in the following.

The action S.on describes two-particle coherent processes
generated by the impurity term in second order in a perturbative
expansion in Aiyp; the bare values of the coupling constants are
A?mpp = )\?mp’s = 0. Here, the first term corresponds physically
to the backscattering of two incoming electrons with opposite
spin, incident from the left and right of the impurity. The
resulting scattering process effectively backscatters a particle
with spin 1 but zero charge. The second term in S describes
a process where two electrons with opposite spin are inci-
dent from the same side of the impurity and are coherently
backscattered. This process effectively backscatters a singlet
with charge 2e. These coherent scattering processes become
important when either the charge or the spin sector are gapped
and electronic excitations are prohibited.

The phase diagram of the model in Eq. (A2) is determined
by the interplay of the impurity scattering (described by the
terms Simp and Scop) and the interaction (described by the sine-
Gordon term). To gain a better understanding of this interplay,
we perform a RG analysis of the action in Eq. (A2). The RG
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equations read as

dK 1 i
s = ——Kz)\fza Y, = 2_2KS)\' ’
dt 2t g = -
A himmp 1 1
70 = |1- E(Ks + K¢) |Aimp — E)Vimp)‘imp,c
1 1
— E)‘imp)‘imp,s - W)‘J—)“imp’
i, 1 1
% = (11— 2Ks))\imp,s - Z)"izmp - E)\J_}\imp,sv
d)\imp,c — (1 _ ZKC))‘«lm c— l)\z . (A3)
de > 471

There exists a line of weak-coupling fixed points with K; =
const and A; = 0 for all i. The corresponding phase is the
spinful Luttinger liquid phase. There are also a number of
strong-coupling fixed points:

AL — 0 ’ )‘-imp,s - 0,

Aimpe —> 0, Ajmp — 00 = strong impurity I,
)U_ - 07 Aimp,s — 0’ )\imp,c — 00,
Aimp > 0 = strong impurity II,

)‘-_L - 07 A-imp,s — 00, )\imp,c e 0,

Aimp =~ 0 = strong impurity III,

AL = 00, Aimps —> 0, Aimpc — 0,

Aimp > 0 = SDWI,

AL —> 00, Aimps = 0, Ajype = 00,

Amp —> 0 =  SDWIL

AL —> —00, Aimps = 0, Aimpe — 0,

Aimp —> 00 = CDW. (A4)

Note that the equations for A, and K decouple from the rest,
in the sense that the flow of A, and K| is not influenced by
the other couplings. This result is very natural since the local
disorder term cannot affect the physics in the bulk. This can
be used to classify the strong-coupling phases above into three
strong impurity phases, where the spin gap does not develop
and three phases with a gap in the spin sector.

If 1, flows to zero, the fixed points correspond to those
encountered in the study of a single impurity in the Luttinger
liquid phase [23,24]. There are then three possible strong-
coupling phases. In phase I, the impurity term becomes
relevant. Physically, the impurity potential perfectly reflects
incoming electrons at zero temperature in the thermodynamic
limit and the system is effectively cut into two parts, each
being in the Luttinger liquid phase. The impurity phases II
and III describe impurity potentials that perfectly transmit spin
but no charge, or vice versa (see the discussion in [23,24]).
There is, however, one difference between these works and the
current discussion. In the presence of the sine-Gordon term,
the bulk interaction K is also subject to renormalization. This
renormalization slightly shifts the phase boundaries between
the impurity phases in the K- K, plane compared to the model
with A = 0. Since the sine-Gordon term is irrelevant in this
region of the phase diagram, the shift of the phase boundaries
is very minor.

Let us now discuss the opposite situation, when A grows
under the RG flow. If the bare parameters of the model obey
A9 | > 2(K? — 1), the flow is towards a strong-coupling fixed
point where the system dynamically develops a spin gap. The
nature of the fixed point then additionally depends on the sign
of ). For A, < 0, the strong-coupling fixed point is of the
CDW type. In this case, the development of CDW order in the
bulk goes hand in hand with the flow of the impurity to strong
coupling. In the thermodynamic limit and at zero temperature,
the impurity potential becomes perfectly reflecting and cuts
the wire into two parts, each exhibiting a CDW order.

Ontheotherhand,if A; > 0, the strong-coupling fixed point
is of the SDW type. In the SDW phase, the impurity potential
always renormalizes to zero. Whether the system remains
conducting or becomes insulating in the thermodynamic limit
then depends on the coupling Aimp that is generated by the
impurity in second order. We find that the corresponding term
becomes relevant for K, < %, independently of the physics
in the spin sector. Then there are two disordered SDW phases,
depending on whether A;pp . grows or decreases under the flow.
In the SDW I phase (K. > %), the system remains a ballistic
conductor at zero temperature, while the system in the SDW
II phase (K, < %) is insulating.

The overall phase diagram for 1§ > 0 (we have chosen
19 =0.2) is depicted in Fig. 7. This paper focuses on the
SDW I phase.

FIG. 7. Phase diagram of the model in Eq. (A2), describing a
spin-anisotropic 1D electron gas in the presence of a single impurity.
The classification of the phases is defined in Eqs. (A4). The bare
parameter of the sine-Gordon term is chosen as 19 = 0.2. The choice
of the bare values of the impurity coupling constants does not affect the
phase diagram. The phase boundary between the two SDW phases, as
well as between the impurity II and Luttinger liquid phase, is K, = %
The boundary between the SDW phases and the neighboring phases
is A9 > 2(K? — 1) and the boundary between the impurity I and the
impurity I and the Luttinger liquid phase is K? + K = 2. This paper
focusses on the SDW I phase.
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