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Semiclassical theory for liquidlike behavior of the frustrated magnet Ca10Cr7O28
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We identify the low energy effective Hamiltonian that is expected to describe the low temperature properties
of the frustrated magnet Ca10Cr7O28. Motivated by the fact that this effective Hamiltonian has S = 3/2 effective
moments as its degrees of freedom, we use semiclassical spin-wave theory to study the T = 0 physics of this
effective model and argue that singular spin-wave fluctuations destabilize the spiral order favored by the exchange
couplings of this effective Hamiltonian. We also use a combination of classical Monte-Carlo simulations and
molecular dynamics, as well as analytical approximations, to study the physics at low, nonzero temperatures.
The results of these nonzero temperature calculations capture the liquidlike structure factors observed in the
temperature range accessed by recent experiments. Additionally, at still lower temperatures, they predict that a
transition to nematic order in the bond energies reflects itself in the spin channel in the form of a crossover to a
regime with large but finite correlation length for spiral spin correlations and a corresponding slowing down of
spin dynamics.
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I. INTRODUCTION

At a phenomenological level, spin liquids are magnetic
materials which avoid ordering down to the lowest temper-
atures studied, well below the temperature scale set by the
exchange interactions. This sets them apart from most other
magnetic materials which order at the temperature scale of
the exchange interactions. This negative characterization of a
spin liquid, although rooted in experimental phenomenology,
is of limited utility from a theoretical point of view. A lot of
theoretical effort over the years has therefore been devoted to
a more positive characterization of spin liquid phases, in terms
of topological order, emergent gauge structure, and fractional
excitations [1,2].

Systems with geometrically frustrated antiferromagnetic
interactions, which result in a macroscopic degeneracy of
low-energy configurations that minimize the (classical) energy,
are natural candidates for spin liquid behavior. One example
is the frustrated magnet SCGO (SrCr9pGa12−9pO19), which
serves as a paradigmatic example of a classical spin liquid,
in which the observed behavior can be explained in terms
of the macroscopic degeneracy of ground states of S = 3/2
moments on the SCGO lattice in the classical limit, with the
effects of thermal fluctuations and nonmagnetic impurities
also accounted for within this classical approximation [3–6].
Other examples include minerals such as Herbertsmithite and
Volborthite, and organic solids like κ-(ET)2Cu2(CN)3, which
are well-studied candidates for quantum spin liquid behavior
[1,7,8].

Recently, Balz et al. [9,10] added to this list of candi-
dates with a report of spin liquid behavior in the compound
Ca10Cr7O28. In Ca10Cr7O28, the spin S = 1/2 Cr5+ ions form
magnetically isolated Kagome bilayers. Using high field data
on the one-magnon (single spin flip) excitation spectrum above
the fully-polarized ground state, Balz et al. [9,10] have argued
that the magnetic Hamiltonian consists of nearest-neighbor
Heisenberg exchange couplings in each Kagome layer of the

bilayer, as well as ferromagnetic exchange couplings between
the two layers that make up each bilayer. A key feature of
the exchange couplings extracted from their analysis is the
following: In each bilayer, the up (down) pointing triangles
of the lower (upper) Kagome layer host relatively large ferro-
magnetic exchange couplings, while the down (up) pointing
triangles of the lower (upper) Kagome layer host significantly
smaller antiferromagnetic exchange couplings roughly equal
in magnitude to the ferromagnetic exchange interactions that
couple the upper and lower Kagome layers to each other (see
Fig. 1). One of the reasons for the recent interest in Ca10Cr7O28

is the fact that spin liquid behavior is observed in spite of the
dominant ferromagnetic couplings [9,10].

Here, we provide an alternative theoretical perspective that
relates the low temperature physics of Ca10Cr7O28 to the
semiclassical large-spin limit of honeycomb lattice antiferro-
magnets with frustrating next-nearest neighbor couplings. Our
starting point is the following simple observation: Since the
dominant intralayer ferromagnetic couplings are at least three
times larger in magnitude compared to the intralayer antifer-
romagnetic and interlayer ferromagnetic couplings [9,10], it
should be possible to obtain a fairly accurate description of
the low energy part of the spectrum by working with effective
S = 3/2 degrees of freedom that represent the total spin of
ferromagnetically coupled up (down) pointing triangles of
the lower (upper) Kagome layer in each bilayer (see Fig. 1).
We expect this crucial simplification to be valid below a
temperature scale set by the magnitude of these dominant
intralayer ferromagnetic couplings. Since S = 3/2 magnets
can usually be described in classical terms fairly well (except
possibly at ultra-low temperatures which the experiments of
Balz et al. do not access), this observation immediately opens
the door to a semiclassical treatment [11,12] of the problem.

As will be clear below, the pattern of exchange couplings
extracted by Balz et al. from their analysis of the high-field
data implies that these S = 3/2 degrees of freedom can be
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FIG. 1. The Cr5+ ions in Ca10Cr7O28 form a Kagome bilayer
structure, as reported in Ref. [9]. Each layer has antiferromagnetic
couplings �J = 0.1 meV as well as much stronger ferromagnetic
couplings, as indicated in the figure, while the interlayer couplings
are again antiferromagnetic with magnitude �J = 0.1 meV. Green
and red links constitute the upper Kagome layer, while green and
yellow links constitute the lower Kagome layer. Blue links denote
interlayer couplings. This figure has been created using VESTA [13].

thought of as occupying sites of a honeycomb lattice with
nearest-neighbor ferromagnetic exchange couplings (J1) and
next-nearest-neighbor antiferromagnetic exchange couplings
(J2) of roughly equal magnitude. In our work here, we
perform a semiclassical analysis of the properties of this
honeycomb lattice model, with a view towards understanding
the liquidlike behavior observed in experiments at not-too-
low temperature [9,10]. Our basic conclusion is that such a
semiclassical description reproduces the observed liquidlike
structure factors seen in the temperature range accessed by
recent experiments on Ca10Cr7O28. Additionally, our results
predict a lower temperature crossover to a regime with large
but finite correlation length for spiral spin correlations and
a corresponding increase in spin autocorrelation times. This
crossover occurs at roughly the same temperature at which the
bond energies are known to develop nematic order [14]. This
onset of nematicity in the bond energies is also related to the
observed threefold symmetry breaking phase transition seen
in the work of Okumura et al. [15] in the classical model in a
different parameter regime of J2/J1.

The physical picture that emerges from our analysis is as fol-
lows: The effective spin S = 3/2 moments can minimize their
classical exchange energy by forming spiral states at any wave
vector �q that falls on a one-dimensional locus Qs in reciprocal
space. The leading 1/S corrections about any such classical
spiral state labeled by �q consist of two bands of harmonic
spin-wave fluctuations. Including the zero point energy of these
spin waves selects a spiral with a specific set of zone-boundary
wave vectors that minimizes this leading 1/S correction to the
ground state energy. However, the energy E−(�k) of the lower
band of spin waves vanishes whenever �k approaches any point
on the entire one-dimensional locus of spiral wave vectors
Qs (in addition to vanishing at wave vector �k = 0). Within
this harmonic theory of spin-wave fluctuations, this vanishing
of E−(�k) on the entire locus Qs is crucially implicated in
the logarithmic divergence of the mean-square amplitude of
transverse fluctuations about any such classical spiral state.

This divergence of transverse fluctuations, reminiscent
of the mechanism by which long range antiferromagnetic
order is destroyed by spin wave fluctuations at T = 0 in

one-dimensional systems, suggests (by analogy to this well-
understood one dimensional case) that spiral order is likely
destabilized by spinwave fluctuations at T = 0, although fur-
ther analysis would be needed to account for possible subtleties
arising from anharmonic (higher order in 1/S) corrections to
this picture. We return to a brief discussion of this point towards
the end of this paper.

Of greater relevance to the experiments of Balz et al. is the
effect of thermal fluctuations on this incipient spiral order. Our
results show that thermal fluctuations lead, below a crossover
temperature scale, to a regime with a large but finite correlation
length for spiral correlations of the spins at a particular set of
entropically-selected zone-boundary wave vector on the spiral
locus Qs . Additionally, we find a characteristic increase in
the spin relaxation times below this crossover temperature.
These crossovers in the spin channel take place at roughly the
same temperature as the sharp onset of nematic correlations in
the bond energies studied in the work of Mulder et al. [14].
In this low temperature regime, a large but finite correlation
length for spiral spin correlations thus coexists with nematicity
in the bond energies. This relatively simple theoretical picture
complements the more sophisticated pseudofermion functional
renormalization group analysis employed by Balz et al. in their
own theoretical analysis of the underlying microscopic model
of S = 1/2 spins on the Kagome bilayer. Most of the inelastic
neutron scattering results of Balz et al. are at temperatures
above this crossover. In this regime, our calculations yield a
liquidlike structure factor similar to these experimental results.

The rest of this paper is organized as follows. In Sec. II we
introduce the microscopic model Hamiltonian extracted from
high-field data on this calcium chromate compound [9,10] and
identify the effective Hamiltonian that governs the behavior of
the effective spin S = 3/2 degrees of freedom that represent
the low energy degrees of freedom. In Sec. III, we carry out
a large-N study of this effective model within the classical
approximation (i.e., treating the S = 3/2 spins as fixed-length
vectors of magnitude S) and calculate correlation functions
and structure factors to leading order in large-N . In Sec. IV,
motivated by our large-N results, we construct a degenerate set
of spiral ground states (Luttinger-Tisza spirals) for the classical
system, with spiral ordering wave vectors �q lying on a one-
dimensional locus Qs in reciprocal space and study the effect
of quantum-mechanical spin-wave fluctuations about these
ground states to leading order in the 1/S expansion. In Sec. V,
we study the effect of thermal fluctuations on the degenerate
manifold of ground states in the classical limit. In Sec. VI,
we carry out a combined Monte Carlo-molecular dynamics
study of the statics and dynamics of the effective model of
classical spins identified in Sec. II and present numerical results
for the temperature dependence of structure factor, specific
heat, susceptibility, and relaxation time. We close with a brief
discussion of some outstanding issues in Sec. VII.

II. THE EFFECTIVE MODEL

The crystal structure and magnetic properties of the mag-
netic insulator Ca10Cr7O28 were studied recently by Balz
et al. [9,10] using x-ray diffraction and inelastic neutron
scattering methods as well as thermodynamic measurements.
The magnetic Cr5+ ions (S = 1/2) were found to form Kagome
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bilayers, with each bilayer magnetically isolated from the next
by the absence of exchange pathways. Using inelastic neutron
scattering at high magnetic fields, it was possible to map out the
excitation spectrum of single spin-flip “magnon” excitations
above the fully-polarized high-field ground state. The form of
the microscopic Hamiltonian governing the dynamics of the
S = 1/2 Kagome bilayers was deduced from fits to this data in
conjunction with thermodynamic measurements. This analysis
yielded the best-fit Hamiltonian

H ( �Si) =
∑
ij

Mbare
ij

�Si.�Sj . (1)

The isotropic Heisenberg exchange couplings that make up the
matrix Mbare

ij above may be described as follows: Up-pointing
(down-pointing) triangles of the lower (upper) Kagome layer
in each bilayer consist of three spins strongly coupled to
each other by strong ferromagnetic bonds of magnitude JF

ll

(JF
uu), while the exchange couplings that constitute the links

of down-pointing (up-pointing) triangles in the lower (up-
per) Kagome layer are antiferromagnetic, with a significantly
smaller magnitude JAF

ll (JAF
uu ). Additionally, spins directly

above one another are connected by a ferromagnetic exchange
interaction that couples the two layers of each Kagome bilayer.
This has magnitude JF

ul . To within the error bars quoted
by Balz et al., JAF

ll � JAF
uu � JF

ul ≡ J , JF
ll � 3J , JF

uu � 8J ,
with J � 0.1 meV. The magnetic lattice, as well as this pattern
of exchange couplings, is displayed in Fig. 1.

As already noted by Ref. [9], the ferromagnetic exchange
couplings JF

ll and JF
uu dominate over the antiferromagnetic

couplings JAF
ll , JAF

uu , and JF
ul , being at least three times larger

than these antiferromagnetic couplings. Our starting point is
the observation that low energy eigenstates are expected to
be built from states in which the three spins coupled by JF

ll

(JF
uu) in the lower (upper) Kagome layer are in a total spin

Stot = 3/2 state. This strongly suggests that the low energy
physics should be described by an effective Hamiltonian
written in terms of spin S = 3/2 moments that represent such
strongly ferromagnetically coupled triangles. These strongly
ferromagnetically coupled triangles in each Kagome layer
thus form a triangular lattice of S = 3/2 moments, which
represent states in the total spin = 3/2 multiplet of the three
spin S = 1/2 moments coupled together by the strong ferro-
magnetic couplings acting within each such triangle. To obtain
the effective interaction of these S = 3/2 effective moments
with each other to leading order in the ratios of subleading
couplings to the dominant ferromagnetic couplings, we must
project these subleading couplings into the subspace of states
obtained by restricting to the total spin S = 3/2 multiplet of
each strongly coupled triangle. Performing this projection,
we see that the S = 3/2 effective moments are coupled to
each other by nearest neighbor antiferromagnetic Heisenberg
exchange interactions of magnitude J eff = J/9. In addition, to
the same accuracy, the effect of the interlayer coupling JF

lu is to
introduce an effective ferromagnetic interlayer coupling of the
same magnitude J eff = J/9, which couples the two triangular
layers of S = 3/2 moments. This is shown in Fig. 2. For the
rest of this paper, we work with this effective model, which is
expected to capture the physics correctly below a temperature
scale set by the strong ferromagnetic couplings in each layer.

FIG. 2. The low energy effective Hamiltonian has spin S = 3/2
moments on a bilayer triangular lattice, with antiferromagnetic in-
tralayer couplings and ferromagnetic interlayer couplings as shown.
The magnitude of all couplings in this effective Hamiltonian is J eff =
J/9, where J is the microscopic in-plane antiferromagnetic coupling
between the Cr5+ spins. This is equivalent to a honeycomb lattice with
nearest-neighbor ferromagnetic couplings and next-nearest-neighbor
antiferromagnetic couplings. When written in terms of unit vector
n̂ instead of vectors of length S = 3/2, the effective model has
couplings of magnitude J effS2 � 290 mK � 0.025 meV. Energies
(frequencies) and temperatures are measured in units of this energy
scale in all subsequent figures. This figure has been created using
VESTA [13].

We note that features seen in experiments at temperatures
of order this scale or higher cannot be reproduced correctly
within this effective model for the low temperature physics. For
instance, a bump at T � 4 K in the experimental specific heat
curve reported in Ref. [9] cannot be captured by calculations
within this effective model. Nevertheless, the position of this
bump corresponds quite well to the average of the two energy
scales (since the ferromagnetic couplings in the two layers are
different) associated with the unbinding of the ferromagnet-
ically bound effective S = 3/2 moments into three S = 1/2
moments, suggesting that this is the origin of the specific heat
feature studied experimentally. Since our calculations are in
terms of an effective Hamiltonian for the spin S = 3/2 degrees
of freedom, we do not capture this higher temperature feature
within our effective theory.. In addition, high temperature
calculations within the effective model will always yield a
regime with an antiferromagnetic Curie-Weiss constant, rather
than the ferromagnetic Curie-Weiss constant that characterizes
the experimental high temperature susceptibility.

Finally, we note that this effective model of S = 3/2
moments on a bilayer triangular lattice is equivalent to a
J1 − J2 Heisenberg model on a honeycomb lattice, with
nearest neighbor ferromagnetic interactions J1 = J eff = J/9
(corresponding to the interlayer coupling between the two
triangular layers that make up a bilayer) and next-nearest-
neighbor antiferromagnetic interactions J2 of the same mag-
nitude (corresponding to the antiferromagnetic interaction
between spin S = 3/2 moments on the same triangular layer).
The spin-S J1 − J2 Heisenberg model on the honeycomb
lattice has been the subject of several previous studies in the
context of materials in the BaM2(XO4)2 (M=Co, Ni; X= Pt,
As) family and the Bi3M4O12(NO3) family(M= Mn,V,Cr)
[14–20], and we will make contact with these studies when
we discuss our results. In our classical molecular dynamics
and Monte Carlo studies, we choose to represent the classical
S = 3/2 moments by unit vectors; this necessitates a rescaling
of the exchange couplings by a factor of |S|2, so that we work
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with a model of unit vectors interacting with an exchange
coupling of strength J eff |S|2 = J/4. For convenience, we
quote all numerical values in units of J/4 or (J/4)−1 in the rest
of this paper (J/4 corresponds to approximately 0.025 meV
or 290 mK).

III. LARGE-N STUDY

The problem of finding classical ground states given a
pattern of exchange couplings is a constrained minimization
problem. Instead of attacking it right away, we use the large-N
approximation [21], whereby we generalize from the O(3)
degrees of freedom (in terms of which we write the classical
limit of our spin Hamiltonian) to O(N ) vectors obeying the
constraint �φ2

i = N on each site i, and then use the N → ∞
solution to approximate the behavior at N = 3. This follows
the path laid out by similar calculations for other frustrated
classical spin systems [3,4,22–25].

When working within the large-N approximation, we
choose to represent the S = 3/2 moments �S as classical
(c-number) vectors �φ of length

√
3 (instead of unit vectors that

are a more convenient representation for our combined Monte
Carlo and molecular dynamics computations). Thus we write
�S = √

3 �φ/2. In this language, the Hamiltonian is written as

H ({n̂i}) = (1/3)
∑
ij

�φi · �φjMij . (2)

Here, Mij is the pattern of couplings depicted in Fig. 2 with
the exchange couplings J eff rescaled by a factor of |S|2 = 9/4,
so that elements of Mij have magnitude J effS2 as alluded to
in the end of the previous section. The additional prefactor of
1/3 in Eq. (2) of course accounts for the rewriting in terms
of vectors �φ of length

√
3.The lattice of Fig. 2 is a triangular

Bravais lattice with a two-site unit cell representing the two
layers of the original system. As noted in the previous section,
it is equivalent, as far as the connectivity (not geometry) is
concerned, to a honeycomb lattice with nearest and next-
nearest-neighbor couplings. In Eq. (2) and all subsequent
discussion we adopt the convention that i,j are composite
indices comprised of the Bravais lattice site with coordinate �ri ,
and a sublattice (layer) index α (α = 1,2). When inessential,
we suppress the sublattice indices in what follows.

The expression for the partition function in the large-N limit
becomes

Z ∝
∫ ∏

i

d �φi exp(−βH )
∏

i

δ
( �φ2

i − N
)
. (3)

Using 2πδ(x) = ∫
dλ exp(iλx), and the expression for the

Hamiltonian in Eq. (2), we can write the partition function
[Eq. (3)] as

Z ∝
∫

D[λ]D[ �φ] exp

(
iN

∑
i

λi

)

× exp

⎛
⎝−

∑
ij

�φi · �φj

(
β

3
Mij + iλiδij

)⎞
⎠, (4)

where we have used D[λ] = ∏
i dλi , and D[ �φ] = ∏

i d
�φi . The

λi integrals can be performed exactly using the fact that the

saddle-point approximation becomes exact in the N → ∞
limit. Setting all λi = λ, as is appropriate for a saddle-point
that respects all lattice symmetries, one has

Z ∝
∫

D[ �φ] exp

⎛
⎝−β

3

∑
ij

�φi · �φj (Mij + λδij )

⎞
⎠, (5)

where λ is the saddle point value of 3iλ/β, self-consistently
determined by the equations〈

φ2
i

〉
λ

= 1 (6)

for each site i. Here φi is a scalar field that represents any one
component of �φi .

To find the lowest energy configurations that dominate the
large-N path integral in the low temperature limit, we diago-
nalize the saddle point Hamiltonian matrix Mij + λδij . We do
this in Fourier space, where it is block diagonal. Our lattice is a
triangular Bravais lattice with a two site unit cell. We introduce
a sublattice index in the subscript of the scalar fields to write
φα(�k) = ∑

ri
φα,ri

exp(−i�k · �ri). Here and in all subsequent
discussion, wave vectors are measured in units of a−1 and posi-
tions in units of a, where a is the lattice spacing of the underly-
ing triangular Bravais lattice, which we estimate to be �5.35 A
from the more precise measurements of the crystal structure
given in Ref. [9,10] (small distortions from perfect Kagome
bilayer geometry have been ignored in arriving at our estimate).

Here, α denotes the sublattice and the sum runs over unit
cells. Expressing vectors in terms of their components along
the principal axes ê1 and ê2 of the triangular lattice (with ê1 ·
ê2 = −1/2), we have

∑
i,j

niMijnj = 1

L2

∑
�k

	(�k)†M(�k)	(�k), (7)

	†(�k) = (φ∗
1 (�k),φ∗

2 (�k)), (8)

M(�k) = 1

2
J eff |S|2

(

 −K∗

−K 


)
, (9)

where 
 = 2(cos(k1) + cos(k2) + cos(k1 + k2)) and K =
(1 + exp(ik1) + exp(ik1 + ik2)). The eigenvalues are given by
E±(�k) = 1

2J eff |S|2(
 ± √

 + 3).

These eigenvalues describe two dispersive bands. The lower
band E−(�k) has degenerate band minima labeled by wave
vectors �q such that

2(cos(q1) + cos(q2) + cos(q1 + q2)) = −11/4. (10)

The solutions of this equation lie on a locus Qs shown in Fig. 3.
It is worthwhile to compare this degeneracy with what one
has as a result of large-N calculations for other frustrated
systems which are known to exhibit spin-liquid behavior:
SrCr9pGa12−9pO19, in which the lattice is a pyrochlore slab
with nearest neighbor interactions, has a seven site unit cell and
seven bands, of which the lowest three are flat. The pyrochlore
lattice itself has, within this approximation, four bands, out
of which the lower two are flat [22]. Herbertsmithite, where
the spins are on a Kagome lattice, has three bands, out of
which the lowest is flat [23]. Within large-N such flat bands are
usually signatures of liquidlike behavior. Our line degeneracy
is reminiscent of Volborthite [24] where the spins lie on a
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FIG. 3. Wave vectors labeling degenerate ground states lie on the
locus Qs marked in red. The hexagon marks the first Brillouin zone
of the triangular Bravais lattice, and the x and the y axes refer to
components of �q in the x̂ and ŷ directions. Also marked are the points
at the zone boundaries of the first Brillouin zone, which are selected
by quantum fluctuations as well as thermal fluctuations (see main text
for details).

distorted Kagome lattice and the lower band minima form a
one-dimensional degenerate subspace.

The eigenvectors for any point �q on this locus are given by
φ± = ( 1√

2
)(1, ∓ exp(iθ�q)), where θ�q is determined by

cos(θ�q) = 2(1 + cos(q1) + cos(q1 + q2))

sin(θ�q) = 2(sin(q1) + sin(q1 + q2)). (11)

Note that the equation of the locus Qs guarantees that this pair
of equations for θ�k has a legitimate solution.

Next, we calculate spin correlations in this large-N approxi-
mation by numerically solving Eq. (6) to obtain λ(β) and using
this value to determine the equal time correlation function in
momentum space. For a system of L × L unit cells, this is
given by

〈φα(�k)φβ(−�k′)〉 = L2δ�k, �k′Gα,β (�k), (12)

G11(�k) = G22(�k) = 3

β


 + λ(β)

(
 + λ(β))2 − (
 + 3)
, (13)

G12(�k) = G∗
21(�k) = 3

β

K

(
 + λ(β))2 − (
 + 3)
. (14)

In Fig. 4, we show the momentum-space correlation func-
tions of spins in the same plane, G11(�k), for two tempera-
tures T = 100 mK and T = 1 K relevant to the experiments
performed in Ref. [9]. One can also calculate the equal time
spin structure factor within this approximation by using these
results to compute

S(�k) = 1

L2
〈|φ1(�k)f1(�k) + φ2(�k)f2(�k)|2〉, (15)

where the subscripts denote the sublattice as before, and f1(�k)
and f2(�k) are the form factors for the bound S = 3/2 degrees
of freedom corresponding to triangular plaquettes of ferro-
magnetically coupled spin 1/2 moments (see Appendix D).

FIG. 4. In-plane momentum dependence (with out of plane mo-
mentum set to zero) of correlation functions of spins in the same
plane, G11(�k) = G22(�k) [Eq. (13)], computed within the large-N
approximation at temperatures (a) 0.35(J/4) � 100 mK and (b)
3.50(J/4) � 1 K ((J/4) � 290 mK). The lower temperature results
show clear features associated with the tendency towards spiral order.

In Fig. 5, we show the large-N results for the equal time struc-
ture factors at the same temperatures. The lower temperature
scans at T = 100 mK clearly show features associated with the
tendency towards spiral order, although there is clearly no true
long range order possible in this two-dimensional system. We
also note that the form factors partially smear out these “spiral
features,” making them harder to observe in the equal time
spin structure factor (as opposed to the intraplane correlation
function displayed earlier).

IV. SPIN-WAVE THEORY AT T = 0

From the large-N ground states obtained in the previ-
ous section, we may construct physical ground states of
three-component vectors of magnitude |S| = 3/2. Since the
eigenvectors of the exchange-coupling matrix Mij have the
same magnitude on both sublattices, it is possible to use
these eigenvectors to construct valid classical ground states
for the S = 3/2 spins. These are the ‘Luttinger-Tisza’ spiral
ground states [26], obtained by making appropriate linear

FIG. 5. In plane momentum dependence (with out of plane
momentum set to zero) of the equal time structure factor of spins,S(�k)
[Eq. (15)] within the large-N approximation at two values of temper-
ature: (a) T = 0.35(J/4) � 100 mK and (b) T = 3.50(J/4) � 1 K
(J/4 ≈ 290 mK). We note that form factors partially smear out, but do
not eliminate the “spiral features” seen earlier (Fig. 4) in the intraplane
spin correlations at the lower temperature.
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combinations of the eigenvectors φ±:

�SGS
i = |S|n̂GS

i ,
(
n̂GS

i

)2 = 1,

n̂GS
1,ri

= (cos(�q.�ri)ẑ + sin(�q.�ri)x̂),

n̂GS
2,ri

= (cos(�q.�ri − θ�q)ẑ + sin(�q.�ri − θ�q)x̂), (16)

where �q belongs to the ground-state manifold obtained from
large-N results in Eq. (10) and we have used the explicit repre-
sentation of the composite index i in terms of (α,ri), where α

is the sublattice index and ri is the coordinate of the underlying
triangular Bravais lattice. These classical ground states are
related (by a spin flip on one sublattice) to those constructed by
Mulder et al. in their study of the S = 1/2 honeycomb lattice
J1-J2 with both couplings antiferromagnetic [14].

Now, we look at whether quantum fluctuations lift the
degeneracy of the manifold of spiral ground states in (16) and
whether they render such spiral ordering unstable. Although
higher order corrections in 1/S (anharmonic corrections to
the leading harmonic spin-wave theory) are outside the scope
of our analysis, the leading order results may be expected
to already be fairly reliable for spin S = 3/2. Some of our
results in Sec. IV were obtained earlier in a different context
in Ref. [16] and are reproduced here in the interests of a
self-contained presentation. Our calculations are also analo-
gous to similar spin-wave calculation by Mulder et al. [14]
for the case of antiferromagnetic J1, although there is no
canonical transformation that connects the two problems, and
the leading order spin-wave corrections (and the semiclassical
spin dynamics) are therefore not the same although the classical
ground states are closely related.

We consider spin-wave fluctuations about a spiral ordered
state of Eq. (16) labeled by the wave vector �q belonging to
the degenerate ground-state locus Qs given by Eq. (10). First,
we rotate the local ẑ axis to point along the spins in the spiral
ordered state given by (16). This rotation transforms a generic
quadratic term of our Heisenberg Hamiltonian in the following
way:

�Si.�Sj → S
y

i S
y

j + (
Sz

i S
z
j + Sx

i Sx
j

)
cos(ωi,j )

+ (
Sz

i S
x
j − Sx

i Sz
j

)
sin(ωi,j ), (17)

where ωi,j is given by

ωi,j = ωα,ri ;β,rj
= �q.(�ri − �rj ) for α = β, and

ω1,ri ;2,rj
= −ω2,rj ;1,ri

= �q.(�ri − �rj ) − θ�q . (18)

Here θ�q is defined in Eq. (11), and we have explicitly expressed
the composite indices i and j in terms of the sublattice index
α,β = 1,2 and the unit cell position coordinates ri ,rj . Next, we
choose the spin quantization axis along the local ẑ axis defined
above and make a transformation to Holstein-Primakoff bosons
bα,i ,b

†
α,i , in effect making the substitutions Sz → S − b†b,

S+ → √
2Sb, and S− → √

2Sb† (correct to quadratic order).
We then expand the resulting expansions to leading order
in 1/S, again keeping terms only up to quadratic order in
the boson creation and annihilation operators, to obtain a
noninteracting spin-wave Hamiltonian HSW(�q).

To diagonalize the spin-wave Hamiltonian, we transform
to Fourier space as bα(�k) = ∑

i bα,i exp(i�k.�ri), α labeling

the sublattice, to obtain

HSW(�q) = EGS + |S|
L2

∑
�k

′
b†(�k)M(�q,�k)b(�k) − 2a(�q,�k), (19)

b† = (b†1(�k),b†2(�k),b1(−�k),b2(−�k)). (20)

Here,
∑ ′ denotes a sum over half of the Brillouin zone. The

expressions for a(�q,�k) and for the matrix M(�q,�k) are given
in Appendix A. EGS is the spiral ground-state energy indepen-
dent of �k and �q, given in terms of the connectivity matrix Mij

by

EGS =
∑
i,j

ŜGS
i (�q)MijS

GS
j (�q), (21)

for any �q in the spiral ground-state manifold Qs defined
by Eq. (10). The quadratic spin-wave Hamiltonian HSW(�q)
can be diagonalized by making a canonical transformation to
Bogoliubov quasiparticles γ±(�k), which preserve the bosonic
commutation relations [γμ(�k),γ †

ν ( �k′)] = δ�k, �k′δμ,ν (μ,ν = ±)
[27]. In terms of the Bogoliubov quasiparticles, one can write

HSW(�q) = EGS + E0(�q)

+ |S|
L2

∑
�k∈BZ,σ=±

ESW
σ (�q,�k)γ †

σ (�k)γσ (�k). (22)

The spin-wave dispersions ESW
± (�q,�k) = ESW

± (�q, �−k) are de-
tailed in Appendix A. We note that the lower band ESW

− (�k) has
zero energy modes at the spiral wave vectors lying on the locus
Qs defined in Eq. (10), apart from a Goldstone mode at k = 0.
The �q-dependent zero point energy of spin-wave fluctuations
E0(�q) is given by

E0(�q) = |S|
L2

∑
�k

′
(ESW

+ (�q,�k) + ESW
− (�q,�k) − 2a(�q,�k)). (23)

To obtain the state favored by spin-wave fluctuations, we
minimize the zero-point energy E0(�q) in Eq. (23) over the
classical ground state spiral wave vectors given by Eq. (10).
We find that E0(�q) is minimized for

(q1,q2) = (arccos(1/8),π − arccos(3/4)) (24)

and the other wave vectors related by lattice symmetries.
Therefore, within noninteracting spin-wave theory, quantum
fluctuations favor the spiral states given by Eq. (24) and other
wave vectors related by lattice symmetries. The wave vectors
favored by quantum fluctuations lying within the first Brillouin
zone are shown in Fig. 3.

The Mermin-Wagner theorem rules out order at any finite
temperature. The question of whether the system orders at zero
temperature can be studied within spin-wave theory by looking
at the expectation value of magnetization about the local ẑ axis:

1

2L2

〈∑
α,i

Sz
α,ri

〉
= 1

2L2

∑
�k,α

(S − 〈b+
α (�k)bα(�k)〉). (25)

A small expectation value of the Holstein-Primakoff boson
number (1/2L2)

∑
�k,α〈b+

α (�k)bα(�k)〉 would imply that the spiral
ground state is stable to transverse fluctuations. We numer-
ically evaluate 〈b+

α (�k)bα(�k)〉−1 and find that it vanishes on
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〈b+ α

(� k
)b

α
(� k

)〉−
1

(�k − �q).n̂

〈b+
α (�k)bα(�k)〉−1

a|(�k − �q)|, a = 2.142

FIG. 6. The expectation value 〈b+
α (�k)bα(�k)〉−1 calculated within

leading-order spin wave theory. The plotted wave vectors are along n̂,
the local normal at a generic point on the locus Qs of the degenerate
spiral wave vectors given by Eq. (10). The solid line is a fit to the form
a|�k − �q|, with a = 2.142. This linear behavior, being generic along
the spiral locus, signifies an instability of the spiral order to transverse
fluctuations (see main text for details).

the wave vectors belonging to the spiral manifold given by
Eq. (10). For small deviations perpendicular to the locus of de-
generate spiral wave vectors Qs, we find that 〈b+

α (�k)bα(�k)〉−1 ∝
|�k − �q| where �q is any location on the spiral manifold. For
a particular spiral wave vector �q, this linear dependence is
shown in Fig. 6. We have checked that this linear behavior
does not depend on the location of wave vector �q on the spiral
manifold given by Eq. (10). This linear behavior renders the
integral (1/2L2)

∑
�k,α〈b+

α (�k)bα(�k)〉 logarithmically divergent
in the thermodynamic limit. Within leading order spin-wave
theory, we thus find that transverse fluctuations destabilize
spiral order. We note that the spiral order suffers the same
fate in the system with antiferromagnetic interlayer couplings
[14], even though the spin-wave dispersions are different. (In
this case, 〈b+

α (�k)bα(�k)〉−1 is linear in perpendicular deviations
|�k − �q| with a different proportionality constant.) We note that
the role of higher order terms in the 1/S needs to be analyzed
to obtain a more definite prediction regarding the fate of the
system. In spite of this caveat regarding the ultimate fate of the
system, this analysis does strongly suggest that spiral order,
favored by the pattern of exchange couplings in the system, is
destabilized due by singular spin-wave fluctuations, possibly
opening the door to T = 0 spin-liquid behavior. Another
competing possibility is bond-energy nematic order of the type
predicted for the S = 1/2 case in the work of Mulder et al. [14].

V. CLASSICAL FLUCTUATIONS ABOUT SPIRAL
GROUND STATES

Having studied the effect of quantum fluctuations on clas-
sical ground states in Sec. IV, we now look at the effect
of thermal fluctuations. Our method follows the one used in
Ref. [28] in the analysis of the spinel MnSc2S4. A similar
calculation has been reported earlier for a different regime
of J2/J1 [15].

In this section, we work with configurations of unit vectors
n̂, such that �S = |S|n̂. We consider fluctuations about the
configuration n̂GS(�q), where n̂GS(�q) is the unit-vector config-
uration describing the spiral ground state �SGS(�q) defined in
Eq. (16) and �q belongs to the degenerate ground-state locus
Qs. The configuration n̂i can be written in terms of fields �εi

describing fluctuations from n̂GS
i as

n̂i = �εi + n̂GS
i (�q)

√
1 − �εi

2
. (26)

The fluctuation fields �εi satisfy �εi .n̂
GS
i = 0 and are always

constrained to obey �εi � 1. Together with the form of Eq. (26),
these conditions explicitly preserve the unit vector constraint
on the spins. In terms of the fluctuation fields �ε, one can write
the partition function as

Z =
∫

D[n̂] exp(−βH ) (27)

=
∫

D[ε] exp(−βH )
∏

i

(
1 − �εi

2)− 1
2 , (28)

where we have put in the expression for the Jacobian of the
transformation from the n̂i to the �εi fields. The fluctuation
fields �εi can be further decomposed into scalar fields πi and ρi

describing fluctuations in and out of the plane of the spiral as

�εi = ρiŷ + πi(ŷ × �Si

GS
(�q)). (29)

We absorb the Jacobian into the exponential and express the
partition function of Eq. (28) in terms of the scalar fields ρ and
π using Eq. (26) and Eq. (29). Expanding in these fields and
keeping terms up to quadratic order in ρ and π gives us the
leading order partition function of small fluctuations about an
ordered spiral ground state:

Z =
∫

D[π ]D[ρ] exp(−S(π,ρ))

S = β
∑
ij

(ρiJijρj + πiKijπj ) − 1

2

∑
i

(
ρ2

i + π2
i

)
, (30)

where the matrices Jij and Kij are defined in terms of the
connectivity matrix Mij of Eq. (2) and the spiral ground-state
energy EGS [Eq. (21)] as

Jij = Mij − EGSδij ,

Kij = (Mij − EGSδij ) �Si

GS
(�q) · �Sj

GS
(�q). (31)

We note that the in-plane fluctuation matrix Kij has two bands
as expected. The lower band has zeros exactly at the spiral
wave vectors belonging to the degenerate ground state locus Qs
given by Eq. (10), i.e., it has a one-dimensional subspace of soft
fluctuation modes (or zero modes), just like the connectivity
matrix Mij , apart from a zero mode at �k = 0.

Now, one can ask what states among the degenerate
manifold of spiral ground states are entropically selected at
nonzero but low temperatures. In this regime, one can drop
the temperature independent Jacobian terms in the partition
function of small fluctuations about the ordered spiral state
�Si

GS
. The fluctuation fields ρ and π can be integrated out
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to give

Z(�q) =
∫

D[π ]D[ρ] exp

⎛
⎝−β

∑
ij

(ρiJijρj + πiKij (�q)πj )

⎞
⎠

∝ det(βJ )−1/2det(βK(�q))−1/2, (32)

where we have explicitly shown the dependence on the spiral
wave vector �q. To find the states selected entropically, we min-
imize the free energy F (�q) = −T log(Z(�q)) over the manifold
of spiral states given by Eq. (10). The free energy, up to additive
constants independent of temperature or the spiral wave vector
q, is given by

F (�q) = 1

β
Tr(log(βJ )) + 1

β
Tr(log(βK(�q))). (33)

The first term is independent of the spiral wave vector �q and
cannot break the degeneracy of the ground states given by
Eq. (10). As detailed in Appendix B, the trace in the second
term can be easily calculated in the Fourier basis, where K(�q)
is block diagonal. In this way, we find that the states selected by
small fluctuations at small nonzero temperatures are the same
as the ones selected at zero temperature by noninteracting spin
waves, i.e., ones at the edges of the first Brillouin zone, given
by Eq. (24) and shown in Fig. 3.

VI. NUMERICAL STUDY

In this section we undertake a combined Monte Carlo-
molecular dynamics study of the classical effective spin 3/2
model described earlier.

A. Method

To study equilibrium properties and equal time correlation
functions, we use Monte Carlo simulations. While embedded
cluster algorithms are available for continuous spin systems
[29,30], the extremely frustrated nature of the low temperature
configurations of this model render these inefficient. Therefore,
following Refs. [31] and [32], we use three single-spin updates:
(a) Over-relaxation moves are energy-conserving microcanon-
ical sweeps, which reflect the spin of each site about the
effective magnetic field, (b) heat-bath moves to equilibrate
each spin in the external exchange field of its neighbors,
and (c) parallel tempering, which exchanges, with acceptance
probability that obeys detailed balance, entire configurations
between two independent simulations run at slightly different
temperatures. More details on these update schemes can be
found in Ref. [31]. For completeness, we have also documented
the details relevant to our implementation in Appendix C.

To study the dynamics, we consider the classical Hamilto-
nian equations of motion, given by

|S|dn̂i

dt
=

∑
j

Mij n̂j × n̂i , (34)

where n̂i are unit vectors satisfying n̂2
i = 1. The connectivity

matrix Mij is defined in Eq. (2) and given by the pattern of
couplings in Fig. 2 with couplings rescaled by a factor of
|S|2. Following previous work on dynamics of spin models
[11,12,33], we integrate the Hamiltonian equations of motion

numerically using the fourth-order Runge-Kutta method. The
time step of the numerical integrator is kept low enough to
ensure the energy remains conserved to within the accuracy
needed. In practice, we use a time step of 0.03(J/4)−1 to
achieve this. To obtain the dynamical correlation functions,
we integrate the Hamiltonian equations of motion starting from
different initial configurations generated by the Monte Carlo
simulation described in the previous paragraph. All quanti-
ties are averaged over initial conditions and the frequency
dependence of observables is calculated by averaging Fourier
transforms of the time evolution of the observable over this
ensemble of initial conditions.

B. Results

The Mermin-Wagner theorem rules out the spontaneous
breaking of any continuous symmetry in two dimensions,
thereby ruling out any nonzero temperature regime with true
long range spiral order in the spin correlations. However,
discrete lattice symmetries can still be broken. Indeed, the work
of Mulder et al. [14] has demonstrated an apparent transition
to bond-energy nematic order for J2/J1 = −1 (and nearby val-
ues) in our notation, i.e., with both couplings antiferromagnetic
(as far as the classical physics is concerned, the sign of J1 can

FIG. 7. Temperature and in-plane momentum dependence (with
out of plane momentum set to zero) of the equal time correlation
function of spins in the same layer (sublattice), obtained from classical
Monte Carlo simulations of the effective model for a system of
L × L unit cells with L = 64. (a) Data at T = 0.20 (J/4) � 58 mK
shows clear evidence of the entropic selection of zone-boundary spiral
wave vectors (see main text for details). (b) Data at a slightly higher
temperature T = 0.22 (J/4) � 64 mK shows nearly equal intensity
all along the locus of spiral wave vectors favored by the exchange
interactions. (c) This weight along the locus of spiral wave vectors
is already visible at a slightly higher temperature T = 0.35 (J/4) �
100 mK. (d) Finally, at an even higher temperature T = 3.50 � 1 K,
the momentum dependence has no sharp features (J/4 � 290 mK).
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be changed by flipping the spins on one sublattice, connecting
this result to the case of interest to us). A similar transition had
also been reported earlier in the literature by Okumura et al.
[15] for J2/J1 > −1/2 (in our notation). While this transition
was seen to be accompanied by the expected singular behavior
of the specific heat in the cases studied by Okumura et al.,
Mulder et al.’s results suggested that the specific heat does not
scale at the nematic transition in the regime of J2/J1 studied
by them [14,15].

From the point of view of the experiments that form our
motivation, it is important to ask what are the signatures in the
spin channel of this puzzling onset of bond-energy nematicity
at J2/J1 = 1? To address this question, we study the effective
model on triangular lattices with L × L unit cells, with each
unit cell having two basis spins, and obtain the spin correlators,
uniform spin susceptibility and the local spin autocorrelation
function in the low temperature regime.

First, we look at the Fourier transformed correlation func-
tion of spins in the same plane 〈nα(�k)nα(−�k)〉

MC
, obtained

easily in our Monte Carlo simulations by fast Fourier trans-
forming the spin configurations. At low temperature below
a crossover scale Tcrossover � 0.22 (J/4) � 64 mK, we see
clear evidence for slowly decaying spiral correlations at wave
vectors that form a one-dimensional locus in q space. In fact,
this tendency becomes gradually visible starting at somewhat
higher temperatures. When the temperature is lowered below
this crossover scale, order-by-disorder effects apparently start
preferring a particular set of zone boundary spiral wave
vectors from this locus of degenerate spirals [Fig. 7(a)]. This
is consistent with the behavior expected from the classical
analysis of fluctuations about these spiral states in Sec. V,
since it is the same set of wave vectors that is selected.
The full locus of spiral wave vectors [Eq. (3) and Fig. 3]

0 π/2 π

k1 = k2

0 π/2 π

k1 = k2

N N

FIG. 8. Intralayer spin correlations in momentum space (y axis)
obtained using classical Monte Carlo simulations of the effective
model for a system of L × L unit cells with L = 64 are well
approximated by large-N (Sec. III) results for the same quantity. The
correlation functions are plotted along the cut k1 = k2 in momentum
space (with out of plane momentum set to zero). The left panel
shows this comparison for T = 0.35(J/4) � 100 mK. The right
panel shows the same comparison for T = 3.50(J/4) � 1 K (J/4 �
290 mK).
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FIG. 9. Inverse susceptibility 1/χ of the effective model on a
lattice of L × L unit cells, with L = 64, plotted against temperature T

expressed in units of (J/4) ≈ 290 mK [χ is defined as in Eq. (35)]. A
clear deviation from linearity is visible at low temperature. Inset: The
uniform susceptibility χ at low temperature shows a crossover at a
temperature roughly consistent with the peak in the specific heat data.
This crossover temperature corresponds to the temperature scale at
which spiral correlations start to build up (as evidenced by our results
for the spin correlations and structure factor), although our spin-wave
calculations at T = 0 strongly suggest that long-range spiral order
(favored atT = 0 by the pattern of exchange couplings) is destabilized
by singular spin-wave fluctuations. Note that the crossover scale is
consistent with the position of the peak in the specific heat curve,
which marks the sharp onset of nematic order in the bond energies.

obtained from large-N calculations in Sec. III become visible at
somewhat higher temperature, as shown in Fig. 7(b). At even
higher temperatures, the correlation function between spins
in the same layer starts looking more and more liquidlike,
as shown in Fig. 7(c) and Fig. 7(d). Further, the correlation
functions obtained in the Monte-Carlo simulations are in
reasonable agreement with the ones calculated in large N . We
have displayed the agreement of our Monte-Carlo correlation
functions within the same layer with the large-N results in
Fig. 8. The slight disagreement at the lower temperature can
be ascribed to the fact that the large-N analysis does not capture
the entropic effects which lead to the selection of a particular
set of spiral wave vectors at low temperatures, as described
in Sec. V.

Next we compute the uniform susceptibility χ , given by

χ = 1

2T L2

⎛
⎝〈∑

i

n̂2
i

〉
MC

−
〈∑

i

n̂i

〉2

MC

⎞
⎠. (35)

In Fig. 9 we display results for the inverse spin susceptibility,
1/χ . The linear behavior at high temperature, characteristic
of a paramagnet, persists down to a crossover temperature,
below which deviations are apparent. [As noted in Sec. II, the
linear behavior, if extrapolated down, has an antiferromagnetic
intercept, which reflects the fact that we are working with an ef-
fective model of S = 3/2 spins, and the true high-temperature
limit (at temperatures well above the large ferromagnetic ex-
change couplings) is not accessible to our model.] Deviations
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A(
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t
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0.0

20
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n
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T = 0.19
T = 0.21
T = 0.22
T = 0.23
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FIG. 10. Spin autocorrelation functionA(t) of the effective model
plotted as a function of t displayed in units of (J/4)−1. Inset
shows the temperature dependence of the relaxation time defined
via the integrated autocorrelation function. These relaxation times
show a crossover at Tcrossover � 0.22 (J/4) � 64 mK. The uniform
susceptibility display crossovers at roughly the same temperature.
As mentioned earlier, this crossover temperature corresponds to the
temperature scale at which spiral correlations start to build up (as
evidenced by our results on the spin correlations and structure factor),
although our spin-wave calculations at T = 0 strongly suggest that
long-range spiral order (favored at T = 0 by the pattern of exchange
couplings) is destabilized by singular spin-wave fluctuations. Note
that the crossover scale is consistent with the position of the peak in
the specific heat curve, which marks the sharp onset of nematic order
in the bond energies.

from paramagnetic behavior below the crossover scale are also
apparent in the plot of the uniform susceptibility χ shown in the
inset of Fig. 9. Note that the small bump in χ as a function of
temperature serves as a marker for the crossover temperature,
which is consistent with the crossover visible in the Fourier
transform of the spin correlators discussed earlier.

Next we look at spin autocorrelation functions, defined as

A(t) = 〈n̂i(0) · n̂i(t)〉MC. (36)

We show the decay of spin autocorrelations in Fig. 10. At higher
temperatures, the autocorrelations decay exponentially like in a
paramagnet. At lower temperatures, the autocorrelation curves
develop a knee and cross over to a regime of slow dynamics.
To extract a time scale from these relaxation rates, we define
the integrated autocorrelation time τint as

τint =
∫ ∞

0
dtA(t). (37)

We plot the relaxation time scales τint obtained in this manner
in the inset of Fig. 10. We see that the autocorrelation timescale
shows a crossover to slow dynamics at Tcrossover � 0.22 (J/4),
consistent with the crossover in the uniform susceptibility plots
and the Fourier transform of the spin correlation functions.

To connect this crossover in the spin channel with the
puzzling transition to nematic order in the bond energies
reported earlier in Mulder et al. [14] for J2/J1 = 1 and nearby
values, we have revisited the specific heat and nematic order
parameter susceptibility of this system, going to somewhat
larger sizes than in the work of Mulder et al. Defining the

C
v

T

C
v

T

L = 48
L = 64
L = 72
L = 84
L = 96

L = 108
L = 120
L = 132
L = 180
L = 192
L = 204

FIG. 11. Specific heat C [Eq. (38)] of the effective model on a
lattice of L × L unit cells, with L = 48, 64, 72, 84, 96, 108, 120,
132, 180, 192, and 204, plotted against temperature T , expressed in
units of (J/4) ≈ 290 mK. There is a clear peak at a temperature T ∗ �
0.22 (J/4) � 64 mK. The inset zooms in to better display the shape
of the curve near the peak as well as the size dependence visible within
the range of sizes studied here. As is clear from the displayed data, this
peak does not scale with system size within the range studied here,
apparently ruling out a phase transition. Indeed, our results appear
to saturate to the thermodynamic limit already for the range of sizes
studied, including at the position of the peak. However, results for
the bond-energy nematic order parameter for the same range of sizes
suggest the sharp onset of nematicity at a temperature corresponding
to this peak (see below).

specific heat as

C = 1

2T 2L2
(〈E2〉MC − 〈E〉2

MC), (38)

where E is the total energy of a configuration and 〈. . . 〉MCS

denotes a Monte Carlo average, we have obtained the specific
heat data for different system sizes shown in Fig. 11. We
see a peak in the specific heat at T ≈ 0.22 (J/4). However,
we also note that the peak does not scale at all with the
system size. Indeed, from Fig. 11, we see that linear sizes
that differ by more than a factor of three give curves that
overlap with each other within error bars, indicating that finite
size effects are already negligible at these sizes. Note that
this peak is apparently unrelated to the bump at T � 4 K
in the experimental specific heat curve reported in Ref. [9]:
Indeed, as noted in Sec. II, this temperature scale seen in
the experiments corresponds quite well to the average of
the two energy scales (since the ferromagnetic couplings
in the two layers are different) associated with the unbinding
of the ferromagnetically bound effective S = 3/2 moments
into three S = 1/2 moments, suggesting that this is the origin
of the specific heat feature studied experimentally. Since our
calculations are in terms of an effective Hamiltonian for the
spin S = 3/2 degrees of freedom, we do not capture this higher
temperature feature within our effective theory.

Turning our attention to the interpretation of the peak in
the specific heat at T ≈ 0.22 (J/4), we note that any interpre-
tation of this specific heat peak in terms of a thermodynamic
singularity associated with a phase transition would normally
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FIG. 12. Nematic order parameter susceptibility [Eq. (40)] of the
effective model on a lattice of L × L unit cells, with 64, 72, 84, 96,
108, 120, and 132, plotted against temperature T , expressed in units
of (J/4) ≈ 290 mK. There is a clear peak at a temperature T ∗ �
0.22 (J/4) � 64 mK. The height of this peak, plotted in the inset
as a function of system size, shows the expected finite-size scaling
behavior at a thermodynamic phase transition, consistent with the
results of Mulder et al. [14]. In particular, our power-law fit (shown as
a line in the inset) for the L dependence of the peak height has power-
law exponent 1.76(6), consistent with the known value of 26/15 =
1.733 . . . for this exponent at the three-state Potts transition.

have been ruled out by the fact that the data appears to have
already converged to the thermodynamic limit over the range
of sizes studied. [We have also checked that the spin structure
factor data (discussed below) and the equal time correlation
results (displayed earlier) for spins are both reasonably well
converged to the thermodynamic limit at the sizes used in our
study, suggesting that this range of sizes is perfectly adequate
as a means of extrapolating to the thermodynamic limit.]

However, as was already noted by Mulder et al. [14], when
one computes for the same range of sizes the complex bond-
energy nematic order parameter defined as:

B(�r) = n̂1,�r · n̂2,�r + ei2π/3n̂1,�r · n̂2,�r+ê1 + ei4π/3n̂1,�r · n̂2,�r+ê2 ,

(39)

we see behavior that is consistent with the sharp onset of
nematicity at a temperature corresponding to this peak in the
specific heat. This is shown in Fig. 12 where we plot the order
parameter susceptibility χB , given by

χB = 1

T L2

⎛
⎝〈∣∣∣∣∣

∑
�r

B(�r)

∣∣∣∣∣
2〉

MC

−
∣∣∣∣∣
〈∑

�r
B(�r)

〉
MC

∣∣∣∣∣
2
⎞
⎠, (40)

over a somewhat larger range of sizes than in the previous
work [14]. Clearly, we see behavior consistent with Mulder
et al.’s identification of a transition to nematic order in the
bond energies [14]. In particular, we are able to fit the height
of the peak to the expected scaling behavior at the three-state
Potts transition (inset of Fig. 12). More work is needed to
understand this puzzling nematic transition, given that the
discrepancy between the behavior of the specific heat and the

FIG. 13. In plane momentum dependence (with out of plane
momentum set to zero) of the equal-time structure factor SMC(�k)
[Eq. (41)] of the effective model, obtained from Monte Carlo simula-
tions of systems with L × L unit cells, with L = 64, for temperatures
(a) 0.35(J/4) � 100 mK and (b) 3.50(J/4) � 1 K (J/4 � 290 mK).
The spiral features visible in the corresponding intralayer correlation
function at the lower temperature (displayed earlier in Fig. 7) are
partially smeared out due to the effect of form factors but still visible.
The results at the higher temperature are largely featureless.

order parameter susceptibility is seen to persist even at the
larger sizes accessed in our study.

Independent of this puzzle, we can nevertheless conclude
that the temperature of specific heat peak is roughly consistent
with the crossover in the spin channel associated with a
growing spiral correlation length (Fig. 7) which leaves its
mark on the Fourier transform of the spin correlation function,
on the uniform spin susceptibility, and on the local spin
autocorrelation function.

In addition, we have also measured the equal time structure
factors defined as:

SMC(�k) = 1

L2
〈|n̂1(�k)f1(�k) + n̂2(�k)f2(�k)|2〉MC, (41)

where the form factors of the effective S = 3/2 moments are
given in Appendix D. The equal time structure factors for T =
0.35(J/4)(≈100 mK) and T = 3.50(J/4)(≈1 K) are shown
in Fig. 13. At the lower temperature, we see clear evidence of
spiral correlations, whereas the higher temperature results are
featureless.

Finally, we have calculated the dynamic structure factor,
defined as

SMC(�k,ω) = 1

L2Nτ

〈|n̂1(�k,ω)f1(�k) + n̂2(�k,ω)f2(�k)|2〉MC.

(42)

Here, n̂α(�k,ω) is calculated by fast Fourier transforming
n̂α,(ri,t) obtained from the numerical integration of the Hamil-
tonian equations of motion (34) (Nτ is the number of steps
used in numerical integration). The dynamic structure factors
at T = 0.35(J/4) ≈ 100 mK for frequencies 0.41(J/4) ≈
0.010 meV and 1.74(J/4) ≈ 0.044 meV are shown in Fig. 14.
Both these frequencies fall well within the quasielastic window
of the recent inelastic neutron scattering measurements [9].
At the lower of the two frequencies, one sees clear features
corresponding to low-frequency fluctuations at wave vectors
on the spiral locus. At the higher frequency, the structure factor
is liquidlike and relatively featureless.
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FIG. 14. Plots showing the in plane momentum dependence
(with out of plane momentum set to zero) of dynamic structure
factors SMC(�k,ω) defined in Eq. (42), obtained from combined
Monte Carlo-molecular dynamics simulations of the effective at low
temperature T = 0.35(J/4) � 100 mK for a system of L × L unit
cells with L = 64. (a) The dynamic structure factor at low frequency
[ω = 0.41(J/4) � 0.01 meV] shows clear features corresponding to
low-frequency fluctuations at wave vectors on the spiral locus. (b)
The dynamic structure factor at a somewhat higher frequency ω =
1.74(J/4) � 0.0435 meV (which is still very low compared to the
scale at which inelastic neutron scattering experiments have probed
the dynamics) is already featureless (J/4 ≈ 290 mK). Note that
recent experiments have probed the dynamic structure factor mainly
at significantly higher frequencies (�0.25 meV), which actually
correspond in our picture to the natural energy scale for transitions
of the strongly coupled ferromagnetic triangles from the total spin
S = 3/2 multiplet to the higher energy S = 1/2 doublets.

VII. DISCUSSION

The analysis presented here strongly suggests that the low
temperature behavior of Ca10Cr7O28 provides an interesting
example of a frustrated magnet in which the exchange cou-
plings favor T = 0 incommensurate spiral order. The presence
of singular spin-wave fluctuations at wave vectors in the vicin-
ity of the locus of spiral wave vectors also suggests that spiral
order is unstable at T = 0 due to these fluctuations, although
this leading order spin-wave result itself could get modified by
a nonperturbative treatment of 1/S corrections. Independent of
the fate of the system at T = 0, we show that there is a nonzero
temperature crossover to a regime in which the spin autocorre-
lation time scale, equal time spin correlations, and the dynamic
spin structure factor all reflect the presence of a large but finite
correlation length for spiral spin correlations at a particular set
of entropically selected zone boundary spiral wave vectors. The
temperature scale for this crossover is roughly the same as the
onset temperature for nematicity in the bond energies, seen in
earlier work [14].

Our numerical results suggest that this crossover tempera-
ture is Tcrossover � 0.22 (J/4) � 64 mK—this is small because
it is set by the relatively weak effective interactions between
the effective S = 3/2 degrees of freedom. The corresponding
frequency scale (at which dynamical fluctuations at spiral
wave vectors become apparent) is ωcrossover � 0.4(J/4) �
0.01 mev, which falls well within the “quasistatic” window of
inelastic neutron scattering studies of Ca10Cr7O28 [9]. These
recent experiments have also largely focused on the physics
in a somewhat higher temperature window (T � 100 mK)
which is, by our reckoning, significantly above the crossover
temperature at which the buildup of spiral correlations could

be seen. In this higher temperature window, our results are
quite consistent with the liquidlike behavior seen in the exper-
iments. In this context, we emphasize that our analysis, which
focuses on the physics of the low-energy effective theory,
cannot address the physics of the higher temperature crossover,
corresponding to the “binding” of the ferromagnetic triangles
into the S = 3/2 effective moments that form the basic degrees
of freedom at lower temperatures. From a comparison of the
relevant energy scales, it appears that at least some of the
features seen in the recent inelastic neutron scattering data on
Ca10Cr7O28 may be ascribed to the physics of transitions from
the low energy S = 3/2 multiplet to higher energy doublets
in the spectrum of the ferromagnetically coupled triangles in
each layer. We hope our results provide some stimulus for
future experiments that explore the physics of the crossover to
the low temperature regime dominated by the onset of spiral
correlations.

Note added. Recently, we became aware of a parallel study
[34] that also addresses the physics of Ca10Cr7O28, and it would
be interesting to compare and contrast our conclusions with
those of this parallel study.
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APPENDIX A: DETAILS OF SPIN-WAVE CALCULATION

The expressions for the matrix M(�q,�k) and a(�q,�k) in
Eq. (20) are given here. In the rest of this section, we suppress
all explicit �q dependences in our notation for convenience.
Thus we write

M(�q,�k) =
(

A(�k) B(�k)
B(�k) A(�k)

)
. (A1)

The 2 × 2 matrices A and B are given by

A(�k) = J eff

(
a(�k) c∗(�k)
c(�k) a(�k)

)
(A2)

B(�k) = J eff

(
b(�k) d∗(�k)
d(�k) b(�k)

)
. (A3)

The matrix elements are given by

a(�k) = (cos(q1) + 1) cos(k1) + (cos(q2) + 1) cos(k2)

+ (cos(q1 + q2) + 1) cos(k1 + k2)

+ (cos(θ�q) + cos(θ�q − q1) + cos(θ�q − q1 − q2))

− 2(cos(q1) + cos(q2) + cos(q1 + q2))

115102-12



SEMICLASSICAL THEORY FOR LIQUIDLIKE BEHAVIOR … PHYSICAL REVIEW B 97, 115102 (2018)

b(�k) = (cos(q1) − 1) cos(k1) + (cos(q2) − 1) cos(k2)

+ (cos(q1 + q2) − 1) cos(k1 + k2)

c(�k) = −1

2
((cos(θ�q) + 1) + (cos(θ�q − q1) + 1)eik1

+ (cos(θ�q − q1 − q2) + 1)ei(k1+k2))

d(�k) = −1

2
((cos(θ�q) − 1) + (cos(θ�q − q1) − 1)eik1

+ (cos(θ�q − q1 − q2) − 1)ei(k1+k2)).

The spin-wave dispersions ESW
± (�k) of Eq. (22) can be obtained

by solving the auxiliary eigenproblem

(A(�k) + B(�k))(A(�k) − B(�k))� = (ESW(�k))2�. (A4)

Solving this, we find that the dispersions of the spin-wave
modes are given by

ESW
± (�k) = J eff

√
λ1(�k) ± λ2(�k), (A5)

λ1(�k) = a(�k)2 − b(�k)2 + |c(�k)|2 − |d(�k)|2, (A6)

λ2(�k)=
√

4|a(�k)c(�k) − b(�k)d(�k)|2+(c(�k)d(�k)∗ − c(�k)∗d(�k)).

(A7)

APPENDIX B: ENTROPIC SELECTION OF GROUND
STATES AT LOW TEMPERATURES

As mentioned in Sec. V, the matrix K(�q), where �q is the
wave vector of the spiral ground state about which fluctuations
are studied, is block diagonal in Fourier space. The 2 × 2
blocks, labeled by the Fourier component �k of the fluctuation,
may be written as

K(�q,�k) = J eff |S|2
(

e(�k) f ∗(�k)
f (�k) e(�k)

)
, (B1)

where the explicit �q dependence of e and f have been
suppressed. The functions e(�k) and f (�k) are given by

e(�k) = (cos(q1) + 1) cos(k1) + (cos(q2) + 1) cos(k2)

+ (cos(q1 + q2) + 1) cos(k1 + k2)

+ 1

2
(cos(θ�q) + cos(θ�q − q1) + cos(θ�q − q1 − q2))

f (�k) = −1

2
(cos(θ�q) + cos(θ�q − q1)eik1

+ cos(θ�q − q1 − q2)ei(k1+k2)) .

The eigenvalues of the 2 × 2 matrix K(�k,�q) are given by
J eff |S|2(e(�k) ± |f (�k)|).

APPENDIX C: DETAILS OF MONTE-CARLO UPDATES

Following Young et al. [31], we have used three different
updates in our Monte Carlo:

(a) Over-relaxation moves: These are energy conserving
moves where a spin �Si is randomly selected and reflected about
local exchange field �Hi induced by the coupling to other spins,
with

�Hi =
∑

j

Mij
�Sj . (C1)

This reflection is implemented by

�Si → �Si − 2 �Si. �Hi

| �Hi |
. (C2)

Over-relaxation moves help the simulations to equilibrate
faster.

(b) Heat-bath moves: Over-relaxation moves described
above are microcanonical and therefore not ergodic. So, we
supplement them with heat-bath moves. We randomly select a
spin �Si and choose a new azimuthal angle θ and polar angle
φ to specify its orientation relative to the local magnetic field
�Hi defined in Eq. (C1). The new angle θ is chosen with the

heat-bath probability P (cos(θ )), given by

P (cos(θ )) = β| �Hi |
sin(β| �Hi |)

exp(−β| �Hi | cos(θ )). (C3)

As is well known, cos(θ ) can be drawn from the above
distribution by drawing a random number r from a uniform
distribution and equating it to the corresponding cumulative
distribution. This prescription yields a random value for cos(θ )
in terms of the random number r:

cos(θ ) = − 1

β| �H | log(1 + r exp(−2β| �H |)). (C4)

If the azimuthal and polar angles made by the local field �H
with the co-ordinate axes are θ ′ and φ′, respectively, the spin
with orientation (θ,φ) with respect to the effective magnetic
field �H can be written in our global coordinate system as:

Sx = cos(θ ) sin(θ ′) cos(φ′) (C5)

+ sin(θ ) cos(φ) sin(φ′) (C6)

+ sin(θ ) sin(φ) cos(θ ′) cos(φ′) (C7)

Sy = cos(θ ) sin(θ ′) sin(φ′) − sin(θ ) cos(φ) cos(φ′) (C8)

+ sin(θ ) sin(φ) cos(θ ′) sin(φ′) (C9)

Sz = cos(θ ′) cos(θ ) − sin(θ ′) sin(θ ) sin(φ). (C10)

(c) Parallel Tempering: Finally, we use parallel tempering
or replica exchange to improve equilibration and eliminate
loss of ergodicity at very low temperatures. We simultane-
ously run independent Monte Carlo simulations at a series of
temperatures such that the highest few temperatures are high
enough to not suffer from any loss of ergodicity. In a replica
exchange move, one takes equilibriated configurations from
independent simulations at T1 and T2 and exchanges the system
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configurations in their entirety between the two simulations,
using an acceptance probability that obeys detailed balance

P (T1 ↔ T2) = Wf /Wi, for Wf < Wi (C11)

= 1, otherwise. (C12)

The ratio of the weightsWf /Wi is given in terms of the energies
of the configurations E1 and E2 as

Wf /Wi = e
− 1

T1
(E2−E1)

e
− 1

T2
(E1−E2)

. (C13)

Clearly, this is equivalent in practice to simply exchanging
the temperatures of the two independent simulations before
restarting both of them, and this is what is done in practice.

APPENDIX D: FORM FACTORS FOR S = 3/2 MOMENTS

The form factors f1(�k) and f2(�k) for the effective S = 3/2
degrees of freedom are given by

f1(�k) = (1 + eik1/2 + e−ik2/2)ei(−k1/6)+i(k2/6), (D1)

f2(�k) = (1 + eik1/2 + ei(k1/2)+i(k2/2))ei(−k1/3)+i(−k2/6)

× ei(2k1/3)+i(k2/3) × eik3dz , (D2)

where dz is the ratio of the interlayer separation to the distance
between two unit cells of the triangular Bravais lattice of the
effective model. This number is never actually needed for our
purposes because we calculate momentum dependent quanti-
ties like structure factors with the out of plane momentum k3

set to zero.
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