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Transport coefficients of Dirac ferromagnet: Effects of vertex corrections
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As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner
model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto
and H. Kohno, Phys. Rev. B 90, 214418 (2014)], we studied the transport properties giving rise to the anisotropic
magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into
account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this
paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime
is different from the one-electron lifetime and the charge current includes additional contributions from the
correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated.
The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the
nonmagnetic Dirac electron system.

DOI: 10.1103/PhysRevB.97.104421

I. INTRODUCTION

The spin-orbit coupling (SOC) yields a variety of phe-
nomena in ferromagnetic materials, such as the anisotropic
magnetoresistance (AMR) [1–10], the anomalous Hall effect
(AHE) [9,11–21], and the spin-orbit torques [22–25]. These
phenomena have been studied enormously with fundamental
as well as applicational interest. Among these, AMR, the
change in electric conductivity upon varying the magnetization
direction, was observed experimentally more than 150 years
ago [1] and is one of the most accessible physical quantities in
experiments as well as AHE.

The theoretical calculations of AMR were done mainly
based on specific systems, such as the 3d-transition metals,
diluted magnetic semiconductors (DMSs), and strongly spin-
orbit-coupled systems. For the 3d-transition metals, the AMR
is explained by using the two-current model [2,3,26] and the ab
initio results showed good agreement with experiment [21,27].
The AMR depends on various factors including the L · S-type
SOC, the hybridization, and the density of states of s and d

electrons. For DMS ferromagnets such as (Ga, Mn)As, it is
possible to calculate microscopically based on simple physical
methods [6]. The AMR is determined mainly by the anisotropy
of the lifetime induced by the combination of SOC with
polarization of randomly distributed magnetic scatterers, rather
than by that with polarization of conducting electrons resulting
in an anisotropic band structure [6]. In this paper, we focus on
the AMR of the strongly spin-orbit-coupled systems, such as
the interface between the ferromagnetic metal and the heavy
metals and the magnetic semiconductors without inversion
symmetry. It should be noted that the crystalline anisotropy
can contribute to the AMR, but we here have focused on the
noncrystalline AMR.

*fujimoto.junji.8s@kyoto-u.ac.jp

In the context of the AMR of a strongly spin-orbit-coupled
system, the two-dimensional (2D) Rashba ferromagnet was
studied in two cases. In one case where the magnetization is
made from randomly distributed magnetic impurities similar
to DMS ferromagnets, a finite AMR due to the anisotropy
of the lifetime was obtained by using the relaxation-time
approximation [8]. In the other case that the exchange field is
treated nonperturbatively, it was found that the AMR vanishes
in the clean case [7] because the ladder-type vertex corrections
(VCs) cancel out the bare-bubble contribution, as can be
seen in AHE [16]. The two results seem to contradict each
other since the relaxation-time treatment is equivalent to a
perturbation theory of the exchange field. This discrepancy
is possibly explained by the contribution from the anisotropy
of the band structure [5,6], which was not taken into account
in the relaxation-time treatment.

In order to reveal the microscopic origins of the AMR for
simple metallic ferromagnets with strong SOC, we calculated
an AMR of the three-dimensional (3D) Dirac ferromagnet [28],
an extension of the Stoner-type ferromagnet to the relativistic
region in the previous work. The Dirac ferromagnet has two
kinds of ferromagnetic order parameters in general: “magneti-
zation” M and “spin” S. The AMR was found to be determined
by the anisotropy of the group velocity resulting from the
anisotropic band structure, in addition to the anisotropy of
the lifetime. In the previous work, we calculated the diag-
onal conductivities without VCs. M = Mẑ and S = Sẑ are
assumed, and the diagonal conductivity without VCs is denoted
by σ b

A (A = ‖,⊥), where ‖ (⊥) means the conductivity parallel
(perpendicular) to the ẑ direction. We found that the sign of
AMR defined as (σ⊥ − σ‖)/(σ⊥ + σ‖) is opposite between the
two typical cases: (i) M > 0, S = 0 and (ii) M = 0, S > 0,
and the AMR magnitudes of (i) and (ii) are comparable and
large (5% ∼ 25%). This is because the deformation of the
Fermi surfaces by M is in the opposite way compared to that
by S, and the deformations contribute to the anisotropy of
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the group velocity. For the coexistent case (iii) M = S > 0,
there is no deformation of the Fermi surfaces, and then only
the anisotropy of the damping determines the AMR, whose
magnitude is smaller (0.1% ∼ 1%).

Although the previous work is devoted to the AMR (and
AHE) without the VCs, the effects of VCs are known to
be important and possibly contribute in the nontrivial ways
for transport properties [7,14,16,29,30]. Hence, the contribu-
tions of VCs in the Dirac ferromagnet need to be revealed.
Specifically, the ladder-type and skew-scattering-type VCs are
considered in this paper.

In this paper, we first evaluate the contributions of the
ladder-type VCs to the diagonal conductivities σA (A = ‖,⊥).
For the Dirac ferromagnet, we find that they do not change
AMR quantitatively since they almost equally increase σ⊥ and
σ‖. We also show that there are two kinds of contributions: the
renormalization of the lifetime and the additional spin-current
contribution. The former contribution shows that the transport
lifetime τtr is different from the one-electron lifetime τ , as is
known in the electron gas system with the long-range impurity
potential [31] and in the 2D Dirac electron system with the
short-range impurity potential [32]. The latter contribution is
due to the correlation between the electric and spin currents
through the impurity scattering. The Dirac ferromagnet has two
kinds of spin currents: “magnetization” current j z

M and “spin”
current j z

S (the superscript z representing the component of the
“magnetization” or “spin”), according to the two kinds of the
ferromagnetic order parameters. We find that the additional
spin-current contribution to σ⊥ can be represented by using
the correlations between the current and the “magnetization”
current, while the contribution to σ‖ can be written by using
the correlations between the electric current and the “spin”
current since j z

M ( j z
S) flows only in the direction perpendicular

(parallel) to the ẑ direction.
We also calculate the important contributions to AHE

from the ladder-type and skew-scattering-type VCs. In the
previous paper [28], we evaluated the transverse conductivity
only without VCs which contains the intrinsic contribution
to AHE and the part of the side-jump ones. We find that the
skew-scattering contribution is proportional to mc2/niu and
dominates AHE in the clean case when the chemical potential
lies in the band [19], where 2mc2 is the mass gap with m being
the mass of electron, c the speed of light, and u is the impurity
potential. This can be also seen in the spin Hall effect of the
(nonmagnetic) Dirac electron system [33].

II. FORMULATION

Following the previous paper [28], we start with the 4 × 4
Hamiltonian

H0 = h̄ck · σρ1 + mc2ρ3 − M · σρ3 − S · σ , (2.1)

where ρi (i = 1,2,3) and σ j (j = x,y,z) are the Pauli matrices
in particle-hole space and spin space, respectively. “Magneti-
zation” M and “spin” S are two kinds of ferromagnetic order
parameters and assumed to be along the ẑ direction, M = Mẑ

and S = Sẑ. In this paper, we consider M < mc2 and S < mc2,
which correspond to the nontopological (trivial) phase.

It may be worth pointing out the two kinds of the ferromag-
netic order parameters of the Dirac ferromagnet: M and S. In

the literature of the spin-density functional theory, the model
containing only M was first introduced by MacDonald and
Vosko [34], and the model containing only S was proposed by
Ramana and Rajagopal [35]. It is emphasized that the Dirac
ferromagnet can be applied both to the relativistic case and to
the case of a low-energy effective model of electrons in solids,
where c and mc2 are replaced by the effective velocity and the
energy gap, respectively. It is true that for the relativistic case,
M couples to the magnetic field B and describes the magnetic
moment, while S stands for the spin but does not couple to
any (electromagnetic) fields.1 In the case of an effective model,
however, it is possible that there is a coupling between S and B.
From these, we treat M and S on an equal footing. Note that a
Weyl semimetal [36–38] and a Dirac nodal semimetal [39–41]
are described by the specific cases of the Dirac ferromagnet,
S > mc2 and M > mc2, respectively. We put c = h̄ = 1 and
the volume of the system to unity hereafter.

The Green’s function for H0 is defined by G
(0)
k (ε) = {ε −

H0}−1, and by using the Pauli matrices it is expressed as

G
(0)
k (ε) = 1

Dk(ε)

∑
μ = 0,1,2,3
ν = 0,x,y,z

g(0)
μν(ε)ρμσ ν. (2.2)

Here, we have defined

Dk(ε) = (ε2 − k2 − m2 − S2 + M2)2 − 4
{
(εM + mS)2

+ (S2 − M2)k2
z

}
= {

ε2 − ε2
k − 2�k(ε)

}{
ε2 − ε2

k + 2�k(ε)
}
, (2.3a)

εk =
√

k2 + m2 + S2 − M2, (2.3b)

�k(ε) =
√

{�(ε)}2 + (S2 − M2)k2
z , (2.3c)

�(ε) = εM + mS, (2.3d)

and g(0)
μν(ε)’s are listed in Table I.

As in the previous paper, we consider the randomly dis-
tributed impurities whose potential is the δ-function type.
In order to take the skew-scatting contribution to AHE into
account according to the Ward-Takahashi identity, the self-
energy due to the potential should be considered within the self-
consistent T -matrix approximation. However, by assuming the
clean case, ni � 1 and u

∑
η=±1 ν

η

0,0(μ) � 1, where ni and u

are the impurity concentration and potential, and ν
η

0,0(μ) is
η band’s density of states at the Fermi level defined by (A4)
in Ref. [28], the self-energy is approximated to that within
the Born approximation. The retarded/advanced self-energy is
expressed as �R/A(ε) = niu

2 ∑
k G

(0)
k [ε + (−)i0]. Neglecting

the real part, we consider only the imaginary part

Im �R/A(ε) = −(+)
∑
μ,ν

γμν(ε)ρμσ ν (2.4)

with

γμν(ε) = −niu
2
∑

k

Im
1

Dk(ε + i0)
g(0)

μν(ε). (2.5)

1Considering the relativistic case in accelerated frames, the “spin”
can couple to the mechanical rotation as shown in Ref. [44].
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TABLE I. The coefficients g(0)
μν of the unperturbed Green’s function G

(0)
k (ε) for M = Mẑ and S = Sẑ.

(μ,ν) 0 x y z

0 ε
(
ε2 − ε2

k

) − 2M� −2Skzkx −2Skzky −S
(
ε2 − ε2

k + 2k2
z

) − 2m�

1 −2(εS + mM)kz

(
ε2 − ε2

k

)
kx

(
ε2 − ε2

k

)
ky kz

(
ε2 − ε2

k + 2S2 − 2M2
)

2 0 −2�ky 2�kx 0
3 m

(
ε2 − ε2

k

) + 2S� 2Mkzkx 2Mkzky M
(
ε2 − ε2

k + 2k2
z

) − 2ε�

[See Appendix A in Ref. [28] for explicit forms of γμν(ε).]
Hence, the renormalized retarded/advanced Green’s function
G

R/A
k (ε) is given by {GR/A

k (ε)}−1 = {G(0)
k [ε + (−)i0]}−1 −

ΣR/A(ε).
We now calculate the conductivity tensor with VCs by using

the Kubo formula [42]. We evaluate the conductivity from the
retarded current-current correlation function divided by iω, by
taking the limit ω → 0, where ω is the frequency of the external
electric field. The retarded current-current correlation function
within the VCs can be obtained through the similar procedures
as in the previous paper [28] only by replacing the bare velocity
vertex [Eq. (2.8)] with the full one in the Matsubara formalism
[Eq. (D4)]. The temperature is assumed to be absolute zero.
Then, the diagonal conductivity in the clean case is expressed
as

σii = e2

2π

∑
k

tr
[
viG

R
k (ε)Λ̃1,iG

A
k (ε)

]∣∣
ε=μ

(2.6)

with i = x,y,z, where we neglected VCs which consist only
of the retarded (or advanced) Green’s functions because they
contribute in the higher orders with respect to niu

2.
As shown diagrammatically in Fig. 1, the full velocity vertex

Λ̃1,i is given as

Λ̃1,i(ε) = vi + niu
2
∑

k′
GR

k′(ε)Λ̃1,i(ε)GA
k′(ε) (2.7)

with the bare velocity vertex defined by

vi = ∂H0

∂ki

= ρ1σ
i. (2.8)

FIG. 1. The Feynman diagram of the velocity vertex. The filled
(unfilled) triangle describes the full (bare) velocity vertex. The solid
line represents the Matsubara Green’s function. The dotted line and
the cross symbol denote the impurity potential and concentration,
respectively. Note that Eq. (2.7) is obtained from the equation given by
this diagram after taking the analytic continuation iεm → ε + ω + i0
and iεn → ε − i0 and taking the limit ω → 0.

Equation (2.6) can be decomposed as

σii = σ b
ii + e2

2π

∑
k

tr
[
viG

R
k (ε)Λ1,iG

A
k (ε)

]∣∣
ε=μ

, (2.9)

where the first term is the bare-bubble contribution σ b
ii identical

to Eq. (28) in Ref. [28], and the second term is the contribution
of the VCs, Λ1,i = Λ̃1,i − ρ1σ

i (see Fig. 2).
The off-diagonal conductivity is obtained as σyx = −σxy

with

σxy = σ sea
xy + σ b+sj

xy + σ sk
xy , (2.10)

and σiz = σzi = 0 with i = x,y as expected from the symmetry
of the configurations. Here, σ sea

xy is the contribution from the
states below the Fermi level (Fermi sea) and given as Eqs. (30)
in Ref. [28]. To be precise, there are the VCs to the Fermi-sea
contribution, but they are higher order with respect to niu

2 and
hence neglected. The second term in Eq. (2.10) is given by

σ b+sj
xy = e2

4π

∑
k

tr
[
vxG

R
k Λ̃1,yG

A
k − vyG

R
k Λ̃1,xG

A
k

]∣∣
ε=μ

(2.11)

and denotes the contribution from the bare-bubble contribution
from the states at the Fermi level (Fermi surface) and the
ladder-type VCs. By using Λ̃1,i = ρ1σ

i + Λ1,i , this term is
decomposed as

σ b+sj
xy = σ b

xy + e2

4π

∑
k

tr
[
vxG

R
k Λ1,yG

A
k − vyG

R
k Λ1,xG

A
k

]∣∣
ε=μ

,

(2.12)

and the bare-bubble contribution σ b
xy corresponds to Eq. (29)

in Ref. [28]. The last term of Eq. (2.10) is contribution from
the skew-scattering-type VC given by

σ sk
xy = e2niu

3

4π

∑
k,k′,k′′

tr
[
Λ̃∗

1,xG
R
k GR

k′′G
R
k′Λ̃1,yG

A
k′G

A
k

+Λ̃∗
1,xG

R
k GR

k′Λ̃1,yG
A
k′G

A
k′′G

A
k − (R ↔ A)

]∣∣
ε=μ

,

(2.13)

where Λ̃∗
1,i (i = x,y) is defined by interchanging R and A

in Λ̃1,i . Figure 3 depicts the Feynman diagrams of the off-
diagonal conductivity.

The detailed calculation of Eq. (2.7) is presented in Ap-
pendix B, and calculations of (2.6), (2.12), and (2.13) are given
in Appendix C.
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FIG. 2. The diagrammatic expressions of the diagonal conductivity and the two decomposed contributions from the bare bubble and the VCs.
The lines and symbols are defined in the caption of Fig. 1. These diagrams are defined in the Matsubara formalism as well as Fig. 1, and Eq. (2.9)
is obtained after rewriting the Matsubara summation of iεn using the contour integral, taking the analytic continuation iεm − iεn → ω + i0,
and leaving the ω-linear term which includes both retarded and advanced Green functions.

III. RESULTS AND DISCUSSION

A. Diagonal conductivity and AMR

The diagonal conductivities σii (i = x,y,z) are rewritten as
that for perpendicular (σ⊥ = σxx = σyy) and that for parallel
(σ‖ = σzz) configurations. First of all, we rewrite the diagonal
conductivity without VCs σ b

A (A = ⊥,‖) [Eq. (44) with Eqs.
(45) and (46) in Ref. [28]], in terms of the correlation function
between dimensionless operators P and Q, 〈P ; Q〉,

〈P ; Q〉 = 1

4
niu

2
∑

k

tr
[
GR

k (ε)P̂GA
k (ε)Q̂

]∣∣
ε=μ

, (3.1)

where P (Q) = ∫
d r ψ†(r)P̂ (Q̂)ψ (r) is dimensionless oper-

ators with the annihilation (creation) operator of the field
ψ (†)(r). Here, 〈P ; Q〉 denotes the correlation evaluated only
from the bare-bubble diagram and do not include any VCs. By
using this representation, σ b

A are expressed simply as

σ b
⊥ = 2e2

πniu2
〈jx ; jx〉, (3.2)

σ b
‖ = 2e2

πniu2
〈jz; jz〉, (3.3)

where ji (i = x,z) is the particle current with the velocity given
by Eq. (2.8), and the explicit forms of 〈jx ; jx〉 and 〈jz; jz〉 are
shown by Eqs. (A6a) and (A16a) in the leading order with
respect to niu

2.
The diagonal conductivities with the ladder-type VCs

[Eq. (2.6)] are expressed as

σA = σ̃ b
A + σ add

A (A = ⊥,‖), (3.4)

where the first terms are given as the direct correlation
functions renormalized by the ladder-type VCs,

σ̃ b
⊥ = 1 − 〈

jz
M,x ; jz

M,x

〉
D⊥

σ b
⊥, (3.5)

σ̃ b
‖ = 1 − 〈

jz
S,z; j

z
S,z

〉
D‖

σ b
‖ , (3.6)

DA (A = ⊥,‖) are given by

D⊥ = (1 − 〈jx ; jx〉)
(
1 − 〈

jz
M,x ; jz

M,x

〉) − 〈
jx ; jz

M,x

〉2
, (3.7)

D‖ = (1 − 〈jz; jz〉)
(
1 − 〈

jz
S,z; j

z
S,z

〉) − 〈
jz; j

z
S,z

〉2
, (3.8)

and 〈jz
M,x ; jz

M,x〉, 〈jx ; jz
M,x〉, 〈jz

S,z; j
z
S,z〉, and 〈jz; j

z
S,z〉 are given

by Eqs. (A6b), (A6c), (A16a), and (A16c). Here, jα
M,i and jα

S,i

(α,i = x,y,z) are “magnetization” and “spin” currents with
their velocities, respectively, given by

vα
M,i = 1

2
{ρ3σ

α,ρ1σ
i} =

∑
β=x,y,z

εiαβρ2σ
β, (3.9)

vα
S,i = 1

2
{σα,ρ1σ

i} = ρ1δi,α, (3.10)

where {P̂ ,Q̂} = P̂ Q̂ + Q̂P̂ is the anticommutator. The second
terms of Eq. (3.4) are additional contributions by considering
the ladder-type VCs,

σ add
⊥ = 2e2

πniu2

〈
jx ; jz

M,x

〉〈
jz
M,x ; jx

〉
D⊥

, (3.11)

σ add
‖ = 2e2

πniu2

〈
jz; j

z
S,z

〉〈
jz
S,z; jz

〉
D‖

, (3.12)

which are given as the correlation functions of the electric
current with “magnetization” and “spin” current.

FIG. 3. The diagrammatic expressions of the intrinsic, side-jump, and skew-scattering contributions to the AHE. The skew-scattering
contribution can be given as the two Feynman diagrams for the case ni � 1 and u

∑
η ν

η

0,0(μ) � 1. Equations (2.11) and (2.13) are obtained
through the procedures noted in the caption of Fig. 2.
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FIG. 4. The diagonal conductivities with the ladder-type VCs, σA (A = ⊥,‖), for the typical three cases (i)–(iii) as functions of the chemical
potential μ. The inset of (i) describes the configuration of the directions in which the current flows and the vector of the “magnetization” and/or
“spin”. They are normalized by σ0 = e2m2c3/h̄2γ with γ = niu

2m2c/h̄3. In the region of μ/m < 0.6, the chemical potential lies in the gap.
In the regions of 0.6 < μ/m < 1.4 and μ/m > 1.4, the system has one and two Fermi surfaces, respectively. Those in the paramagnetic state
(M = S = 0) are also shown for comparison.

Figure 4 shows σA (A = ⊥,‖) as functions of the chemical
potential μ for the typical three cases: (i) M > 0, S = 0,
(ii) M = 0, S > 0, and (iii) M = S > 0, together with the
one in the paramagnetic state (M = S = 0). Figure 5 depicts
the individual contributions to σA as functions of μ, where
the contribution from the VCs, σA − σ b

A = (σ̃ b
A − σ b

A) + σ add
A ,

contains both the renormalization of σ b
A and the additional

spin-current contribution. From Figs. 4 and 5, the VCs increase
the conductivities, and σA in Fig. 4 is about 1.3 times larger
than σ b

A in Fig. 5 for all three cases. However, qualitative
dependencies do not change even by considering the VCs, and
hence the AMR ratio with ladder-type VCs defined by

R = σ⊥ − σ‖
σ⊥ + σ‖

(3.13)

is quantitatively same as that without VCs, R � Rb, where

Rb = σ b
⊥ − σ b

‖
σ b

⊥ + σ b
‖
. (3.14)

From the above, we conclude that we do not need to
consider the VCs for the AMR in the Dirac ferromagnet.
This is different from the case of the 2D Rashba
ferromagnet [7].

The additional contributions σ add
A (A = ⊥,‖) can be un-

derstood as an effect that the impurity scatterings interchange
between the particle current and spin current. Since the
Dirac ferromagnet has two types of the order parameters,
“magnetization” and “spin”, there are the two correspond-
ing spin currents, “magnetization” and “spin” currents, and
they flow only in the specific directions, respectively, as
in Eqs. (3.9) and (3.10). Hence, the charge current in the
x̂ or ŷ directions includes only the contribution from the
“magnetization” current, while the “spin” current contributes
only to the charge current in the ẑ direction. Note that σ add

A

is not dominant contribution of the VCs, as can be seen in
Fig. 5.

We demonstrate that the renormalization [Eqs. 3.5 and 3.6]
can be understood as the similar change of the lifetime
into the transport lifetime for the case of M = S = 0

0.00

0.05

0.10

0.15

0.0 0.5 1.0 1.5 2.0 2.5 3.0
μ/m

(i)M/m = 0.4

co
nd

uc
tiv

ity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
μ/m

(ii)S/m = 0.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
μ/m

(iii)M/m = S/m = 0.2

FIG. 5. The μ dependencies of the the bare-bubble and the VC contributions to the diagonal conductivities for the typical three cases
(i)–(iii). Note that the VC contributions are given by σA − σ b

A. The additional contribution σ add
A , which is included by the VC contributions, is

also shown for comparison. They are normalized by σ0 given in the caption of Fig. 4.
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0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0

σ
/
σ

0

M = S = 0

μ/m

(w/o VC)

(w/ VC)

FIG. 6. The diagonal conductivities for M = S = 0 with and
without the ladder-type VCs. The VCs increase the conductivity,
which can be understood as the fact that the forward scattering is
dominant in the impurity scattering for the diagonal conductivity.

(see Fig. 6). For the simple case, the Green’s function is
given as

GR
k (μ)|M=S=0 =

∑
η

|ϕk〉 〈ϕk|
μ − ηεk + i�

, (3.15)

where ±εk = ±√
k2 + m2 are the eigenenergies, |ϕk〉 〈ϕk| =

(μ + ρ1k · σ + ρ3m)/2μ, and

� = π

2
niu

2ν(μ)

(
1 + m2

μ2

)
(3.16)

is the damping of electron. In this case, the two spin currents
have no correlations with the charge current in the leading order
with respect to ni [33], and the ladder-type VCs are reduced to

Λ̃1,x = ρ1σ
x + niu

2
∑

k

GR
k (μ)Λ̃1,xG

A
k (μ). (3.17)

This can be solved by presuming Λ̃1,x = Uρ1σ
x , multiplying

the both sides by ρ1σ
x/4, and taking the trace

U =
(

1 − niu
2

4

∑
k

tr
[
GR

k (μ)ρ1σ
xGA

k (μ)ρ1σ
x
])−1

+ O(ni)

(3.18)

= �

� − �′ + O(ni), (3.19)

where �′ is given as

�′ = π

2
niu

2ν(μ)
1

3

(
1 − m2

μ2

)
. (3.20)

Hence, the conductivities with and without the ladder-type VCs
are obtained as

σpara = 2e2

πniu2

�′/�

1 − U
= 2e2

πniu2

�′

� − �′ , (3.21)

σ b
para = 2e2

πniu2

�′

�
. (3.22)

From these, the one-electron lifetime (τ = h̄/�) is changed
into the transport lifetime (τ−1

tr = τ−1 − �′/h̄) by considering

the ladder-type VCs. For the cases of M �= 0 and/or S �=
0, the lifetime depends on the spin, and the charge current
has the correlations with the two kinds of the spin currents.
The coefficient of σ b

⊥ [Eq. (3.5)] is rewritten as

1 − 〈
jz
M,x ; jz

M,x

〉
D⊥

=
(

1 − 〈jx ; jx〉 −
〈
jx ; jz

M,x

〉〈
jz
M,x ; jx

〉
1 − 〈

jz
M,x ; jz

M,x

〉
)−1

,

(3.23)

where the first two terms can be regarded as the correspon-
dences with Eq. (3.18), but the last term is obtained only in the
cases M �= 0 or S �= 0.

We can see that the forward scattering is dominant over
the impurity scatterings for the transport lifetime as other
systems [8,31,32]. The one-electron lifetime is expressed
as τ−1 ∝ ∫

d�p Wk, p, and the transport lifetime is written
as τ−1

tr ∝ ∫
d�p (1 − cos θp)Wk, p, where k and p are the

wave vectors on the Fermi surface, Wk, p is the scattering
amplitude between the wave vectors,

∫
d�p is the integral

of the solid angle of p, and cos θp = k · p/|k|| p|. Here, we
focus on the following systems with the nonmagnetic impurity
potential which has the δ-function type. For the free-electron
gas, the scattering amplitude Wk, p is independent of θp, and
hence the transport lifetime coincides the one-electron lifetime
τtr = τ [31]. On the other hand, for the spin-momentum-locked
systems such as the 2D massive Dirac system [32], the 2D
Rashba system [8], and the (nonmagnetic) 3D Dirac electron
system, Wk, p depends on θp because the scattering amplitude
is written as Wk, p ∝ | 〈ϕ p|ϕk〉 |2 and |ϕk〉 is in the spinor
form. Therefore, the transport lifetime is different from the
one-electron lifetime in these systems.

B. Off-diagonal conductivity (AHE)

We rewrite the off-diagonal conductivity without VCs,
which is identical to Eq. (52) in Ref. [28], as

σ b
xy = − 2e2

πniu2
〈jx ; jy〉surf , (3.24)

where 〈jx ; jy〉surf is the Fermi-surface contribution to the
correlation between jx and jy evaluated from the bare-bubble
diagram and the explicit form is given by Eq. (A12a). Here,
〈P ; Q〉surf is defined by Eq. (3.1) as same as 〈P ; Q〉, but we
distinguish 〈P ; Q〉surf from 〈P ; Q〉 because off-diagonal corre-
lation functions include the Fermi-sea contribution in general.
In fact, 〈jx ; jy〉 = 〈jx ; jy〉surf + (πniu

2/2e2)σ sea
xy when evalu-

ated without VCs, while 〈jx ; jx〉 = 〈jx ; jx〉surf .
σ

b+sj
xy can be expressed similar to the diagonal conductivity

as

σ b+sj
xy = σ̃ b

xy + σ add
xy , (3.25)

where the first term is given as

σ̃ b
xy =

(
1 − 〈

jz
M,x ; jz

M,x

〉
D⊥

)2

σ b
xy, (3.26)
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FIG. 7. The chemical potential dependencies of the off-diagonal (Hall) conductivities for the three typical cases. The total Hall conductivities
are no longer even/odd functions of μ because of the skew-scattering contribution σ sk

xy . Here, σ sk
xy is shown for niu/m = 0.5.

which corresponds toσ b
xy renormalized by the ladder-type VCs,

and

σ add
xy = 2e2

πniu2

{(〈
jx ; jz

M,x

〉
ld

)2〈
jz
M,x ; jz

M,y

〉
surf

+ 2
1 − 〈

jz
M,x ; jz

M,x

〉
D⊥

〈
jx ; jz

M,x

〉
ld

〈
jz
M,x ; jy

〉
surf

}
(3.27)

is the additional contribution by considering the ladder-type
VCs. Here, we introduced 〈P ; Q〉ld as the correlation function
evaluated within the ladder-type VCs. For P = jx and Q =
jz
M,x , it is given by

〈
jx ; jz

M,x

〉
ld = 1

4
niu

2
∑

k

tr
[
Λ̃∗

1,xG
R
k (ε)ρ2σ

xGA
k (ε)

]∣∣
ε=μ

= 1

D⊥

〈
jx ; jz

M,x

〉
, (3.28)

and 〈jx ; jz
M,x〉ld = 〈jz

M,x ; jx〉ld =−〈jy ; jz
M,y〉ld =−〈jz

M,y ; jy〉ld

up to O(n0
i ). (See also Appendix C 2.) Equation (3.27) con-

tains all the correlations through the “magnetization” current
assisted by the impurity scatterings. Note that there is no
contribution of “spin” current because it does not flow in xy

plane for S ‖ ẑ.
The skew-scattering-type VC up to the leading order of ni

is obtained as

σ sk
xy = − 4e2

πniu

[{
(〈jx ; jx〉ld)2 + (〈

jx ; jz
M,x

〉
ld

)2}
γ̃0z

+ 2
〈
jx ; jz

M,x

〉
ld〈jx ; jx〉ldγ̃30

]
, (3.29)

where γ̃0z = γ0z/niu
2 and γ̃30 = γ30/niu

2 are O(n0
i ) with γ0z

and γ30 given by Eq. (2.5), and 〈jx ; jx〉ld = 〈jy ; jy〉ld is given
as

〈jx ; jx〉ld = πniu
2

2e2
σ⊥. (3.30)

In Fig. 7, the off-diagonal conductivities in the typical three
cases are shown as functions of the chemical potential, where
the skew-scattering contribution is plotted for niu/m = 0.5.
Note that the skew-scattering contribution σ sk

xy [Eq. (3.29)]
is proportional to (niu/m)−1 and the other contributions,

σ sea
xy and σ

b+sj
xy , do not depend on niu/m. As the value of

niu/m decreases (increases), the skew-scattering contribution
becomes dominant (negligible). At |μ|/m = 1.4 for the cases
of (i) and (ii) and at μ/m = −1 and 1.4 for the case of (iii),
the number of the Fermi surfaces changes. For the cases of (i)
and (ii), no Fermi surfaces are in the region for |μ|/m < 0.6,
one Fermi surface is in 0.6 < |μ|/m < 1.4, and two Fermi
surfaces are in |μ|/m > 1.4. The two bands which correspond
to the spin degree of freedom contribute to the anomalous Hall
conductivity in the opposite signs. Hence, there is a bending
at these points, while σ

b+sj
xy and σ sea

xy have kinks.
We can see from Fig. 7 that the total Hall conductivities are

neither even nor odd functions of the chemical potential in the
three cases. From the symmetry consideration as discussed in
Appendix E of Ref. [28], we find the following relations:

σ b+sj
xy (μ,M,S) = −σ b+sj

xy (−μ,M,−S) (3.31)

= σ b+sj
xy (−μ,−M,S), (3.32)

which is the same symmetry as σ b
xy(μ,M,S) and σ sea

xy (μ,M,S),
while the skew-scattering contribution has the different sym-
metry

σ sk
xy (μ,M,S) = σ sk

xy (−μ,M,−S) (3.33)

= −σ sk
xy (−μ,−M,S). (3.34)

The derivations of these relations are shown in Appendix D.
Hence, the total Hall conductivity for the cases (i) and (ii) is
no longer (anti)symmetric for the chemical potential (Fig. 7).
This feature is shared by the spin Hall effect in the nonmagnetic
Dirac electron system [33].

As pointed out in Ref. [28], the finite Hall conductivities
are obtained in the band gap for the cases of (ii) and (iii)
because of σ sea

xy , and their values depend on the way of the
momentum cutoff. We take isotropic cutoff in momentum
space in Fig. 7. In the paper by Goswami and Tewari [43], the
anomalous Hall conductivity in a topological phase and the
similar dependencies on the momentum cutoff are discussed.
They conclude that the regularization by using the cylindrical
momentum cutoff is reasonable on the basis of the bulk-
boundary correspondence. As the system we consider is in the
trivial phase and there is no such correspondence, it is not clear
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how to take the regularization. For more realistic situations, it
may depend on a system which we consider.

IV. CONCLUSION

In conclusion, we investigate the effects of the VCs on the
conductivity tensor of the Dirac ferromagnet. By considering
the VCs, the diagonal conductivities increase, and the incre-
ments are understood as the renormalization of the lifetime
and the contributions from the correlations between the charge
and spin currents. However, the AMR does not change quan-
titatively because the VCs contribute almost equally to the
conductivities parallel and perpendicular to the ferromagnetic
order parameters. For the AHE, the extrinsic contributions such
as the side-jump and skew-scattering ones are calculated, and
the skew-scattering contribution is dominant in the clean case,
as seen in the spin Hall effect in the nonmagnetic 3D Dirac
electron system [33].

As the effects of the VCs on the transport coefficients for the
simple model Hamiltonian are of our current interest, we have

considered the typical situations in which the “magnetization”
and/or the “spin” are as parameters. In order to discuss the
relevance of the obtained results to that in real materials,
however, we need to estimate more carefully the magnitudes of
the parameters for the specific materials. In addition, although
the form of the impurity potential in this paper is assumed
to be proportional to the unit matrix in the basis of the
Dirac Hamiltonian, it would depend on specific materials and
accordingly the results possibly change, especially for AHE.
This issue is shared by the spin Hall effect of the nonmagnetic
Dirac electron system and is also mentioned in Ref. [33].
Hence, we need more consideration in order to discuss the
relevance of the obtained results to that in real materials.
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APPENDIX A: INTERMIXING OF PARTICLE, “MAGNETIZATION”, AND “SPIN”
CURRENTS MEDIATED BY IMPURITY SCATTERINGS

In this Appendix, we calculate the first-order VCs to the velocity vertices of particle, “magnetization”, and “spin” current.
Then, we show that the impurity scatterings cause an intermixing between the particle current and the “magnetization” current
in the x̂,ŷ direction, and between the particle current and “spin” current in the ẑ direction.

1. Intermixing of particle and “magnetization” currents

The velocity vertices of particle, “magnetization”, and “spin” currents are given by Eqs. (2.8), (3.9), and (3.10). As the
contributions to the conductivities in the leading order of the impurity concentration are of our interest, it is enough to evaluate

niu
2
∑

k

GR
k (ε)ρμσ νGA

k (ε)|ε=μ = 〈μν; μ′ν ′〉ρμ′σ ν ′
(A1)

up to O(ni) at the Fermi level. In the right-hand side, we expanded by using the two kinds of Pauli matrices, and the coefficients
are given as

〈
μν; μ′ν ′〉 = 1

4
niu

2
∑

k

tr
[
GR

k (ε)ρμσ νGA
k (ε)ρμ′σ ν ′]∣∣

ε=μ
. (A2)

We first consider the cases of vi and vz
M,i for i = x and i = y. Substituting μ = 1,2 and ν = x,y into Eq. (A2), and taking the

traces, we find that almost all the coefficients of ρμ′σ ν ′
in Eq. (A1) vanish, and the nonvanishing components can be collectively

expressed as

niu
2
∑

k

GR
k (ε)

⎛
⎜⎜⎜⎝

ρ1σ
x

ρ2σ
y

ρ1σ
y

ρ2σ
x

⎞
⎟⎟⎟⎠GA

k (ε)|ε=μ =

⎛
⎜⎜⎜⎝

〈
1x; 1x

〉 〈
1x; 2y

〉 〈
1x; 1y

〉 〈
1x; 2x

〉〈
2y; 1x

〉 〈
2y; 2y

〉 〈
2y; 1y

〉 〈
2y; 2x

〉〈
1y; 1x

〉 〈
1y; 2y

〉 〈
1y; 1y

〉 〈
1y; 2x

〉〈
2x; 1x

〉 〈
2x; 2y

〉 〈
2x; 1y

〉 〈
2x; 2x

〉

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ρ1σ
x

ρ2σ
y

ρ1σ
y

ρ2σ
x

⎞
⎟⎟⎟⎠ (A3)

= (Â(0)
⊥ + Â

(1)
⊥ )

⎛
⎜⎜⎜⎝

ρ1σ
x

ρ2σ
y

ρ1σ
y

ρ2σ
x

⎞
⎟⎟⎟⎠, (A4)

where Â
(0)
⊥ and Â

(1)
⊥ are O(n0

i )- and O(ni)-order terms, as we will show below. Here, 〈1x; 1x〉 (and also 〈1y; 1y〉) is proportional
to the diagonal charge conductivity evaluated from the bare-bubble diagram [see Eq. (A6a)], 〈1x; 2y〉 and 〈1y; 2x〉 (also 〈2y; 1x〉
and 〈2x; 1y〉) are proportional to the correlation functions between the (diagonal) charge current and the “magnetization” current.
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In order to emphasize this point, we write Â
(0)
⊥ as

Â
(0)
⊥ =

⎛
⎜⎜⎜⎝

〈jx ; jx〉 −〈
jx ; jz

M,x

〉
0 0

−〈
jz
M,x ; jx

〉 〈
jz
M,x ; jz

M,x

〉
0 0

0 0
〈
jy ; jy

〉 〈
jy ; jz

M,y

〉
0 0

〈
jz
M,y ; jy

〉 〈
jz
M,y ; jz

M,y

〉

⎞
⎟⎟⎟⎠, (A5)

where these coefficients are obtained as

〈jx ; jx〉 = 〈jy ; jy〉 = 〈1x; 1x〉 � k2
⊥�2

k = π

2

niu
2

e2
σ b

⊥, (A6a)

〈
jz
M,x ; jz

M,x

〉 = 〈
jz
M,y ; jz

M,y

〉 = 〈2x; 2x〉 � �2k2
⊥, (A6b)〈

jx ; jz
M,x

〉 = 〈
jz
M,x ; jx

〉 = −〈1x; 2y〉 = −〈
jy ; jz

M,y

〉 = −〈
jz
M,y ; jy

〉 � −�ηk2
⊥�k (A6c)

with � ≡ �(μ) and �k ≡ �k(μ) given as Eqs. (2.3). We introduced the expression X(k,η) of a certain function X(k,η) as

X(k,η) = π

4
niu

2
∑
k,η

�η(μ)
1

�k

X(k,η)∣∣η�k�1 − ��2 − k2
z�3

∣∣δ(k2
⊥ − αη), (A7)

and we neglected the higher orders in ni. Here, �j (j = 1,2,3) are defined, respectively, by

�1 = μγ00 + mγ30 − Sγ0z + Mγ3z, (A8a)

�2 = Mγ00 − Sγ30 + mγ0z + μγ3z, (A8b)

�3 = Sγ0z − Mγ3z (A8c)

with γij = γij (μ) (i = 0,3, and j = 0,z) given by Eq. (2.5). αη in Eq. (A7) is given by

αη = μ2 − k2
z − m2 − S2 + M2 − 2η�k. (A9)

The Heaviside step function

�η(μ) =
{

1 [μ < −m − η|S − M| or μ > m + η(S + M)],

0 (otherwise)
(A10)

assures αη > 0. The k⊥ integrals are performed analytically, and the kz integrals are numerically calculated.
Similar relations can be found in Â

(1)
⊥ , that 〈1x,1y〉 (and 〈1y,1x〉) is the Fermi-surface contribution to the off-diagonal charge

conductivity evaluated from the bare-bubble diagram. However, the Fermi-sea contribution gives rise to an important contribution
to off-diagonal charge conductivity 〈jx ; jy〉, and 〈1x,1y〉 is not equivalent to 〈jx ; jy〉. To keep this difference obvious, 〈1x,1y〉 is
denoted by 〈jx ; jy〉surf . Then, Â

(1)
⊥ is given as

Â
(1)
⊥ =

⎛
⎜⎜⎜⎝

0 0 〈jx ; jy〉surf
〈
jx ; jz

M,y

〉
surf

0 0 −〈
jz
M,x ; jy

〉
surf −〈

jz
M,x ; jz

M,y

〉
surf

〈jy ; jx〉surf −〈
jy ; jz

M,x

〉
surf 0 0〈

jz
M,y ; jx

〉
surf −〈

jz
M,y ; jz

M,x

〉
surf 0 0

⎞
⎟⎟⎟⎠, (A11)

where

〈jx ; jy〉surf = −〈jy ; jx〉surf = 〈
1x; 1y

〉 � −2η�kCxy, (A12a)〈
jz
M,x ; jz

M,y

〉
surf = −〈

jz
M,y ; jz

M,x

〉
surf = 〈2x; 2y〉 � −2

(
η�k + k2

z

)
Cxy − 2(Sγ00 − Mγ30)k2

z k
2
⊥, (A12b)〈

jx ; jz
M,y

〉
surf = −〈

jz
M,y ; jx

〉
surf = 〈

jz
M,x ; jy

〉
surf = −〈

jy ; jz
M,x

〉 = 〈1x; 2x〉 � 2�Cxy − (Mγ0z − Sγ3z)k2
z k

2
⊥, (A12c)

and Cxy is defined by

Cxy = γ00
(
m� + Sk2

z + ηS�k
) + γ30

(
μ� − Mk2

z − ηM�k
) + γ0z(M� − ημ�k) − γ3z(S� + ηm�k). (A13)
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2. Intermixing of particle and “spin” currents

Second, we calculate Eq. (A1) in the cases of vi and vz
S,i for i = z. Since AHE does not arise in this direction, it is sufficient

to evaluate the VCs up to O(n0
i ). Substituting μ = 1, ν = 0,z into Eq. (A2), and we find the similar expressions as i = x,y as

niu
2
∑

k

GR
k (ε)

(
ρ1σ

z

ρ1σ
0

)
GA

k (ε)
∣∣∣
ε=μ

= Â
(0)
‖

(
ρ1σ

z

ρ1σ
0

)
+ O(ni)(ρ2σ

0 + ρ2σ
z), (A14)

where the coefficient matrix Â
(0)
‖ is O(n0

i ),

Â
(0)
‖ =

(
〈jz; jz〉

〈
jz; j

z
S,z

〉〈
jz
S,z; jz

〉 〈
jz
S,z; j

z
S,z

〉
)

, (A15)

and the matrix elements up to O(n0
i ) are given by

〈jz; jz〉 = 〈1z; 1z〉 � 2k2
z (η�k + S2 − M2)2 = π

2

niu
2

e2
σ b

‖ , (A16a)

〈
jz
S,z; j

z
S,z

〉 = 〈10; 10〉 � 2(μS + mM)2k2
z , (A16b)〈

jz; j
z
S,z

〉 = 〈
jz
S,z; jz

〉 = 〈1z; 10〉 � −2(μS + mM)ηk2
z�k. (A16c)

Equation (A15) shows that the particle current and the “spin” current in the ẑ direction are mixed by the impurity scatterings.

APPENDIX B: LADDER-TYPE VCS FOR VELOCITY VERTICES OF PARTICLE, “MAGNETIZATION”, AND “SPIN”
CURRENTS

Next, we calculate the ladder type of VCs. From Eq. (A1), it is easy to extend to arbitrary order VCs. For example, the VC of
the second order is calculated as

(niu
2)2

∑
k,k′

GR
k′(ε)GR

k (ε)ρμσ νGA
k (ε)GA

k′(ε)
∣∣
ε=μ

= 〈μν; μ′ν ′〉niu
2
∑

k′
GR

k′(ε)ρμ′σ ν ′
GA

k′(ε)
∣∣
ε=μ

= 〈μν; μ′ν ′〉〈μ′ν ′; μ′′ν ′′〉ρμ′′σ ν ′′
.

(B1)

By using Eqs. (A4) and (B1), we can calculate the ladder-type VCs to the velocities of the particle and “magnetization” currents
in the x and y directions as ⎛

⎜⎜⎜⎝
Λ̃1,x

Λ̃2,y

Λ̃1,y

Λ̃2,x

⎞
⎟⎟⎟⎠ = [1̂ + Â

(0)
⊥ + Â

(1)
⊥ + (Â(0)

⊥ + Â
(1)
⊥ )2 + · · · ]

⎛
⎜⎜⎜⎝

ρ1σ
x

ρ2σ
y

ρ1σ
y

ρ2σ
x

⎞
⎟⎟⎟⎠

�
[ ∞∑

n=0

(Â(0)
⊥ )n +

∞∑
n,m=0

(Â(0)
⊥ )nÂ(1)

⊥ (Â(0)
⊥ )m

]⎛
⎜⎜⎜⎝

ρ1σ
x

ρ2σ
y

ρ1σ
y

ρ2σ
x

⎞
⎟⎟⎟⎠, (B2)

where Â
(m)
⊥ (m = 0,1) is O(nm

i ) term, and we dropped O(n2
i ). The first term is further calculated as

∞∑
n=0

(Â(0)
⊥ )n = 1

D⊥

⎛
⎜⎜⎜⎝

1 − 〈
jz
M,x ; jz

M,x

〉 −〈
jx ; jz

M,x

〉
0 0

−〈
jx ; jz

M,x

〉
1 − 〈jx ; jx〉 0 0

0 0 1 − 〈
jz
M,x ; jz

M,x

〉 〈
jx ; jz

M,x

〉
0 0

〈
jx ; jz

M,x

〉
1 − 〈jx ; jx〉

⎞
⎟⎟⎟⎠, (B3)

where

D⊥ = (1 − 〈jx ; jx〉)
(
1 − 〈

jz
M,x ; jz

M,x

〉) − 〈
jx ; jz

M,x

〉2
. (3.7)

We also obtain the second term of Eq. (B2) as

∞∑
n,m=0

(Â(0)
⊥ )nÂ(1)

⊥ (Â(0)
⊥ )m = 1

(D⊥)2

⎛
⎜⎜⎜⎝

0 0 −Ppp −PMp

0 0 PMp PMM

Ppp −PMc 0 0

PMp −PMM 0 0

⎞
⎟⎟⎟⎠ (B4)
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with the matrix elements given by

Ppp = 2
〈
jx ; jz

M,x

〉(
1 − 〈

jz
M,x ; jz

M,x

〉)〈
jx ; jz

M,y

〉
surf − (

1 − 〈
jz
M,x ; jz

M,x

〉)2〈jx ; jy〉surf − 〈
jx ; jz

M,x

〉2〈
jz
M,x ; jz

M,y

〉
surf , (B5)

PMp = 〈
jx ; jz

M,x

〉{〈jx ; jy〉surf
(
1 − 〈

jz
M,x ; jz

M,x

〉) + 〈
jz
M,x ; jz

M,y

〉
surf (1 − 〈jx ; jx〉)

}
− 〈

jx ; jz
M,y

〉
surf

{
(1 − 〈jx ; jx〉)

(
1 − 〈

jz
M,x ; jz

M,x

〉) + 〈
jx ; jz

M,x

〉2}
, (B6)

PMM = 2(1 − 〈jx ; jx〉)
〈
jx ; jz

M,x

〉〈
jx ; jz

M,y

〉
surf − 〈

jx ; jz
M,x

〉2〈jx ; jy〉surf − (1 − 〈jx ; jx〉)2
〈
jz
M,x ; jz

M,y

〉
surf . (B7)

The ladder-type VCs to the velocities of charge and “spin” currents in the ẑ direction are also obtained as(
Λ̃1,z

Λ̃1,0

)
�

∞∑
n=0

(Â(0)
‖ )n

(
ρ1σ

z

ρ1σ
0

)
= 1

D‖

(
1 − 〈

jz
S,z; j

z
S,z

〉 〈
jz; j

z
S,z

〉〈
jz; j

z
S,z

〉
1 − 〈jz; jz〉

)(
ρ1σ

z

ρ1σ
0

)
, (B8)

where

D‖ = (1 − 〈jz; jz〉)
(
1 − 〈

jz
S,z; j

z
S,z

〉) − 〈
jz; j

z
S,z

〉2
. (3.8)

APPENDIX C: CALCULATION OF THE CONDUCTIVITY TENSOR

As we have obtained Λ̃1,i (i = x,y,z) in Appendix B, we here perform the calculation of the conductivity tensor.

1. Diagonal conductivity

First, the diagonal conductivities [Eq. (2.6)] are calculated as

σii = e2

2πniu2
tr

[
ρ1σ

i

(
niu

2
∑

k

GR
k (ε)Λ̃1,iG

A
k (ε)

∣∣
ε=μ

)]
= e2

2πniu2
tr [ρ1σ

i(Λ̃1,i − ρ1σ
i)], (C1)

where we have used Eq. (2.7).
For i = x, substituting Eq. (B2) with Eq. (B3) and taking the trace, we obtain

σ⊥ = σxx = 2e2

πniu2

1

D⊥

{(
1 − 〈

jz
M,x ; jz

M,x

〉)〈jx ; jx〉 + 〈
jx ; jz

M,x

〉2}
, (C2)

where D⊥ is given by Eq. (3.7), and 〈jx ; jx〉, 〈jx ; jz
M,x〉, and 〈jz

M,x ; jz
M,x〉 are evaluated as Eq. (A6). By using Eq. (3.2) and

〈jx ; jz
M,x〉 = 〈jz

M,x ; jx〉, we obtain the result for σ⊥ as shown in Eq. (3.4) with Eqs. (3.5) and (3.11). Similar procedures are
performed for i = y, and it is found σyy = σxx as we expected from the symmetry.

For i = z, substituting Eq. (B8) and taking the trace

σ‖ = σzz = 2e2

πniu2

1

D‖

{(
1 − 〈

jz
S,z; j

z
S,z

〉)〈jz; jz〉 + 〈
jz; j

z
S,z

〉2}
(C3)

is obtained as shown in Eq. (3.4) with Eqs. (3.6) and (3.12). Here,D‖ is given by Eq. (3.8), and 〈jz; jz〉, 〈jz; j
z
S,z〉, and 〈jz

S,z; j
z
S,z〉

are shown in Eq. (A16).

2. Contribution from ladder-type VCs to off-diagonal conductivity

Next, the off-diagonal conductivity including the bare-bubble contribution and the ladder-type VCs [Eq. (2.11)] is calculated
as similar to the procedure of the diagonal one,

σ b+sj
xy = e2

2πniu2
tr

[
ρ1σ

x

(
niu

2
∑

k

GR
k (ε)Λ̃1,yG

A
k (ε)

∣∣∣
ε=μ

)]
= e2

2πniu2
tr [ρ1σ

xΛ̃1,y], (C4)

where we used Eq. (2.7) and tr [ρ1σ
xρ1σ

y] = 0. Substituting Eqs. (B2) to (B4), all the components of Eq. (B3) vanish because
of the trace, and the ρ1σ

x component of Eq. (B4) only remains,

σ b+sj
xy = 2e2

πniu2

Ppp

(D⊥)2
, (C5)

where Ppp is given by Eq. (B5). By using Eqs. (3.24) and (A6), we obtain Eq. (3.25) with Eqs. (3.26) and (3.27).
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3. Contribution from skew-scattering-type VCs to off-diagonal conductivity

Finally, we calculate the contribution from the skew-scattering-type VCs [Eq. (2.13)]. We here evaluate Λ̃∗
1,i (i = x,y) defined

by interchanging R and A in Λ̃1,i . Using Eq. (A1) and

niu
2
∑

k

GA
k (ε)ρμσ νGR

k (ε)
∣∣∣
ε=μ

= 〈μ′ν ′; μν〉ρμ′σ ν ′
, (C6)

we find that theO(n0
i ) terms of Λ̃∗

1,i are equivalent to those of Λ̃1,i , hence, Λ̃∗
1,i = Λ̃1,i in the leading order. We calculate Eq. (2.13)

as

σ sk
xy = e2

4πn2
i u

3
tr

[(
niu

2
∑

k

GA
k Λ̃∗

1,xG
R
k

)(
niu

2
∑

k′′
GR

k′′

)(
niu

2
∑

k′
GR

k′Λ̃1,yG
A
k′

)

+
(

niu
2
∑

k

GA
k Λ̃∗

1,xG
R
k

)(
niu

2
∑

k′
GR

k′Λ̃1,yG
A
k′

)(
niu

2
∑

k′′
GA

k′′

)
− (R ↔ A)

]∣∣∣∣
ε=μ

� e2

2πn2
i u

3
tr[(Λ̃1,x − ρ1σ

x)(−iγμνρμσ ν)(Λ̃1,y − ρ1σ
y) + (Λ̃1,x − ρ1σ

x)(Λ̃1,y − ρ1σ
y)(iγμνρμσ ν)]|ε=μ

= e2iγμν

2πn2
i u

3
tr[{(Λ̃1,x − ρ1σ

x)(Λ̃1,y − ρ1σ
y) − (Λ̃1,y − ρ1σ

y)(Λ̃1,x − ρ1σ
x)}ρμσ ν]|ε=μ. (C7)

Here,

{ . . . } = (〈jx ; jx〉ld ρ1σ
x − 〈

jx ; jz
M,x

〉
ld ρ2σ

y
)(〈jx ; jx〉ld ρ1σ

y + 〈
jx ; jz

M,x

〉
ld ρ2σ

x
)

− (〈jx ; jx〉ld ρ1σ
y + 〈

jx ; jz
M,x

〉
ld ρ2σ

x
)(〈jx ; jx〉ld ρ1σ

x − 〈
jx ; jz

M,x

〉
ld ρ2σ

y
)

= 2i
(〈jx ; jx〉2

ldσ
z + 2〈jx ; jx〉ld

〈
jx ; jz

M,x

〉
ldρ3 + 〈

jx ; jz
M,x

〉2
ldσ

z
)
, (C8)

and then we obtain Eq. (3.29).

APPENDIX D: SYMMETRY RELATIONS

In this Appendix, we show the derivations of the symmetry relations [Eqs. (3.31) to (3.34)]. We first derive Eqs. (3.31) and
(3.33). Since the conductivity tensor is given by

σij = lim
ω→0

Qij (iωl → ω + i0) − Qij (0)

iω
, (D1)

we consider the correlation functions corresponding to σ
b+sj
xy and σ sk

xy in terms of the Matsubara Green’s functions Gk(iεn) =
[iεn + μ −H0 − Σ(iεn)]−1, which are given by

Qb+sj
xy (iωl) = −e2kBT

∑
n

∑
k

tr [vxGk(iε+
n )Λ̃1,y(iε+

n ,iεn)Gk(iεn) − (y ↔ x)], (D2)

Qsk
xy(iωl) = −e2niu

3kBT
∑

n

∑
k,k′,k′′

tr [Λ̃1,x(iεn,iε
+
n )Gk(iε+

n )Gk′′(iε+
n )Gk′(iε+

n )Λ̃1,y(iε+
n ,iεn)Gk′(iεn)Gk(iεn)

+ Λ̃1,x(iεn,iε
+
n )Gk(iε+

n )Gk′(iε+
n )Λ̃1,y(iε+

n ,iεn)Gk′(iεn)Gk′′(iεn)Gk(iεn) − (y ↔ x)], (D3)

where ε+
n = εn + ωl , and εn and ωl are the Matsubara frequency of fermions and bosons, respectively. Here, Λ̃1,i(iεm,iεn)

(i = x,y) is the full velocity vertex in the Matsubara formalism (see Fig. 1)

Λ̃1,i(iεm,iεn) = vi + niu
2
∑

k

Gk(iεm)Λ̃1,i(iεm,iεn)Gk(iεn). (D4)

We decompose the full velocity vertices once by substituting Eq. (D4) into Eqs. (D2) and (D3) one by one. For each decomposed
term, we insert 1 = UU † with U = ρ1 in all the interspaces in the traces as in Appendix E of Ref. [28], and use the relation

U †Gk(iεn; m,M,S,μ)U = Gk(iεn; −m,−M,S,μ) = −Gk(−iεn; m,M,−S,−μ), (D5)
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then by changing the variable as −iεn → iεn + iωl in the summation of the Matsubara frequency, using the cyclic property of
the trace, and collecting them along Eq. (D4) again, we find

Qb+sj
xy (iωl ; μ,M,S) = Qb+sj

yx (iωl ; −μ,M,−S), (D6)

Qsk
xy(iωl ; μ,M,S) = −Qsk

yx(iωl ; −μ,M,−S). (D7)

Since the conductivities are antisymmetric parts, σxy(μ,M,S) = −σyx(μ,M,S), we obtain Eqs. (3.31) and (3.33). We can also
show the relations [Eqs. (3.32) and (3.34)] in the similar way by taking U = σy and changing the variables (kx,ky,kz) →
(−kx,ky, − kz) in the integrals.
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