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The spin-orbital superexchange model is derived for the cubic (perovskite) symmetry of LaMnO3, whereas
real crystal structure is strongly deformed. We identify and explain three a priori important physical effects
arising from tetragonal deformation: (i) the splitting of eg orbitals ∝ Ez, (ii) the directional renormalization of
d-p hybridization tpd , and (iii) the directional renormalization of charge excitation energies. Using the example
of LaMnO3 crystal we evaluate their magnitude. It is found that the major effects of deformation are an enhanced
amplitude of x2-y2 orbitals induced in the orbital order by Ez � 300 meV and anisotropic tpd � 2.0 (2.35) eV
along the ab (c) cubic axis, in very good agreement with Harrison’s law. We show that the improved tetragonal
model analyzed within mean field approximation provides a surprisingly consistent picture of the ground state.
Excellent agreement with the experimental data is obtained simultaneously for: (i) eg orbital mixing angle,
(ii) spin exchange constants, and (iii) the temperatures of spin and orbital phase transition.
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I. INTRODUCTION

Manganites, cuprates, and vanadates are wide groups of
compounds that have been attracting much attention, both
theoretical and experimental. What makes them intriguing are
strong electron correlations that cause electron localization
[1] and thus lead to effective superexchange models with
quantum behavior of coexisting spin and orbital degrees of
freedom [2]. Theoretical description is even more demanding
due to structural phase transitions. To capture low energy
phenomena at strong correlations, superexchange models were
were extended by effective orbital interactions induced by
the Jahn-Teller (JT) effect [3,4]. Realistic models employ
the parameters derived from ab initio calculations or from
experiment and thus serve as satisfactory and convincing
explanation of interactions in the space of spin-orbital degrees
of freedom [5,6]. Several nontrivial disordered [7,8] or ordered
[9] phases arise as a generic consequence of spin-orbital
exchange interactions, including novel phases found by orbital
[10] or charge [11] dilution. Though such models have been
successful in working out the peculiar physical properties of
doped manganites [12,13], the structural aspects have usually
been neglected. One of them is the interplay between a crystal
geometry and the actual spin-orbital interactions.

Except for cuprate superconductors [14,15], one of the
physical aspects of perovskites that has not yet been fully
investigated is a shortening of some bonds in the crystal
structure and elongation of the others. Any deformation of the
crystal results in the lowering of lattice symmetry from cubic
to tetragonal. In this paper we are peering at this structural
aspect in detail. We choose LaMnO3 as a guide compound as
it is described in many textbooks and the spin-orbital superex-
change model [16] is well known and has been employed to

explain the temperature dependence of the spectral weights
observed in the optical spectroscopy [17]. Hund’s exchange
stabilizes large spins S = 2 in LaMnO3 and quantum effects
are then reduced. Thus spin-orbital entanglement is small as
we have shown in a recent study [18]. Then an additional
advantage is that the analysis is simpler here than for some
systems with smaller spins (such as S = 1/2 in KCuF3) where
spin-orbital entanglement cannot be neglected [19,20] as spin
and orbital degrees of freedom strongly influence each other.
However, superexchange alone is not sufficient to explain the
high value of the orbital transition temperature TOO [16,21–23].
A careful study of the orbital melting transition suggests
that superexchange interactions play a minor role for this
transition while tetragonal crystal-field (CF) splitting Ez has
to be included to explain experiments [24]. Also in high-Tc

cuprates important changes of the microscopic parameters such
as the orbital splitting [14] and p-d hybridization [15] follow
from the tetragonal geometry. This motivates us to go beyond
the cubic model and to evaluate Ez and the anisotropy in tpd

for LaMnO3.
Indeed, the real LaMnO3 crystal structure is much more

complicated than that of an ideal cubic perovskite. It may be
perceived as a cubic perovskite with one period, i.e., bond
length in antiferromagnetic (AF) c direction is significantly
shorter than the ferromagnetic (FM) bonds along a and
b axes (with the difference between them of about 3.5% of
the initial length). This tetragonal deformation is thus opposite
to that found in high-Tc cuprates, where the apical oxygens are
more distant from 3d ions than the oxygens in the ab planes,
as predicted by the electronic structure calculations [25] and
confirmed experimentally [26]. In addition, MnO6 octahedra
are slightly tilted (so that the space group is Pmna). In this
work we modify the cubic model so that it takes into account the
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differences of period lengths but completely neglects octahedra
tilts. We show below that the period lengths difference is related
to the orbital state. The bigger the lengths difference is, the
more robust the orbital state becomes. For this reason the onset
of an orbital order takes place simultaneously with a structural
phase transition [26–28].

In our previous work [18] we concentrated on the influence
of the diverse spin-orbital entanglements (i.e., on-site and
on-bond entanglement) on the electronic state of the LaMnO3

crystal. The goal of the present work is to assess the influence
of the crystal tetragonal deformation and to identify the main
underlying physical mechanisms playing a role for realistic
description. As the LaMnO3 crystal is a representative com-
pound that is described by the Kugel-Khomskii-like model
that undergoes strong JT effect, we argue that the present
considerations may be treated as a guideline for any similar
model extensions for analogous crystals.

Key degrees of freedom of the LaMnO3 crystal are asso-
ciated with manganese ions. They have 3d4 high-spin (HS)
t3
2ge

1
g configuration with spin S = 2. Thus each manganese ion

has a large magnetic moment that may point at any direction
[due to SU(2) symmetry]. In addition to the magnetic degree of
freedom there is an orbital one due to a single eg electron. As
every manganese ion is at a center of a (slightly deformed)
MnO6 octahedron, its 3d orbitals are split and the HS d4

configuration includes the occupied eg orbital with lower
energy. The eg electron occupies, in general, at site i a linear
combination of two basis states [29],

|iϑ〉 = cos(ϑ/2)|iζc〉 + sin(ϑ/2)|iξc〉, (1)

where the orbital basis consists of the two basis orbitals
(labeled in analogy to |↑〉 and |↓〉 spin states):

|ζc〉 ≡ 1√
6
(3z2 − r2), |ξc〉 ≡ 1√

2
(x2 − y2), (2)

a directional orbital |ζc〉 along the c axis, and an orthogonal
to its planar orbital |ξc〉. The orbital basis states in Eq. (2) are
obtained for ϑ = 0 and ϑ = π , respectively, while for angles
increased by 2π/3 or 4π/3 two other equivalent pairs of states
are obtained: {ζa,ξa} and {ζb,ξb}. The orbital state at site i (1)
is parametrized by an orbital mixing angle ϑ ∈ [0,2π ). Thus
the state at each manganese ion is described by the direction
of its spin projection and the angle ϑ . A 3D cubic lattice of
manganese ions in the LaMnO3 crystal may just be viewed as
a set consisting of the above pairs of variables, representing
the degrees of freedom of each ion in the lattice.

The spin order in the ground state of the LaMnO3 crystal
is A-type AF (A-AF). It means that the crystal is made of FM
ab planes that are staggered in an AF manner along the c

axis. The orbital state is nontrivial as well. The manganese’s eg

electron states are equal to |±ϑ〉, where the angle ϑ ∈ [0,π )
takes for some fixed value and the sign alternates between the
A and B sublattice in each ab plane [6]. The orbital state is
unchanged along the perpendicular c axis, i.e., the alternating
orbital (AO) order is C type labeled as C-AO.

The purpose of this paper is to introduce and investigate the
consequences of the tetragonal crystal structure of LaMnO3

which takes into account the experimental distortions. It is
noteworthy that the cubic model predicts the reduction of
symmetry in the ordered state as one direction is distinguished

by the spin-orbital order (the AF direction in A-AF/C-AO
state). In this state the symmetry is broken, i.e., the ground
state has lower symmetry than the symmetry of the model
itself. On the contrary, the proposed tetragonal model has
lower symmetry from the beginning. Following the observed
structure [31], in this work we label the “shortened” AF
directions by the letter c, and the “elongated” FM directions a

and b.
The paper is organized as follows. In Sec. II we develop

a spin-orbital model for LaMnO3 in the tetragonal phase.
We begin with recalling the model for the usually considered
cubic structure in Sec. II A, present the tetragonal structure in
Sec. II B, and summarize the necessary changes in Sec. II C. In
Sec. III we concentrate on the tetragonal crystal field (CF): (i)
introduce its microscopic description in Sec. III A, (ii) present
its consequences on the ground state in Sec. III B, and (iii)
determine the actual value of the eg orbital splitting by an
ab initio approach in Sec. III C. The lattice distortions in
LaMnO3 lead to the renormalized superexchange model pre-
sented in Sec. IV. We begin with recalling the perturbative
origin of the spin-orbital model in Sec. IV A and then discuss
the renormalization of both hybridization tpd hopping elements
and charge excitation energies in Secs. IV B and IV C. The pre-
dictions of the tetragonal model at T = 0 are given in Sec. V A,
and next discussed in Sec. V B. As the tetragonal distortion
changes together with the electronic state, the predictions of
the model at finite temperature are distinct from those of the
cubic model as we show in the Appendix. Finally we present the
main conclusions and summarize the present study in Sec. VI.

II. TETRAGONAL MODEL FOR LaMnO3

A. Spin-orbital model for cubic LaMnO3

In the previous works the LaMnO3 crystal electronic struc-
ture was investigated with the aid of pure electronic superex-
change Kugel-Khomskii-like models [16–18]. Typically, such
models are formulated in terms of the ionic spin-orbital degrees
of freedom for Mn ions (all other degrees of freedom are
integrated out, including degrees of freedom attributed to the
bridge atoms). All terms in the superexchange Hamiltonian
correspond to the ionic pairs on nearest neighbor bonds
(denoted here as 〈ij 〉).

Charge excitations responsible for superexchange arise
from electron hopping t defined for eg electrons as the largest
hopping element for a σ bond 〈ij 〉 ‖ γ , i.e., between two active
orbitals, |iζγ 〉 and |jζγ 〉 along this bond. In the cubic crystal t

is independent of the bond direction γ . In the regime of large
intraorbital Coulomb repulsion U � t , one can construct the
low-energy Hamiltonian by attributing each virtual excitation
numerated by subscript n with the Hamiltonian contribution,

Hγ
n (ij ) = (an + bn


Si · 
Sj )Qγ
n (ij ), (3)

where an and bn are numeric coefficients derived from the
multiband extended Hubbard model; the explicit form of the
Hamiltonian was presented in Ref. [18]. Here { 
Si} denotes
the spin operator (for ith site) and Q

γ
n (ij ) denotes the on-

bond orbital operator, specifying the orbital configuration. It
is expressed in terms of on-site orbital operators {τ (γ )

i } (that
explicitly depend on the crystallographic direction γ of the
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〈ij 〉 bond):

τ
(a)
i = −1

4
σ z

i −
√

3

4
σx

i ,

τ
(b)
i = −1

4
σ z

i +
√

3

4
σx

i ,

τ
(c)
i = 1

2
σ z

i , (4)

where σ z
i and σx

i are Pauli matrices acting in the space spanned
by the orbital basis Eq. (2) at site i.

A charge excitation between two transition metal ions with
partly filled eg orbitals will arise by a hopping process between
two active orbitals |iζγ 〉 and |jζγ 〉. To capture the directional
dependence of such processes we introduce two projection
operators on the orbital states for each bond,

Q(γ )
⊥ (ij ) ≡ 2

(
1

4
− τ

(γ )
i τ

(γ )
j

)
, (5)

Q(γ )
‖ (ij ) ≡ 2

(
1

2
+ τ

(γ )
i

)(
1

2
+ τ

(γ )
j

)
. (6)

Unlike for a spin system, the charge excitation
dm

i dm
j � dm+1

i dm−1
j is allowed only in one direction when

one orbital is directional |ζγ 〉 and the other is planar |ξγ 〉 for
a given bond 〈ij 〉 ‖ γ , i.e., 〈Q(γ )

⊥ (ij )〉 = 1; such processes
generate both HS and low-spin (LS) contributions. On the
contrary, when both orbitals are directional, i.e., one has
〈Q(γ )

‖ (ij )〉 = 2, only LS terms contribute.
Now, it it straightforward to write the formula for the

low-energy spin-orbital Hamiltonian [18] which includes the
superexchange terms due to eg (He

J ) and t2g (Ht
J ) charge

excitations, the JT orbital interactions (HJT), and tetragonal
crystal field (Hz),

Hsom = He
J + Ht

J + HJT + Hz, (7)

where

He
J = J

∑
〈ij〉‖γ

{
− 1

40
r1(
Si · 
Sj + 6)Q(γ )

⊥ (ij )

+ 1

320
(3r2 + 5r3)(
Si · 
Sj − 4)Q(γ )

⊥ (ij )

+ 1

64
(r4 + r5)(
Si · 
Sj − 4)Q(γ )

‖ (ij )

}
(8)

and

Ht
J = 1

9
J rt

∑
〈ij〉

(
Si · 
Sj − 4). (9)

The superexchange energy J = 4t2/U is here isotropic. The
multiplet structure of eg excited states is given by ηe ≡ J e

H/U

which defines the coefficients,

r1 = 1

1 − 3ηe

, r2 = 1

1 + 3ηe/4
,

r3 = r4 = 1

1 + 5ηe/4
, r5 = 1

1 + 13ηe/4
. (10)

TABLE I. Microscopic parameters of LaMnO3 defining the spin-
orbital cubic model of Ref. [18] (all in eV): effective (ddσ ) hopping
t , intraorbital Coulomb element U , Hund’s exchange for eg (J e

H ) and
t2g (J t

H ) electrons, and the orbital-orbital interaction induced by the
JT effect κ (12).

t U J e
H J t

H κ

0.37 4.0 0.69 0.59 0.006

For t2g charge excitations are given by ηt ≡ J t
H /U and it is

convenient to introduce a single coefficient in Eq. (9) [18],

rt = 1

8

(
1

4 + 5ηt

+ 1

4 + 9ηt

+ 1

4 + 11ηt

+ 1

4 + 15ηt

)
.

(11)

The JT Hamiltonian HJT describes the coupling between
the adjacent sites via the mutual octahedron distortion. We
note that the JT effect is connected with the oxygen atoms
displacements which result in longer and shorter Mn-O bonds
in ab planes but leave the manganese positions unchanged.
The JT term is controlled by a single parameter κ > 0 that
describes the rigidity of the oxygen positions (or the magnitude
of displacement caused by the adjacent Mn orbital state). The
effective orbital intersite interaction term is given by the orbital
operators {τ (γ )

i } as follows:

HJT = 8κ
∑
〈ij〉

τ
(γ )
i τ

(γ )
j . (12)

This term favors AO order in the ab FM planes and dominates
over the superexchange [24,30]. Finally, the last term in
Eq. (7) stands for the tetragonal splitting of eg orbitals and
is introduced below in Sec. III. Both HJT and Hz (see Sec.
III A) modify the eg superexchange via the orbital order at
zero temperature (T = 0) [16].

In our previous paper [18] we investigated the consequences
of the model of the LaMnO3 crystal described in the lit-
erature, using the established parameters listed in Table I.
The tetragonal splitting of eg orbitals ∝ Ez was neglected.
We performed mean field (MF) (cluster) calculations at finite
temperatures. This allowed us to fit the values of parameters in
the spin-orbital model, to make it the most reliable for the
experimental situation. Our scrutiny revealed however, that
even in that case, the model predictions are not fully consistent
with the experiments (especially, when it comes to the value of
the orbital mixing angle). We eliminated the possibility that the
discrepancy may stem from the way we solved the model. (We
showed that the short-range correlations play only a moderate
role in this case and cannot break the MF-based methodology).
This motivates us to make the model more realistic by going
beyond the cubic symmetry.

B. Tetragonal geometry of LaMnO3

In the LaMnO3 crystal the manganese ions are arranged
in a tetragonal lattice. In terms of the Pmna space group
crystallographic axes a, b, and c, the Mn-Mn distances are
given by 1

2

√
a2 + b2 in the FM ab planes and c/2 along the
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AF c axis. The measured (at T = 300 K) values of these
structural constants are [31]: a = 5.5378 Å, b = 5.7385 Å,
and c = 7.7024 Å, so that the Mn-Mn distances are equal to
3.9874 Å in the ab planes and 3.8512 Å along the c axis. The
relative difference in the lengths is as big as 3.5%.

To appreciate fully the consequences of tetragonal distor-
tion, one has to include oxygen bridge positions in between
neighboring manganese pairs which influence the electronic
structure. The exact values of the corresponding Mn-O dis-
tances depend on: (i) the overall distance of two involved
manganese ions and (ii) JT-like oxygens displacements. The
JT effect is taken into account by a specially designed effective
JT Hamiltonian Eq. (12) with κ � 6 meV, see Table I, and there
is no need to change it on the first instance. On the other hand,
to assess the influence of the anisotropy of Mn-Mn distances,
the cubic model has to be somehow extended.

As the oxygens JT-like displacements are described sepa-
rately, the starting geometry for our tetragonal crystal model
is established by putting the oxygen atoms directly halfway
between the neighboring manganese ions. Thus the Mn-O
bond lengths are set to 1.9937 and 1.9256 Å, respectively.
In such a geometry there are deformed MnO6 octahedra of
D4h point symmetry. In this work we will present the results
for “rounded” values 1.995 Å (for the planar ab axes) and
1.925 Å (along the c axis). These values may be compared
with the value for nondeformed MnO6 octahedra with Mn-O
distances equal to 1.970 Å.

C. Changes in comparison to the cubic model

We identify three main modifications that should be made
to transform the well known cubic model [16] into a tetragonal
model:

(i) The first change concerns the tetragonal CF effect itself.
While displacements of oxygen atoms are well described
by the JT Hamiltonian, the Mn-Mn distances influence the
spin-orbital state by tetragonal CF. The tetragonal CF was in-
troduced in Ref. [16] but its strength was not widely discussed.

(ii) The second change concerns the d-p hopping integral.
In superexchange theory the virtual processes are perceived as
a sequence of the electron’s hoppings. The closer the involved
atoms lie, the stronger the superexchange is. As far as we know,
this effect has never been discussed.

(iii) The third change concerns the energies of charge exci-
tations {εn}, given in Refs. [6,17]. In the superexchange theory
excited virtual configurations are considered (for example the
6A1 term for the HS d5-d3 excitation). The charge excita-
tion energies depend on relative geometry (especially atom
distances). In the tetragonal model the interatomic distances
in one direction are different than the distances in the other
two directions. Hence the corresponding energies in the model
should be renormalized. As far as we know, this effect also has
not been discussed earlier.

In this work we assess the importance of all the above
changes. As necessary steps we evaluate the strength of the
tetragonal CF and the change in the hopping integrals using
remote quantum-chemical models.

III. TETRAGONAL CRYSTAL-FIELD SPLITTING

A. Definition of the crystal-field splitting

We investigated a generalization of the LaMnO3 cubic
model by introducing tetragonal CF. The tetragonal CF is
modeled by the Hamiltonian Hz that is governed by a single
parameter Ez, describing the energetic splitting of the eg

states (2):

Hz = 1

2
Ez

∑
i

(|iζc〉〈iζc| − |iξc〉〈iξc|) = Ez

∑
i

τ
(c)
i . (13)

For positive values (Ez > 0), |ξc〉 (i.e., |x2 − y2〉 states)
are favored, whereas for negative values (Ez < 0), |ζc〉 (i.e.,
|3z2 − r2〉) states have lower energy. For the realistic structure
of LaMnO3 one has Ez > 0. The bigger the value Ez is,
the greater the contribution of |x2 − y2〉 orbitals is obtained
(and the value of ϑ increases approaching 180◦). If the
tetragonal CF is ignored (Ez = 0) then the orbital mixing angle
(at T = 0) is equal to 84◦ [6] contradicting the experiment;
the experimental value ϑexp = 108◦ [26] is reproduced in the
model with Ez � 190 meV (see the following section).

B. Impact of the CF splitting on spin-orbital order

We used on-site MF calculation scheme to determine the
value of orbital mixing angle ϑ , energy per site E, and spin
exchange constants Jγ (γ = a,b,c). The calculations revealed
that the A-AF/C-AO state is destroyed by sufficiently strong
tetragonal CF and the way the pattern decomposes under the
influence of the tetragonal CF is quite nontrivial.

The spin A-AF pattern is obtained only when spin exchange
constants fulfill Ja = Jb < 0 and Jc > 0. Their values depend
on ϑ which, in turn, strongly depends on the actual CF splitting
Ez (13). It turns out that the first constraint (Ja = Jb < 0) is
not valid for ϑ > ϑcr � 122◦ that occurs when the A-AF state
breaks down at Ecr

z � 291 meV.
However, in reality, even when tetragonal CF is weaker than

the critical value Ez < Ecr
z , the A-AF state may not be the

true ground state. Calculations reveal that even comparatively
weak tetragonal CF may be strong enough to trigger spin
reorientation. More precisely, when tetragonal CF is suffi-
ciently strong, it is favorable for the spins to turn around and
to change their order discontinuously from A-AF into G-AF.
The transition is accompanied by a discontinuous jump of the
orbital mixing angle (from ∼110◦ to ∼150◦). The transition
occurs for Ez = Ecr

z � 188 meV.
A physical explanation of the transition between different

magnetic states is as follows: The A-AF state coexists with
the orbital state characterized by ϑ(A-AF) � 110◦, whereas
G-AF state coexists with the orbital state characterized by
ϑ(G-AF) � 150◦. (Given values are for Ez � 200 meV; of
course ϑ↗ when Ez↗ for the both cases but a key relation
ϑ(G-AF) � ϑ(A-AF) is valid for wide range of Ez.) In the absence
of tetragonal CF, the A-AF state is the ground state. On the
other hand, the tetragonal CF prefers states with larger angle
ϑ . As one state is preferred when tetragonal CF is weak and
the other is favored at strong tetragonal CF, the transition in
between is rationalized.

The results of our calculations are summarized in Fig. 1.
For the both types of spin order (A-AF and G-AF) their
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FIG. 1. Graphical representation of the influence of the tetragonal
CF Ez (13) on the A-AF state (upper panel) and G-AF state (lower
panel). Other parameters as in Table I. Background colors indicate the
regimes of green: the ground state, yellow: a metastable excited state,
and red: inconsistency for each type of spin order. Solid lines show
the energy per site E (red) and the orbital mixing angle ϑ (blue). The
horizontal dashed red line indicates the energy of the configurations
at the quantum phase transition (at EQPT

z ), while the horizontal dashed
blue line indicates ϑ cr.

regimes of existence are indicated (background color different
than red). Then, each such regime of existence is divided
into two parts where the considered type of spin order is the
ground state (green background color) and the excited state
(yellow background color). In addition, for the both spin states
energy per site E and orbital mixing angle ϑ are plotted (as a
function of Ez).

It is important to mention that in an on-site MF calculation
scheme a C-AO state and a G-AO state (both with the
same spin order) give rise to solutions with identical energy
per site E and orbital mixing angle ϑ . These states may
be perceived as stacks of planes of the same type (namely
antiferro-orbital planes). What differs the states is a relative
displacement of the adjacent planes: the interplane bonds
are either |±ϑ〉|±ϑ〉 (in C-AO phase) or |±ϑ〉|∓ϑ〉 (in
G-AO phase). The energy contributions from “in-plane bonds”
(bonds 〈ij 〉‖ab) are the same for both states (as they consist
of the same planes) and do not differentiate the two states.
Each energy contribution from the “interplane bond” (bond
〈ij 〉‖c) depends on the orbital operators {τ (c)

i ,τ
(c)
j }. However,

exclusively for direction c: 〈+ϑ |τ (c)|+ϑ〉 = 〈−ϑ |τ (c)|−ϑ〉,
so that the prospective structural difference has no influence
on the bonds energy contributions. As a result, the adjacent

TABLE II. The calculated values of tetragonal splitting Ez (in
meV) in LaMnO3 at different sophistication levels of the theory.

Number Method Basis set Ext. charges Ez

1 HF STO-3G � 469
2 HF 6-31G � 309
3 HF 6-311G � 296
4 HF 6-311G* � 299
5 DFT (B3LYP) STO-3G � 434
6 HF STO-3G absent 465

planes relative orientation does not matter for energy value.
The results presented in this section are for C-AO and G-AO
patterns; we have verified that solutions for ferro-orbital (FO)
or A-AO patterns have higher energy.

C. The value of tetragonal crystal-field splitting

The strength of the tetragonal CF splitting Ez (13) distin-
guishes between two HS states: t3

2gz
1 state and t3

2gz̄
1 state. The

splitting depends on the actual MnO6 octahedron deformation
(in other words, on Mn-O bond lengths). For calculations we
take the reference geometry in which Mn − O‖c axis bond
length is equal to 1.925 Å and Mn − O‖ab plane bond length is
equal to 1.995 Å. The deformed octahedron anion [MnIIIO6]9−
was used as a quantum chemical model. The anion was
immersed in charge lattice that is to mimic the other ions that
made up the crystal. The final values of Ez obtained in different
quantum chemical levels of theory are shown in Table II.

At the beginning we carried out Hartree-Fock (HF) calcu-
lations in minimal basis set (STO-3G) in a given geometry and
imposed multiplicity (quintet). We used a standard linear com-
bination of an atomic orbitals (LCAO) scheme of unrestricted
HF implementation (UHF). Each molecular HF calculation run
was followed by the standard promolecule calculation that sets
an initial-guess density matrix. As expected on grounds of
ligand field theory, the obtained HF state’s highest occupied
molecular orbital (HOMO) is e∗

g molecular orbital (MO) with
significant occupancy of the z̄ atomic orbital (orbital symmetry
B1g) at manganese ions, whereas the lowest unoccupied MO
(LUMO) is e∗

g MO with significant occupancy of the z2 atomic
orbital (orbital symmetry: A1g). Hence, the obtained state
corresponds to the model t3

2gξ
1
c configuration.

Then, the second HF calculation was carried out. But in this
case, the calculation started from a hand-made initial-guess
density matrix determined from MOs obtained in the previous
HF calculation run—the initial-guess configuration was a build
of the LUMO and all occupied MOs but the HOMO. As in the
course of HF iterations MOs was changed only quantitatively
(not qualitatively), the obtained state was labeled as the model
t3
2gz

1 configuration. A desired outcome of these calculations—
the strength of tetragonal CF (parameter Ez)—was calculated
as a difference between the energies of two obtained states.
At the lowest level of the theory with the minimal basis set
(STO-3G) one finds E(1)

z = 469 meV.
It is a common wisdom that the calculations using the

minimal basis set usually give a decent physical insight, but
are not of sufficient quality and should be treated as pilot
calculations only. Motivated by that we attempted to repeat
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calculations using some bigger Popple basis sets. Unfortu-
nately, the calculations were misleading. The first HF run ended
up with converged HF (ground) state made of MOs that bear
no resemblance to the standard ligand field theory like orbitals
(e.g. e∗

g orbitals). Thus the obtained energies could not be used
in the evaluation of Ez.

To overcome this problem we designed a modified calcu-
lation strategy for bigger basis sets. The modification applies
to initial-guess states (implemented for both HF calculation
runs: the one intended to describe t3

2gz̄
1 configuration and the

other one for t3
2gz

1 configuration). The initial-guess states were
calculated as projections of the corresponding states obtained
in the minimal basis set calculations. The projections allow us
to translate state description from one basis set to another basis
set. (Of course the translated state is not strictly equivalent of
the original state, but it is the closest possible match.) Then
the typical HF convergence run was carried out. For 6-31G
basis set calculations the HF iterations, fortunately, changed
the initial guesses only quantitatively and we arrived at the
proper solutions for this improved second level of the theory.
The corresponding final result is E(2)

z = 309 meV.
The convergence to the proper (ligand field theory like)

solutions is a matter of luck. Typically HF iterations tend to
change the nature of MOs so that calculations end in another
physical solution. To avoid undesired configurations one may
rely on imposing the symmetry types of occupied MOs. In our
case it would imply imposing the total numbers of B1g-type
occupied MOs and the total number of A1g-type occupied
MOs. However, typical implementations of this trick applies
for a maximal Abelian symmetry subgroup (as they have
solely nondegenerate irreducible representations that are easy
to handle). Deformed MnO6 octahedron has D4h symmetry,
with a maximal Abelian subgroup D2h. In terms of the D2h

group the x2-y2-like orbitals and z2-like orbitals have the same
symmetry, i.e., Ag (there are no B type representations in the
D2h group). This rules out the possibility of applying the above
trick in our study.

We repeated the modified procedure to obtain the results
for bigger and bigger basis sets. We were changing the basis
gradually, see the calculation numbers 1–4 in Table II. States
were projected many times, so that every HF run (except for
the minimal basis set calculations) started with a projected
state obtained in only a slightly smaller basis calculation. The
numeric values of Ez for a larger than minimal basis set do not
differ significantly so no further correction is needed to predict
a limiting value for an infinite basis,

EHF
z � 300 meV. (14)

To verify this prediction we compared the obtained HF
results in Table II for the minimal basis set STO-3G (number
1) with the corresponding calculations in DFT theory (we used
the popular B3LYP functional [32,33]), see number 5, to check
whether the electron correlation effects may be significant in
our problem. The comparison reveals that HF (number 1) tends
to overestimate the value of Ez for about 7%. Eventually, we
verified that, to our surprise, the external charges in the lattice
have a negligible effect, see number 6 in Table II.

Altogether we confirm that Ez > 0 in LaMnO3 in the low
temperature phase with tetragonal distortion. However, our

calculations suggest a value in Eq. (14) which is about twice
larger than that determined before by Flesch et al. [24].

IV. REVISED SUPEREXCHANGE MODEL

A. The origin of the superexchange Hamiltonian

Integrating out the high-energy intermediate states obtained
by charge excitations gives rise to the effective low-energy
interactions; each excitation contributes to a spin-orbital su-
perexchange Hamiltonian (which we use). In this way energies
of the excited charge configurations appear in the effective
Hamiltonian and define its parameters.

Both Mott insulators and CT insulators are described in
terms of superexchange when electron correlations are strong.
In both cases the sets of contributing virtual processes are
the same, however their relative importance depends on the
actual parameters which control these processes. In general, the
sequence of four hopping processes appears along an M-O-M
bond,

MmLnMm (1)−→ Mm+1Ln−1Mm

(2)−→ Mm+1LnMm−1

(3)−→ Mm+1Ln−1Mm

(4)−→ MmLnMm (15)

and describes leading processes for Mott insulators (in a term
Mm1Ln1Mm2 the leftmost M-ion electron shell corresponds on
one magnetic cation, the L orbital shell in between (of an O ion)
belongs to the bridge ligand, and the rightmost M-ion electron
shell is localized on the neighboring magnetic cation). These
processes involve a hopping integral tpd between the Mn(3dz2 )
orbital and the bridge oxygen O(2pz) orbital for a bond along
the bond in each step.

In particular cases the electronic configurations of interme-
diate states are realized by various atomic terms. For example,
in case of a simple “toy model” of a Mott insulator for metals
and ligands with only a single interacting orbital, the structure
of terms is trivial and the low-energy Hamiltonian reads [34]

H〈ij〉 =
4t4

pd

�2

(
1

Ud

+ 2

2� + Up

)

Si · 
Sj � 4t4

pd

�2U

Si · 
Sj ,

(16)

with Ud (Up) being the intraorbital Coulomb elements for 3d

(2p) orbitals, εd (εp) being the electron energy in orbital 3d

(2p), and the charge transfer (CT) excitation energy is

� ≡ Ud − Up + εd − εp. (17)

The first (second) term in Eq. (16) is called the Anderson
(Goodenough) contribution, both defined by the nature of
charge excitations, either an M or an O ion. Here we introduced
an effective Coulomb element U to describe the superexchange
by the Anderson process. Note that U � Ud for Mott insula-
tors, with � � Ud , while otherwise U � �.

Although the manganite case is much more involved than
the toy model, the general patterns of superexchange terms are
similar in both cases. In the case of the LaMnO3 crystal the
values Ud and � in Eq. (16) correspond to excitation energies to
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(3d)5(2p)6(3d)3 and (3d)5(2p)5(3d)4 configurations. Hence,
a general bond term in the superexchange Hamiltonian is
proportional to(

t2
pd

E[(3d)5(2p)5(3d)4]

)2 1

E[(3d)5(2p)6(3d)3]

×
(

certain spin

operator

)
×

(
orbital projection

operator

)
. (18)

The expression in the first bracket describes the effective Mn-
Mn hopping

tγ ≡ t2
pd (dγ )

E[(3d)5(2p)5(3d)4]
, (19)

in the effective model Hsom (in which oxygen ions are absent).
Here tpd (dγ ) is the hybridization element for the Mn-O bond
of length dγ . The exact form of the Hamiltonian was derived
in Ref. [16]. Our key observation is that the parameters in
Eq. (18) depend on crystal geometry. Moreover, the directional
renormalization of tpd is amplified by a factor of 4 in su-
perexchange which results from processes of the type ∝ t2

γ /U

in perturbation theory. In the two following subsections we
analyze separately the dependence on geometry of (i) tpd (dγ )
and (ii) the energies of the excited state.

B. Renormalization of t pd

We tried to assess the relative change of the value of hopping
integral tpd that follows from the Mn-O-Mn bonds length
change. Once more we built a quantum chemical model that
serves to describe the localized orbitals in the crystal. We
believe that it is sufficiently accurate to investigate the relative
change in tpd value.

It is quite nontrivial to assign concrete orbitals that cor-
respond to “metal 3dz2 orbital” and “oxygen 2pz orbital”—
the basis orbitals in terms of elementary (not effective) su-
perexchange models (with metal and oxygen ions treated
individually). It is a fundamental assumption in these models
that the orbitals are orthogonal. It rules out the possibility
of direct usage of the corresponding atomic orbitals. It is a
temptation to use MOs instead (similar to that described in a
previous section). However this approach is also not valid. In
terms of the elementary superexchange model, for which tpd

is a parameter, the MOs are linear combinations of the basis
orbitals—the results of coupling the basis orbitals mediated by
tpd (being an off-diagonal Hamiltonian matrix element).

Here we propose to start with atomic orbitals (using STO-
6G) and take advantage of an orthogonalization scheme that
minimizes the orbital changes, namely the Löwdin orthogonal-
ization. In this way we obtain a pair of the orthogonal adjacent
Löwdin orbitals: the metal 3dz2 -like orbital (labeled “e∗

g”) and
the oxygen 2pz-like orbital (labeled “⊥e∗

g”) of the form that is
shown in Fig. 2.

Superexchange models introduce simple and intuitive de-
scriptions in which only a few electrons are treated explic-
itly, whereas the majority of all remaining electrons (those
occupying inner shells and some outer shells) are treated
implicitly. The latter are assumed to be fixed and, together with
nuclei, build up a specific scene in which the explicitly treated
electrons are immersed. In our case atoms configurations made

FIG. 2. The general form of basis MOs used to derive the superex-
change model. The values of tpd depend on the overlap between the
adjacent atomic orbitals. The parameters b and c are close to unity
for the orbitals centered at Mn and O ions along the c axis, whereas
the values of a and d are close to zero (as long as electrons localize
and the overlap is small).

up by the implicitly treated electrons read

Mn4+ : [Ar](3t2g)3,O(γ ) : [He](2s)2(2p⊥γ )4,La3+ : [Rd],

where O(γ ) denotes the oxygen atoms belonging to the
Mn-O-Mn bridges parallel to γ direction and 2p⊥γ denotes
pairs of 2p orbitals perpendicular to γ direction. We will
use Löwdin orbitals (STO-6G) as a specific realization of the
abstract orbitals included in the above configuration scheme.
This allows us to use standard MF approximation to introduce
interactions with the given implicitly treated electrons.

The tpd is a one-electron mean field Hamiltonian off-
diagonal matrix element. In terms introduced above one finds

tpd = 〈e∗
g|H MF

1e |⊥e∗
g〉, (20)

where

Ĥ MF
1e = T̂ + V̂en + Ĵ + K̂ (21)

encompasses a single electron kinetic energy (T̂ ), electron-
nuclei Coulomb interaction (V̂en), electron-electron Coulomb
interaction with the implicitly treated electrons that gives rise
to Coulomb (Ĵ ), and exchange contribution (K̂). The Coulomb
contribution bears a resemblance to the classical Coulomb
interaction between an electron and the mean electrostatic
charge distribution of the implicitly electrons. In contrast,
exchange contribution is purely quantum. The form of the
Hamiltonian in Eq. (21) is analogous to the MF one-electron
Hamiltonian used in the Hartree-Fock method.

Having the concrete form of the orbitals and after identify-
ing the implicitly treated electrons, we were able to evaluate
the value of tpd according to Eq. (20). We constructed the
cluster of many unit cells to mimic the crystal environment.
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TABLE III. The directional renormalization factors for the hy-
bridization elements tpd , the effective (ddσ ) hopping tγ which
depends on bond direction γ , the energies of final states for charge
transfer excitation �, and for interionic Mn-Mn charge excitations εn

with n = 1, . . . ,4.

Energy Excited state Bond renormalization

Mn-O-Mn 〈ij〉‖a(b) 〈ij〉‖c
tpd 94.8% 111.5%
tγ 90.3% 123.7%

Mn-O excitation (3d)5

� (3d)5(2p)5(3d)4 4A1 99.5% 100.5%
Mn-Mn excitation

ε1 (3d)5(2p)6(3d)3 6A1 102.3% 95.6%
ε2 (3d)5(2p)6(3d)3 4A1 101.0% 98.1%
ε3 (3d)5(2p)6(3d)3 4E 100.9% 98.3%
ε4 (3d)5(2p)6(3d)3 4A2 100.7% 98.6%

Then, we invoked the approximation in which all implicitly
treated electrons localized at atoms different than the hopping
spots are treated as classical point charges (unit minus charges
localized on the atomic centers). The obtained results for the
actual bond lengths in the ab planes and along the c axis are
(in eV)

tpd (1.995 Å) = 2.00, tpd (1.925 Å) = 2.35. (22)

These changes are in excellent agreement with the semiempir-
ical law of Harrison which gives tpd ∝ d−4

γ for a Mn-O bond of
length dγ [35]. For a shorter bond along the c axis of 97.72%,
one finds the increase of tpd to 109.7%, while the Harrison’s law
gives 111.4%. For a bond longer by 101.27% in the ab plane
one finds tpd decreased to 94.8%, while the Harrison’s law
predicts 95.1%. Indeed, these results verify the semiempirical
Harrison’s law and one finds a significant difference in the tpd

values (22). A kinetic energy contribution is roughly equal to
5.0 eV and an electrostatic potential contribution is roughly
equal to −3.0 eV (it includes the repulsive interaction with
core electrons). In addition to this we found a weak (−0.3 eV)
exchange contribution. We compare these values with the
value obtained for the cubic geometry (2.11 eV) to get the tpd

renormalization factors that should be imposed when changing
the cubic model into a tetragonal one, the first row in Table III.

Due to the large difference in the values of tpd , the effective
hopping elements tab and tc for the bonds ‖ab and ‖c, respec-
tively, exhibit remarkably large anisotropy and tc/tab = 1.37,
see Table III. This large difference may be obtained under
neglect of the small anisotropy of CT excitations, see the next
section, and modifies even more the anisotropic eg exchange
interactions due to their quadratic dependence on the hopping
J e

γ ∝ 4t2
γ /U , and thus influences the spin-orbital order.

C. Renormalization of the excitation energies

In the superexchange approach all the virtual excited states
are CT states (in the sense that there is a surplus positive
charge located in one lattice node accompanied by a surplus
negative charge located in another lattice node). Energy of a CT
configuration may be roughly divided into three parts: the first
part describes ionization energy of the first CT state moiety, the

second part describes electron affinity of the second CT state
moiety, and the third part describes an internal Coulomb inter-
action between the surplus charges as well as their Coulomb
interaction with a surrounding charge distribution. The first two
parts are CT intermoiety separation independent. On the other
hand, the third part is directly a crystal geometry dependent
part. For example, the Coulomb interaction between the surplus
charges is inversely proportional to intermoiety distance (from
the simplest and approximate point of view).

Let us consider one of the virtual CT states:
(3d)5(2p)6(3d)3. In this state the surplus unit negative
charge is localized on the first Mn atom and the surplus unit
positive charge is localized on the second Mn atom (in other
words, it is the configuration Mn2+-Mn4+). For Mn ions the
(3d)5 configuration may be realized by four electronic terms:
6A1, 4A1, 4E, and 4A2, with the excitation energies [17] 1.93,
4.52, 4.86, and 6.24 eV, using the parameters of Table I. In the
reference cubic geometry Mn-Mn distance is equal to 3.94 Å
and the Coulomb interaction energy between surplus charges
is equal to −3.655 eV. In the tetragonal geometry, in which
in one crystallographic direction Mn-Mn distances are equal
to 3.99 or 3.85 Å, and the corresponding Coulomb interaction
energy is −3.609 or −3.740 eV, respectively.

In addition to this, the surplus charges surrounding ion
interactions should be considered; however in this case they
cancel out as the surplus charges are located on the equivalent
lattice positions. It means that the contribution to total exci-
tation energy is bigger for 0.045 eV (or less for −0.085 eV).
For example, for 6A1 excitation this change gives rise to the
renormalization of the total excitation energy by the factor
102.4% (or 95.6%). The renormalization results are collected
in Table III.

Finally, there is as well the (3d)5(2p)5(3d)4 configuration
standing for a CT excitation. Its overall excitation energy is
equal to 5.5 eV [36]. The corresponding electrostatic calcu-
lation is more involved in this case: as the opposite surplus
charges are not located at equivalent lattice positions, one has
to add surplus charges surrounding ion interactions energy.
The surplus positive charge (located on an oxygen anion) has
bigger energy if the hopping goes in the shortened direction.
This effect is almost exactly compensated by the energy gain
due to surplus charge stabilization (that appears if they are
closer). The net result is that the excitation energies are barely
split and the corresponding excitation energies renormalization
factor is close to unity.

V. THE TETRAGONAL MODEL AT T = 0

A. Orbital mixing angle and exchange constants

The predictions of the tetragonal model Eq. (7) were inves-
tigated using on-site MF approximation and compared to the
results obtained for the cubic model. We decided to implement
the extensions accounting for tetragonal CF together with the
directional renormalization of a hopping integral and neglect
the weaker electrostatic effects. We focus in this section on the
results obtained at T = 0. When temperature increases, the
tetragonal deformation varies with T and a purely electronic
model cannot be applied, see the Appendix.
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The model parameter values were fitted to reproduce
the available experimental observations. We used an effec-
tive hopping integral t = t2

pd/� = 0.5 eV (for CT energy
� = 5.5 eV [36] this corresponds to tpd = 1.66 eV, reasonably
close to the value 1.5 eV used before [16]). The temperature of
the structural transition TOO is only a fraction of the orbital
exchange interaction [37] and alone would not explain the
high value of TOO [16,21–23]. Thus we included the JT
effective parameter κ which was chosen at 4 meV (this value
is lower than that used before [18] as a consequence of the
increased values of the hopping parameters tγ and enhanced
superexchange). At the end we used Ez = 300 meV, in line
with our external quantum chemical calculations (14), see
Sec. III. Other physical parameters were the same as deduced
for the cubic model, see Table I.

The obtained results are remarkably satisfactory—they
reproduce all experimental data with reasonable accuracy.
The orbital mixing angle ϑ (1) found for the tetragonal
structure is equal to 106◦ and stays within excellent agreement
with the experimental value 108◦. This agreement could be
achieved mainly due to finite tetragonal eg orbital splitting.
The estimated value Ez = 300 meV (14) fits perfectly.

Also the predicted values of the spin exchange constants
Jab = −1.7 meV and Jc = +0.8 meV (both at T = 0) are
reasonably close to the experimental values −1.7 and 1.2 meV
[38]. The results depend strongly on the introduced renor-
malization of the tpd hopping integral (22) that gives rise
to immense Jab and Jc renormalization factors (−29% and
51%, respectively). Without them the |Jab|/Jc ratio would be
incorrect. Although the values fit reasonably well, they are nu-
merically uncertain as they are an algebraic sum of a few big (up
to 9 meV) contributions of opposite sign. (The spin exchange
constants consist of a strong FM superexchange term for the
lowest energy 6A1 excitation and several smaller AF terms.)

B. Discussion

As one may expect that the tetragonal crystal field Ez (13)
is the most important correction to introduce, we tentatively
investigated it at first as if it was the only needed correction (and
neglected the other two proposed later). Within this approach,
the discussed model was essentially the same as in Ref. [16]. At
this stage we adopted, as a reference starting point, the cubic
model parameter values from our earlier work [18] that was
devoted to the (implicitly) cubic model. The phase diagram was
examined against the eg orbital splitting, i.e., tetragonal crystal
field Ez, see Fig. 1. We have found that a too strong crystal field
(greater than 0.2 eV) could have destabilized the observed
A-AF state. This transition bears great resemblance to the
transition between A-AF phase and G-AFx phase described
in Ref. [16]. The only difference is that the G-AF phase with
adjusted orbitals arises in addition between the two phases (for
very tiny range of Ez).

Next the dependence between orbital mixing angle and the
tetragonal crystal field magnitude was plotted. As expected, the
tetragonal crystal field enhances the amplitude of the |x2 − y2〉
orbital state (the |3z2 − r2〉 counterpart contributes mainly to
excited states at both sublattices). We carried out indepen-
dent quantum chemical calculations to evaluate the value of
Ez = 300 meV (14) and an enhanced value of t = 0.5 eV
instead of t = 0.37 eV, see Table I. We conclude that the entire

picture is consistent (and more realistic than the one offered
by the implicitly cubic model). Thus we suggest that it may be
used as a starting point to include finer corrections (considering
directional renormalization).

Then, to establish an even more reliable Hamiltonian, we
investigated the origin of superexchange terms. Improvements
include the directional dependence of the hopping integral tpd

values as well as the excitation energies of virtual charge ex-
cited states. The directional deviations of the values introduce
directional renormalization factors of Hamiltonian terms that
extend the cubic Hamiltonian analyzed earlier. We employed
chemical models to evaluate the renormalization factors in
an approximate way using first-principle methods. The raw,
classical calculations suggest that the changes of excitations
energies are small — only up to a few percent — and may be
neglected on the presented qualitative level of theory.

On the other hand, the anisotropy of hopping integrals
(22) in the tetragonal structure is considerable. We found the
following tpd values: 2.11 eV for the cubic geometry and
tpd � 2.0 eV or tpd � 2.35 eV for tetragonal geometry (de-
pending on the bond direction), see Eqs. (22). The anisotropy
of tpd is enhanced by a factor of 2 in the Mn-Mn effective
hopping, see Eq. (19). Note that the values of tpd are here
somewhat larger than those used earlier (1.5 eV in Ref. [16]).
The increase of tpd may be rationalized by the fact that Mn-O
bonds in our conceived tetragonal model are shorter than in
the real crystal (the Mn-O-Mn bridges bend as described in
the first paragraph of this section). For the real Mn-O bond
lengths, obtained tpd values would be smaller.

VI. SUMMARY

In this work we analyzed diverse physical aspects that
emerge due to the nonequivalence of all three crystallographic
directions in the experimental crystal structure of LaMnO3. In
order to make the analysis conclusive the conceived tetragonal
LaMnO3 crystal model was introduced and investigated. We
demonstrated that it offers a better overall description of
the ground state in comparison with the cubic model used
earlier. Despite apparent improvements, the introduced model
adopts complicated structural effects only partially. In fact,
the real LaMnO3 crystal is nontetragonal due to additional
MnO6-octahedra tilts. The bridging oxygen atoms do not
lie precisely on the line segments spanning the bridged
manganese ion pairs—the oxygen atoms are translated aside
the segments. The Mn-O-Mn bridges bend so that the Mn-O
bonds are less strained. We believe that the corrections to the
crystal electronic structure that stem from the tilts are of less
importance and their qualitative description goes beyond the
scope of this work.

Further support for the tetragonal model introduced here
follows from its comparison with experiment, both at T = 0
and at finite temperature. The predicted electronic ground
state was investigated in terms of the observables that may
be compared with experiment: the spin exchange constants
and the orbital mixing angle. We found excellent agreement
with the experimental data when the Coulomb interaction
parameters of Table I are used, but we had to adopt t = 0.5 eV
and κ = 4 meV. This agreement certainly appears very
encouraging as both the orbital angle and the exchange con-
stants are well reproduced, in contrast to the earlier studies
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[6,18]. Indeed, such a satisfactory scenario could not be ob-
tained without the described directional renormalizations of tpd

which directly influence the Jc/Jab ratio. At finite temperature
we established a tentative link between structural deformation
and the orbital order parameter. Using the tetragonal model
Hamiltonian we predicted temperatures of spin (magnetic)
and orbital phase transitions, see the Appendix. We observe
no changes of transition temperatures due to the directional
corrections, however the critical exponent for the orbital phase
transition is modified as the tetragonal distortion is reduced
together with orbital order.

Summarizing, we established the tetragonal model of
LaMnO3 by evaluating the corrections necessary to improve
the model (7) derived initially for the perovskite structure.
We conclude that for LaMnO3 at least two physical effects
connected with the inequality of Mn-O-Mn bridge distances
are important and have to be included when carrying out
quantitative calculations: (i) the tetragonal crystal field Ez

(14) and (ii) direction-dependent renormalization of p-d hy-
bridization tpd (22). The first one is necessary to obtain the
experimentally observed form of the occupied eg orbitals in the
ground state, i.e., the correct value of the orbital mixing angle
(1) for the occupied states. The second one is responsible for
the anisotropy of the dominating eg part of superexchange and
is crucial to reproduce the observed ratio of spin exchange con-
stants Jc/Jab. These effects are far stronger than the systematic
corrections beyond the simplest on-site mean field described in
our previous work [18]. We suggest that similar modifications
of the ground state may be found in other correlated insulators
when the present procedure was repeated for realistic crystal
structure of similar transition metal compounds, for instance
for KCuF3 (although some technical problems could occur).
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APPENDIX: TETRAGONAL MODEL AT FINITE
TEMPERATURE

The influence of renormalized parameters on (spin and
orbital) transition temperatures is of particular interest. To
analyze transition temperatures, on-site MF calculations were
performed at finite temperature. We emphasize that as tem-
perature increases the tetragonal deformation decreases, and
starting from the orbital transition temperature TOO the orbital
order disappears [39] and the cubic model is valid again.
Therefore the thermal dependence of deformation magnitude
has to be included when performing on-site MF calculations
at finite temperature.

The proposed model (7) is purely electronic and the struc-
tural deformation magnitude is one of its external parameters.
The values of all the parameters, as well as their temperature
dependence, have to be introduced as input. However, it is
misleading to simply use a fixed function of temperature
that describes the deformation, as the electronic state and
crystal geometry are strictly interrelated. For instance, the
calculations have to respect the physical requirement that the

FIG. 3. Comparison of thermal dependencies of calculated orbital
order parameter r(T ) (blue solid curve for tetragonal model and blue
dashed curve for cubic model) with experimental data of tetragonal
deformation magnitude (red points). The experimental data are from
Ref. [26].

orbital order phase transition and structural phase transition
take place simultaneously. To assure the consistency (between
electronic and structural degrees of freedom) we use a strategy
of dynamical updating of deformation magnitude as a function
of electronic state. Although there is no direct way to gain
information about the unit cell parameters from an electronic
state we propose to do it straightforwardly. We postulate that
the deformation is proportional to the on-site orbital order
parameter r(T ). Hence we arrive at the heuristic equations:

Ez(T ) = r(T )Ez(0), (A1)

tpd,γ (dγ ,T ) = t�pd + r(T )[tpd,γ (dγ ,0) − t�pd ], (A2)

where t�pd denotes the reference value for a cubic crystal. Our
strategy may be verified a posteriori by a comparison of the
obtained functional dependence of crystal deformation with
available crystallographic data.

The tetragonal model gives in mean field approximation
the following transition temperatures: 160 K for the magnetic
transition and 1615 K for the simultaneous orbital/structural
transition. As the experimental values are equal to 140 and
750 K the theory overestimates them by 115% and 215%.
Indeed, one may expect enormous overestimation due to crude
on-site MF approximation, and the overestimation factors up
to 200% for the orbital pseudospin τ = 1/2 are acceptable.

Finally, the heuristic assumption about the form of the
interrelation between the electronic state and the structural
deformation magnitude should be checked. We compare the
shape of the temperature dependence of the measured deforma-
tion magnitude and the orbital order parameter r(T ) extracted
from the theory. In order to compare the shape, both functions
are expressed in terms of the reduced temperature T/TOO,
where TOO is the corresponding orbital transition temperature
(obtained within the present theory), see Fig. 3. Both curves
are qualitatively similar and the agreement is fair.

The curve calculated for the tetragonal model fits better
than the one for the cubic model in the low-to-intermediate
temperature sector as it bends much stronger for
0.3 < T/TOO < 0.7. However, the curve for the cubic
model offers a better approximation for the critical exponent
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β. This seems to be a consequence of the temperature
dependence of tetragonal distortion which modifies the orbital
transition. We also note that remarkably fast decrease of the
tetragonal deformation for T/TOO < 0.4 cannot be reproduced

in the electronic model—it may be expected that acoustic
phonons are of importance in this regime and the deformation
decreases faster than predicted in mean field theory. This
question remains open for future studies.
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