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Modulated magnetic structure of Fe3PO7 as seen by 57Fe Mössbauer spectroscopy
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The paper reports results of the 57Fe Mössbauer measurements on an Fe3PO4O3 powder sample recorded at
various temperatures, including the point of magnetic phase transition TN ≈ 163 K. The spectra measured above
TN consist of a quadrupole doublet with high quadrupole splitting of �300 K ≈ 1.10 mm/s, emphasizing that Fe3+

ions are located in crystal positions with a strong electric-field gradient (EFG). To predict the sign and orientation
of the main components of the EFG tensor, we calculated the EFG using the density-functional-theory approach.
In the temperature range T < TN, the experimental spectra were fitted assuming that the electric hyperfine
interactions are modulated when the Fe3+ spin (S) rotates with respect to the EFG axis, and with the emergence
of spatial anisotropy of the hyperfine field Hhf ∝ Ã · S at 57Fe nuclei. These data were analyzed to estimate the
components of the anisotropic hyperfine coupling tensor ( Ã). The large anharmonicity parameter, m ≈ 0.94, of
the spiral spin structure results from easy-axis anisotropy in the plane of the iron spin rotation. The temperature
evolution of the hyperfine field Hhf (T ) was described by the Bean-Rodbell model, which takes into account that
the exchange magnetic interactions are a strong function of the lattice spacing. The obtained Mössbauer data
are in qualitative agreement with previous neutron-diffraction data for a modulated helical magnetic structure in
strongly frustrated Fe3PO4O3.
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I. INTRODUCTION

The Fe3PO4O3 (or Fe3PO7) phosphate, known in the litera-
ture as the mineral grattarolaite [1], forms a noncentrosym-
metric crystal lattice consisting of triangular units (Fe3+)3,
which are coplanar with the hexagonal (ab) planes. The local
coordination of Fe3+ ions is a distorted trigonal bipyramid
(FeO5) cluster. These clusters are arranged in triangular sub-
units linked to one face within the iron triangle. Below TN =
163 K, previous magnetic and thermodynamic measurements
[2] revealed very strong magnetic Fe3+ coupling (�CW ∼
−1000 K) with frustration parameter, |�CW|/TN > 6, indicat-
ing significant frustration of the antiferromagnetic interactions.
According to the recent powder neutron-diffraction data [2],
the strong frustration induces an ordered helical incommensu-
rate structure with the helical axis in the hexagonal (ab) plane

and a modulation wave vector of modulus |δ| = 0.073 Å
−1

.
It was shown that the wave vector kh = (δa,δb,1.5) for the
modulation does not change as a function of temperature. There
are two types of near-neighbor magnetic exchange interactions
(Fig. 1): the nearest-neighbor J1 exchange (z1 = 2) within the
triangle (Fe)3, and the J2 exchange (z2 = 4) coupling trigonal
units in different c-axis layers. According to [2], the observed
commensurate antiferromagnetic order along the c axis implies
that the J2 exchange is dominant, and the helical modulation
within the (ab) plane arises as a compromise for the competing
J1-J2 interactions.

One of the intriguing features of the magnetic structure
in Fe3PO4O3 is the needlelike domains [2]. The small in-
plane correlation length (∼70 Å) persisting down to the lowest
temperatures (T � TN) blocks of long-range order of the
helical magnetic structure. It was assumed that the appearance
of domain walls in the structure is a result of the frustrated

J1 interactions within triangular (Fe)3 units [2]. However, the
mechanism for stabilization of domains in the antiferromag-
netic phase is not well understood. Moreover, because of the
high concentration of disordered domains, neutron diffraction
on the powder does not allow us to determine uniquely the
orientation of the helix axis within the (ab) plane.

In this work, we present the results of a detailed Mössbauer
study of Fe3PO4O3 in a wide temperature range, including
magnetic phase transitions. Since previous 57Fe Mössbauer
data were reported only above TN [3,4], we performed mea-
surements down to 15 K in order to complement the study of
the unusual magnetic structure of this triangle-based material.
In the range T < TN, the spectra are analyzed assuming a
space-modulated helical magnetic structure proposed in [2].
Such an approach allows us to reproduce, from experimental
spectra, the profile of the spatial anisotropy of the hyperfine
field, Hhf , and the large easy-axis anisotropy in the plane of
the iron spin rotation. We carried out a detailed analysis of the
temperature dependences of hyperfine parameters in light of
the peculiarities of the electronic and magnetic states of the
iron ions in Fe3PO4O3.

II. EXPERIMENT

The powder Fe3PO4O3 sample was prepared by a two-step
solid-state reaction. First, we prepared iron phosphate FePO4

by mixing the stoichiometric amounts of FeC2O4 · 2H2O and
NH4H2PO4, and then two-step annealing was performed at
350 °C for 12 h and at 620 °C for 12 h in air. Second, we
mixed stoichiometric amounts of Fe2O3 and FePO4 powders
and annealed at 950 ◦C for 12 h, and finally we annealed several
times at 1075 ◦C for 12 h.
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FIG. 1. Schematic of the magnetic surrounding of Fe3+ in Fe3PO7

[exchange interactions and integrals within (J1) and between (J2) the
triangles (Fe)3 along the c axis are shown]. Schematic representation
of different contributions (hST and hdir) to the Hhf value for the
phosphate.

X-ray powder diffraction (XRPD) data were collected at
room temperature (RT) on a RIGAKU MiniFlex600 diffrac-
tometer using Cu Kα radiation (a 2θ range of 10◦−80◦,
a step width of 0.02◦, and a scan speed of 1 deg/min).
The XRPD patterns of the synthesized samples showed the
formation of the unique rhombohedral Fe3PO4O3 phase (space
group R3m). The refined lattice parameters of Fe3PO4O3

in hexagonal reference [a = 8.006(1) Å and c = 6.863(4) Å]
are in good agreement with the literature data [3]. In what
follows, the rhombohedral Fe3PO4O3 phase will be referred to
as “Fe3PO7”.

Mössbauer experiments were performed in transmission
geometry with a 1500 MBq γ -source of 57Co(Rh) mounted on
a conventional constant acceleration drive. The spectra were
fitted using the SPECTRRELAX program [5]. The isomer shift
values are reffered to that of α-Fe at 300 K.

Density-functional-theory (DFT) calculations [6] of
quadrupole splitting were used to study the electronic state and
crystal environment of iron in Fe3PO7. DFT calculations were
made using the ORCA program [7]. The electric-field gradient
was calculated for the cluster, which contains 40 atoms using
the density B3LYP [8] functional available in the ORCA [7]
package. The def2-TZVPP [9] basis for EFG tensor calculation
was selected.

III. RESULTS AND DISCUSSIONS

The 57Fe Mössbauer spectra of Fe3PO4O3 measured in
the paramagnetic temperature range (T > TN) [Fig. 2(a)]
consist of a single quadrupole doublet with narrow
[W = 0.31(1) mm/s] and symmetrical lines, emphasizing the
uniformity of structural positions of iron atoms in the phos-
phate [3]. The value of the isomer shift δ300 K = 0.33(1) mm/s
corresponds to high-spin ions Fe3+ (d5, S = 5/2) located in
oxygen (FeOn) polyhedra with a coordination number n > 4
[10]. It is interesting that the observed δ value is closer
to the typical values of isomer shifts (δ300 K ∼ 0.36 mm/s
[10]) for Fe3+ ions in an octahedral oxygen surrounding
where, in contrast to trigonal bipyramidal (FeO5) polyhedra

FIG. 2. (a) 57Fe Mössbauer spectrum of Fe3PO7 recorded at T =
298 K (T � TN) (the solid red line is the result of a simulation of the
experimental spectra). (b) Schematic view of the local crystal structure
of Fe3PO7 (in hexagonal base) and directions of the principal EFG
{Vii}i=x,y,z axes [{α,β,γ } are the Euler angles, describing the relation
between the principal (XYZ) axes of the EFG tensor and the rotation
plane].

(δ300 K ∼ 0.27 mm/s [10]), the Fe-O bonds are considered to
be almost entirely ionic. Apparently, this coincidence is due
to the fact that the Fe ← O transfer of the electron density in
trigonal bipyramidal (FeO5) polyhedra induces a simultaneous
increase in the 4s and 3d orbital populations of iron ions,
which affects the value of the isomer shift in the opposite
directions [10,11]. Mutual compensation of these two effects
may render the resulting isomer shift “less sensitive” to specific
chemical bonds of iron in oxides, in contrast to quadrupole
splitting, which allows us to estimate the symmetry of the local
surrounding and spin state of Fe3+ ions.

The high quadrupole splitting of the doublet �300 K =
1.10(1) mm/s shows that the 57Fe nuclei are located in crystal
positions with a strong electric-field gradient (EFG). As the
EFG reflects the asphericity of the charge-density distribution
near the probe 57Fe nucleus, it is directly related to the electron-
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density distribution and the symmetry in the nearest environ-
ment of the chemical bond. To get a better understanding of the
charge redistribution effect in the Fe3PO7 lattice, we calculated
the EFG using the DFT method [6]. The components (Vij ) of
the EFG can be calculated directly from the electronic and
nuclear charge distribution by [7]

Vij = −
∑
kl

Pkl〈φk|
(

3rirj − δij r
2

r5

)
|φl〉

+
∑
k(t)

Zt

(
3ξkiξkj − δijR

2
k

R5
k

)
, (1)

where r is the electronic position relative to the 57Fe nucleus,
Rk is the distance between 57Fe and the nucleus “t ,” ri(j )

and ξk,i(j ) (i,j = x,y,z) are the projections of the vectors r
and Rk , respectively, φk(l) are the basis single-electron wave
functions (e.g., “atomic” orbitals), and {Pkl} are the elements
of the density matrices [7]. The first contribution in (1) is
the asymmetric distribution of the valence electrons (V el) of
the iron ion under consideration. The second is the lattice
contribution (V lat) arising from the point charges (Zt ) in
the surroundings. The calculated V el and V lat values for the
principal component VZZ (where |VZZ| � |VYY | � |VXX|) are
V el

ZZ = −9.40 × 1021 V/m2 and V lat
ZZ = −3.05 × 1021 V/m2.

Obviously, the total VZZ value is dominated by the valence
electrons. To a good approximation, the valence contribution
is determined by the anisotropy �np and �nd of the p and d

electrons [12]:

V el
ZZ = a�np + b�nd = a

(
1
2

[
npx

+ npy

] − npz

)
+ b

(
ndx2−y2 + ndxy

− 1
2

[
ndxz

+ ndyz

] − ndz2

)
, (2)

where a ∝ 〈r−3〉p and b ∝ 〈r−3〉d are the average values of the
inverse radial functions of thep andd electrons. Using the Mul-
liken population analysis [13], we calculated the corresponding
deviations �np = 0.018 and �nd = −0.035 (see Table S1 of
the Supplemental Material [27]). According to this evaluation,
the anisotropy �nd is much more pronounced than that of
�np, indicating a stronger anisotropic spatial distribution
of d electrons compared with that of the p electrons. The
negative V el

ZZ,3d ∝ �nd value shows that excess charges are
accumulated in the z direction, and the contributions from dxz,
dyz, and dz2 orbitals dominate over those of dx2−y2 and dxy

orbitals oriented within the xy plane. Such a redistribution of
d electrons agrees qualitatively with the local symmetry of the
distorted trigonal bipyramid (FeO5) clusters, where the apical
Fe-O bonds are more elongated than the equatorial ones. It
should be noted that although �nd is significantly greater than
�np, the much larger expectation value 〈1/r3〉np of the np

radial functions causes the large contributions of the core np

electrons (n = 1–3) to the EFG.
Using the calculated EFG components VXX = 2.154 ×

1021 V/m2, VYY = 4.638 × 1021 V/m2, VZZ = −6.792 ×
1021 V/m2, and the asymmetry parameter η = 0.366 defined
as the ratio (VXX–VYY )/VZZ , we evaluated the quadrupole
splitting � = eQVZZ/2(1 + η2/3)1/2 (taking the value of Q =
+0.16b for the nuclear quadrupole moment of 57Fe [11]). A
reasonable agreement between the experimental (1.01 mm/s)
and theoretical (1.159 mm/s) values of � was obtained. The

component VZZ was found to be negative as well, indicating
that the quadrupole coupling constant eQVZZ is negative
(for the positive Q). The calculations revealed that the VZZ

component makes an angle of β ≈ 40◦ with the c axis in a
hexagonal coordinate system [Fig. 2(b)] and a positive VYY

component perpendicular to the c axis, thus VYY is lying in the
plane (ab) at about 60◦ from the b axis.

Below TN ≈ 163 K, a complex Zeeman magnetic structure
appears in the Mössbauer spectra (Fig. 3). The observed
inhomogeneous line broadenings of the spectra reflect a high
degree of correlation between the values of the magnetic
hyperfine field Hhf at 57Fe nuclei and a quadrupole shift
(εQ) of the Zeeman components. It should be noted that a
similar hyperfine magnetic structure was observed for the
iron oxides BiFeO3 [14,15], AgFeO2 [16], and FeVO4 [17]
possessing a noncollinear magnetic structure. To describe the
inhomogeneous line broadening, we took into account the
dependence of the quadrupole shift εQ on the polar (θ ) and
azimuthal (φ) angles of the magnetic hyperfine field Hhf with
respect to the principal axes of the EFG tensor. The goodness
of fit has been significantly improved using the first (ε(1)

Q ) and

second (ε(2)
Q ) order of perturbation theory [18]:

ε
(1)
Q = (−1)|mI|+1/2( 1

8eQVZZ

)
[3cos2θ − 1 + ηsin2θ cos 2φ]

ε
(2)
Q = (−1)|mI|+1/2

(
1

4
√

2
eQVZZ

)2

gexμnHhf

(
[6 − 4η cos 2φ]cos2θ

+ ξ
[

3
2 sin2θ + η(1 + cos2θ ) cos 2φ

])
sin2θ, (3)

where mI are magnetic quantum numbers; eQVZZ is the
quadrupole splitting constant, which equals that in the para-
magnetic state (T > TN) if there is no distortion of the crystal
lattice at TN, ξ = ±1/2 is a coefficient depending on the
specific line in the Zeeman structure, μn is the nuclear Bohr
magneton, and gex is the gyromagnetic ratio of the excited
state. In our model, we suggested also a spatial anisotropy of
the hyperfine field Hhf ∝ Ã · S at the 57Fe nuclei, which can
be described as angular dependency of the hyperfine coupling
tensor ( Ã) in the system defined by the principal axes of the
EFG tensor [Fig. 2(b)]. For systems in which the anisotropy
is not too large, in place of the actual field Hhf , we use the
component Ã · S parallel to the spin direction h‖ ≡ Hhf (‖ S).
For the general case, Axx �= Ayy �= Azz, the expression for h‖
is written in the following form:

h||/S = Ãis + 1/6Ãan(3 cos2θ − 1) + ηmsin2θ · cos2φ, (4)

where Ãis = 1/3[Axx + Ayy + Azz] and Ãan =
[2Azz − Axx − Ayy] are isotropic and anisotropic parts
of the hyperfine coupling tensor Ã, respectively, and
ηm = 1/2[Axx − Ayy] is the magnetic asymmetry parameter.
Both angles θ and φ can be expressed by the angle ϑ ,
describing the position of the magnetic moment vector μFe on
the rotation plane, and the Euler angles (αβγ ), describing the
relation between the principal (XYZ) axes of the EFG tensor
and the rotation plane [Fig. 2(b)]. Therefore, the experimental
spectrum is approximated as a superposition of the Zeeman
patterns, and each of them is characterized by a different
value of the rotation angle ϑ , which varies continuously in
the 0 � ϑ � 2π interval. The fitting was done using formulas
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FIG. 3. 57Fe Mössbauer spectra (experimental hollow dots) of
Fe3PO7 recorded at the indicated temperatures below TN. Solid red
lines are a simulation of the experimental spectra as described in the
text.

(1) and (2) in different iron sites. Finally, to take into account
the anharmonicity (bunching) of the spatial distribution of
the magnetic moments of Fe3+, a Jacobian elliptic function

FIG. 4. The resulting χ 2 values for the fits of the spectra as a
function of the variation in the angle (φ) between the helical plane
direction n and the projection of the principal component VZZ on the
(ab) plane (see the inset). The φ angle is directly related to Euler angle
φ = cos−1{cos β/0.643}.

[16,19] was used:

cosϑ(x) = sn([±4 K(m)/λ]x,m), (5)

where λ is the period of the helicoid, K(m) is the complete
elliptic integral of the first kind, and m is the anharmonicity
parameter related to the distortion (anharmonicity) of the spiral
structure [16].

According to the helicoidal magnetic structure of Fe3PO7

[2], the magnetic moments μFe are constant in magnitude
and rotate in the plane containing the hexagonal c axis.
However, using only the neutron powder diffraction data, the
determination of the helical plane direction (n) in the (ab) plane
is difficult due to domain and powder averaging [2]. Therefore,
applying the above fitting procedure, we systematically inves-
tigated a range of the angle β (50◦ � β � 90◦) by taking two
other Euler angles (α,γ ) as adjustable parameters. In additional
to the usual variables (δ,eQVZZ), assumed to be equal for all
Zeeman subspectra, the principal components {Axx,Ayy,Azz}
of the tensor Ã and the anharmonicity parameter m were
used as adjustable parameters. The value of the asymmetry
parameter η = 0.366 evaluated from the point-charge calcu-
lations was fixed during the fitting processes. The resulting
χ2 values for the fits are shown in Fig. 4 as a function of the
variation in the angle φ between the helical plane direction n
and the projection of the principal component VZZ on the (ab)
plane (see the inset of Fig. 4). This angle is directly related to
the Euler angle φ = cos−1{cos β/0.643} in accordance with
the directions of the EFG principal components calculated
previously. It is clearly visible that the best fit is obtained when
the helical plane direction n is oriented in the (ab) plane at
φ = 55◦–65◦ (or about 30◦ from the a axis). This fit to the
15 K spectrum, obtained in this way, is shown in Fig. 3. Then,
we tentatively fitted the spectrum assuming that the n direction
is perpendicular to the hexagonal (ab) plane that corresponds
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to the Euler angle β ≈ 50◦ [Fig. 2(b)]. However, in this case
the fit was of much poorer quality (χ2 ≈ 5.64) than previous
ones, and this supposition should be ruled out. At this point we
can note that the analysis of the complex Mössbauer spectra
at T � TN not only confirms several features of the helicoidal
magnetic structure proposed in [2], but it also allows us to
refine the helical plane direction, which cannot be determined
from neutron powder diffraction data.

The hyperfine parameters deduced from the spectrum at
T = 15 K are δ = 0.43(1) mm/s, eQVZZ = −2.28(2) mm/s,
and W = 0.32(1) mm/s. The fitted quadrupole coupling con-
stant eQVZZ has the same order of magnitude as the double
quadrupole splitting (2�170 K ≈ 2.23 mm/s) measured just
above TN ≈ 160 K. The inequality of the principal compo-
nents AxxS = 458(1) kOe, AyyS = 465(1) kOe, and AzzS =
472.4(3) kOe reflect the spatial anisotropy of the hyperfine
field. Using these values, we traced a polar diagram of the
spatial anisotropy in the system defined by the principal axes
of the rhombic (η �= 0) EFG tensor [Fig. 5(a)]. The projections
of the Hhf vector on the helical plane generate an elliptical-like
profile with the maximal Hα ≈ 469.3(5) kOe and minimal
Hβ ≈ 472.1(5) kOe components [Fig. 5(b)]. The diagonal
components (Aii) of the hyperfine tensor Ã are composed of
three contributions:

Aii ≈ PFe

[
−4π

3
ρ(0) + 1

2
〈r−3〉d (gii − 2)

+
∑
μν

P σ
μν〈φμ|

(
3r2

i − r2

r5

)
|φν〉

]
, (6)

where PFe = gegNβeβN is the proportionality factor, Pσ
μν is

the spin-density matrix, r is a radius vector that points from
the nucleus to the electron, ρ(0) is the spin density at the iron
nucleus, {gii}i=x,y,z are the components of the effective g̃eff

tensor, and {φk,φl, . . .} is the set of basis 3d functions. The
first term in Eq. (6) is the isotropic Fermi contact contribution,
which determines the sign of the hyperfine tensor.

The anisotropy arises from the second and third terms in
Eq. (6) corresponding to the orbital ( Ã

orb
) and the electronic

dipolar ( Ã
dip

) components, respectively. The orbital term Ã
orb

corresponds to the magnetic field produced at the nucleus
due to orbital currents. In general, the low-symmetry crystal
field quenches the orbital angular moment, but the spin-orbit
coupling restores it to an amount of Li ∝ (gii − 2)S [7].
Thus, the anisotropic orbital term arises from the anisotropy
of the g̃eff tensor, which differs very little from ∼2 for the
high-spin Fe3+ ions with an A1g orbital singlet ground state.

The dipolar term Ã
dip

does not vanish only when the spin
density is aspherical. For isolated high-spin Fe3+ ions with
a spherical 3d electron distribution, this term becomes zero.
However, covalent effects due to the anion-cation Fe3+-O2− →
Fe2+-O−(L− ) charge transfer in the low-symmetry distorted

FeOn polyhedra produce interconfigurational mixing effects,
particularly mixing of the (3d5)6A1g term with the orbitally
active (d6L− ) 6T1g/

6T2g terms for the charge-transfer config-

uration d6L− , where L− denotes the oxygen hole. As a result,

we arrive at nonzero Ã
dip

. To verify this assumption, we

FIG. 5. (a) Surface plot of the Ã tensor relative to the principal
EFG {Vii}i=x,y,z axes, and (b) the ellipticlike contour of this function
in the rotation plane of magnetic moments of iron ions. Distribution
of Hhf ∝ Ã · S was calculated using formula (4) in 250 different
iron sites (represented schematically by blue arrows) and taking the
anharmonicity parameter m ≈ 0.94 [Hα and Hβ denote the maximal
(Hα) and minimal (Hβ ) anisotropic hyperfine-field components]. The
red dashed line corresponds to the projection of the dipolar field hD(ϑ)
[see Eq. (8)] on the spin rotation plane.

used the Mulliken populations (n↑(↓)
3d ) of the spin-polarized

3d orbitals (see Table S1 of the Supplemental Material [27])
obtained from the DFT calculations. Substituting these values
into the expressions for the principal A

dip
ii [n↑(↓)

3d ] components
[Eq. (S3) of the Supplemental Material], we evaluated the
theoretical values A

dip
xx S = −0.53 kOe, A

dip
yy S = −0.04 kOe,

and A
dip
zz S = 0.57 kOe, the difference between which is sig-

nificantly less than the corresponding experimental values.
The above estimates show that the observed anisotropy of the
hyperfine field in our experiments at the 57Fe nuclei is not
related to the intrinsic features of an iron electronic state in
Fe3PO7 (nonquenched orbital contribution, reduced spin state,
anisotropic charge-transfer, etc.) as was assumed previously in
Ref. [2].

Another “external” source of an anisotropy of the local field
Hhf at the nucleus of the high-spin Fe3+ ions is a dipole field
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Ã
D

induced by the neighboring magnetic ions:

AD
ii = μ0

4π

∑
k(t)

(
3ξ 2

ik − R2
k

)
R5

k

μik, (7)

where k(t) is the summarized index on all positions of the t ion,
ξik = {xk,yk,zk} and Rk are Descartes coordinates (refer to the
principal EFG axes frame) and the radius vector of the t ion
in position k(t), and μik is the projection of the iron magnetic
moment. Substituting in Eq. (4) the coordinates (ξik) of the iron
ions within the triangle plane and in different c-axis layers,
taken from [2], the values of dipole contributions were evalu-
ated: AD

xx = −2.1 kOe, AD
yy = −4.6 kOe, and AD

zz = 6.7 kOe.

Using these values, we calculated the anisotropic part of
the hyperfine coupling tensor AD

an = 20 kOe associated with
the dipole field, which is close to the experimental value of
Ãan = 20.8(8) kOe from Eq. (4). We thus conclude that the
main contribution to the observed spatial anisotropy of Hhf is
due to the anisotropy of the dipole field Ã

D
induced by the

neighboring iron ions.
Since the large isotropic contribution to the internal Hhf

field resulting from the Fermi contact interaction of the intrinsic
spin of the Fe3+ ion with ns electrons exceeds by two orders
of magnitude the anisotropic contribution, one may take into
account only the projections of the anisotropic fields (hD) on
the direction of the isotropic hyperfine field:

hD(ϑ) = μ0

4π

∑
k(t)

μk

(
3x ′2

k − r2
k

)
cos2ϑ + (

3y ′2
k − r2

k

)
sin2ϑ + x ′

ky
′
k cos ϑ sin ϑ

R5
k

, (8)

where ϑ is between the direction of Hhf and the local x ′ axis
oriented perpendicular to the hexagonal c axis, which is located
within the (x ′y ′) plane of spin rotation [Fig. 5(b)], and μ0 is
the permeability constant. Using the above expression (in the
coordinate system where the iron ion spin rotates), we plotted
a polar diagram hD(ϑ) [in Fig. 5(b)], which qualitatively
reproduces the distorted ellipticlike profile of the experimental
hyperfine field Hhf (ϑ). Notice that the axes Hα and Hβ of
the ellipse do not necessarily coincide with the principal axes
x ′ and y ′ of the Ã

dip
tensor oriented in the (x ′y ′) plane at

∼20◦ from the c(∼‖ y ′) axis [Fig. 5(b)]. Some deviations of
these profiles may be related with the small contribution of the
anisotropic field ∼( Ã

orb + Ã
dip

) · S due to the reduction of the
symmetry of the Fe3+ wave functions from cubic symmetry
into low-symmetry crystal field.

The use of the above model allowed us to satisfactorily
describe the entire series of experimental spectra measured
in the magnetic ordering temperature range 15 K � T < TN

(Fig. 3). We could not find any visible anomalies in the
temperature dependences of hyperfine parameters (Fig. 6). The
isomer shift δ(T ) gradually decreases in accordance with the
Debye approximation for the second-order Doppler shift [10]
[Fig. 6(a)]. The best fit for the effective Debye temperature
�D = 552(3) K is in good agreement with the corresponding
values for the Fe3+ ions in other iron oxides [11]. In the
same temperature range, the observed eQVZZ(T ) dependence
[inset of Fig. 6(a)] is mainly due to the temperature variation
of the lattice V lat(T ) contribution to the EFG, which can
be described using a semiempirical relation |eQVZZ(T )| =
A(1 − BT 3/2) with A = 2.277(9) mm/s and B = 5.8(8) ×
10−6 K−3/2.

Taking into account the pronounced temperature depen-
dence of the Fe3PO7 crystal parameters near TN [2], the
temperature dependence of the magnetic field Hhf (T ) =
S/3{Axx(T ) + Ayy(T ) + Azz(T )} can be analyzed using the
Bean-Rodbell (BR) model [20] rather than the normal Brillouin
function [Fig. 6(b)]. In this approximation [20], the exchange
magnetic interactions are considered to be a sufficiently strong
function of the lattice spacing, and the hyperfine field Hhf (T )

is expressed as

Hhf (T ) = Hhf (0)BS

[
3S

S + 1

σ (T )

τ

×
(

1 + 3

5

(2S + 1)4 − 1

2(S + 1)3S
ζσ 2(T )

)]
, (9)

where S = 5/2 is the total spin of the Fe3+ ions, σ (T ) is re-
duced hyperfine field Hhf (T )/Hhf (0), τ = T/TN is the reduced
temperature, Hhf (0) is the saturation hyperfine magnetic field,
and ζ is the fitting parameter, which involves the magnetostruc-
tural coupling coefficient. The value of this parameter controls
the order of the magnetic phase transition [20]. A reasonably
good fit to the BR model was obtained for a magnitude of
ζ = 0.53(1), which indicates a second-order phase transition.
We estimated the saturation field Hhf (0) = 461.5(4) kOe and
the point TN ≈ 168(1) K, which is close to the Néel point (∼
163 K) found from magnetic measurements [20]. This shows
that there are no electronic and structural transitions in the
whole magnetically ordered temperature range.

Alternatively, the temperature dependence of Hhf (T )
can be approximated using a power law Hhf (T ) =
Hhf (0)[1–(T/TN)α]β , where β is a critical exponent and α

is an empirical fitting parameter to describe the experimen-
tal data well below TN (T � TN). A reasonably good fit
[Fig. 6(b)] leads to H (0) = 473(2) kOe, TN = 165.4(8) K,
α = 1.5(1), and β = 0.24(1). The value of the critical ex-
ponent corresponds well to the theoretical value β th = 0.23
expected for a system with two-dimensional (2D) XY magnets
[21]. However, the origin of the critical parameter β in the
quasi-2D systems is far from trivial due to the competition
between several interactions, such as the magnetic coupling
between layers and the strength of the crystal field (single-ion
anisotropy), which can lead to a range of β values in the
range 0.20 � β � 0.36. Further experimental and theoretical
study is still required to reach a deeper understanding of the
critical dynamics and to give a more definitive assignment of
the universality class of this very interesting system.

In the temperature range near TN (T → TN), we observed
the rapid broadening of the Zeeman lines and then the
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FIG. 6. (a) Isomer shift δ(T ) as a function of the reduced temper-
ature (the red solid line corresponds to the Debye approximation for
the second-order Doppler shift), and quadrupole coupling constant
eQVZZ (inset) plotted vs temperature (the red solid line corresponds
to the fitting using the semiempirical relation; see the text). (b)
Temperature dependence of hyperfine magnetic field Hhf (T ). The
dark broken line shows the Brillouin function with S = 5/2; the blue
solid line corresponds to a fit using the Bean-Rodbell model; the
dashed-dotted line indicates the power-law fit model.

appearance of a paramagnetic quadrupole doublet whose
partial contribution increases sharply with temperature (Fig. 7).
The hyperfine parameters (δ,�) of the doublet correspond
well to those observed for the paramagnetic temperature
range. Such a spectral behavior is characteristic of isolated
superparamagnetic particles or nanosized magnetic domains
with the randomly flipping direction of the magnetization
under the influence of temperature. In the case of Fe3PO7, the
needlelike domains can block the long-range magnetic order
near the point TN, suggesting strong thermal spin fluctuations.
It should be noted that the description of the experimental
spectra was obtained by using anomalously high values of the
anharmonicity parameter m ≈ 0.94(1), which remains almost
constant in the range T < TN. We can speculate that the strong
anisotropy is also associated with the presence of the needlelike
domains. The best fit of the spectra is obtained when the easy
(bunching) axis is directed along the line of intersection of the
helical plane and the hexagonal (ab) plane [Fig. 2(b)]. It is
possible that the domain walls create local stresses in the (ab)
plane causing a nonuniform rotation of the iron spins.

FIG. 7. 57Fe Mössbauer spectra (experimental hollow dots) of
Fe3PO7 recorded near the Néel temperature (T → TN). Solid lines
are a simulation of the experimental spectra as the superposition of
magnetic (red line) and paramagnetic (blue line) subspectra.

Finally, we will comment on the lower value of the saturated
magnetic field Hhf (0) ≈ 462 kOe of Fe3PO7 in comparison to
the 540–568 kOe values for the high-spin ferric ions in other
3D oxide systems [22]. This reduction can be related to the
local magnetic surrounding of Fe3+ ions via the transferred
hyperfine field resulting from all the nearest ferric neighbors
along the c axis and within the (ab) plane. The experimental
hyperfine field Hhf is the vector sum of two main contributions:

Hhf = Hloc +
∑

n

Bn(〈Sn/S〉), (10)

where H loc = HF + Hcov is the local field that is the sum of the
free-ion field HF, produced by the Fermi contact interaction,
and the covalent contribution Hcov, arising from the covalent
transfer effects [23]. These two contributions are proportional
to the vector 〈S〉 directed along the thermally averaged 3d

spins. According to theoretical calculations [24,25], Hloc ≈
(490–500) kOe for Fe3+ ions in octahedral coordination, and
Hloc ≈ (410–420) kOe for Fe3+ ions located in a tetrahedral
oxygen surrounding. Unfortunately, we do not have any infor-
mation concerning Fe3+ in a trigonal bipyramid. The second
term in (10) is a contribution resulting from all single-bridged
nearest ferric neighbors “n,” each proportional to the spin 〈Sn〉
on the neighboring site, and Bn is a positive scalar parameter
depending on the superexchange iron-oxygen-iron bond angle
(ψ) and the direct iron-iron bond distance [23]:

Bn = {(
h(n)

σ − h(n)
π

)
cos2ψn + h(n)

π

}
ST + h

(n)
dir , (11)

where hσ and hπ parameters arise from the supertransferred
(ST) spin-polarization of iron s orbitals, caused by the ligand
p orbitals that have been unpaired by spin transfer, via σ

and π bonds, into unoccupied 3d orbitals on the neighboring
cations; hdir is the direct contribution arising from the overlap
distortions of iron s orbitals by 3d orbitals of the neighboring
ions. The calculations of Moskvin et al. [25] for ferrites
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RFeO3 have shown that |hσ | ≈ 10 kOe and |hπ | ≈ 1.6 kOe.
For the face-shared FeO5 pyramids, due to the compensation
effect of the weakened antiferromagnetic kinetic exchange
with the ferromagnetic potential s-d exchange [25], the direct
contribution |hdir| usually does not exceed 9–12 kOe [16].

Fe3PO7 exhibits noncollinear magnetic order, in which
among six iron neighbors of the central iron there are two
nearest neighbors with the same spin direction as the central ion
and coupled with this one through direct exchange interactions
(Fig. 1). The remaining four neighbors from triangular units
in different c-axis layers, connected with the central ion by
the supertransferred interactions Fe-O-Fe, have the opposite
spin direction. Substituting in Eq. (11) the values of the angle
ψ ≈ 125◦ [15] and parameters hσ = 10 kOe and hπ = 2 kOe
[25], we evaluated the positive supertransferred contribution
HST = 4 × BST ≈ 18 kOe from Fe3+ ions in triangular units
located in adjacent c-axis layers (a slight noncollinearity of
neighboring iron moments leads to an error of not more
than a few percent). This small positive contribution can be
largely compensated by the negative “direct” contribution
Hdir = −2 × hdir ≈ −(18–24) kOe from the two neighbors
with the same spin directions as the central iron ion, giving
a total contribution of zero to the Hhf field. As a result, the
reduced Hhf value for Fe3PO7 is presented as Hhf ≈ HF +
Hcov, where the large negative contribution Hcov = Hhf −
HF ≈ −168 kOe (we have chosen HF = 630 kOe [26]) arises
from the Fe3+-O2− → Fe2+-O−(L− ) charge transfer (where

L− denotes the oxygen hole). This conclusion agrees with

the previously proposed explanation for the reduced effective
moment per Fe3+ (μeff ∼ 4.2 μB) [2] in Fe3PO7, attributed to
the charge transfer in this insulating compound. Finally, the
charge transfer O2− → Fe3+ in the low-symmetry distorted
FeO5 polyhedra produces interconfigurational mixing effects,
particularly mixing of the 6A1g(d5) term with the orbitally
active (〈L〉 �= 0) 6T1g(d6L) term, inducing the single-ion
anisotropy for the charge-transfer configuration d6L [16].

We tried to fit the experimental Mössbauer spectra of
Fe3PO7 assuming an alternative conical spin structure pro-
posed in a previous neutron-diffraction study of polycrystalline
samples Fe3PO7 [2]. This structure is characterized by the
conical axis (n) directed along the crystal a axis (n ‖ a) and the
opening angle α ≈ 70◦ (see Fig. S2 of the Supplemental Mate-
rial [27]), which produces a good fit to the neutron-diffraction
pattern [2]. Figure S1 of the Supplemental Material [27] shows
the fitted spectra (recorded at T = 15 K) for different values of
the anisotropic hyperfine field Han(= AanS) and the opening
angle (α) (a detailed description is given in the Supplemental
Material [27]). As we can see from this figure, despite the
number of variable parameters, this model does not allow us to
account for the shape of the experimental spectra. Therefore,
the presented Mössbauer data allow us to give some preference

to the helicoidal phase-modulated spin structure. A similar
choice between the above two models is difficult to discern
from the neutron powder diffraction data [2].

IV. CONCLUSIONS

We have carried out detailed 57Fe Mössbauer measurements
on polycrystalline samples of Fe3PO7 that demonstrated the
effectiveness of the suggested approach to an analysis of the
complex hyperfine magnetic structure of the spectra measured
over a wide temperature range. The results presented above
not only confirm several features of the helicoidal magnetic
structure in Fe3PO7, but they also allow the helical plane
direction, which cannot be determined from neutron powder
diffraction data, to be refined. It has been shown that a good
fitting of the experimental spectra can be achieved assuming
that the electric hyperfine interactions are modulated when the
Fe3+ spin rotates with respect to the EFG axis, and with the
emergence of spatial anisotropy of the hyperfine field Hhf at
57Fe nuclei. The large anharmonicity parameter, m ≈ 0.94, of
the spiral spin structure resulting from easy-axis anisotropy
in the plane of the iron spin rotation can be related to the
needlelike domains within the hexagonal (ab) plane. The
Mössbauer spectra of Fe3PO7 cannot be described using an
alternative conical spin structure proposed in previous neutron-
diffraction studies. Analysis of the temperature dependence
Hhf (T ) with the Bean-Rodbell model leads to the structural
factor ζ ≈ 0.53, which suggests that the magnetic phase
transition is second-order in nature but with strong coupling
magnetic ordering to the lattice deformation. The lower value
of the saturated magnetic field Hhf (0) ≈ 462 kOe is mainly
related to the magnetic surrounding of Fe3+ ions via the super-
transferred hyperfine field and the large negative contribution
Hcov ≈ −168 kOe arising from the Fe3+-O2− → Fe2+-O−(L− )

charge transfer. The DFT calculations yield reliable charge
distribution to which the EFG is so sensitive. It was shown
that, in addition to the lattice contribution V lat , very large
weight has an electronic contribution V el arising from the
asymmetric distribution of the p core and 3d valence electrons.
From the calculated occupation number, the fluctuation of �nd

is more pronounced than that of �np, indicating a stronger
anisotropic spatial distribution of Fe3+ 3d electrons. It was
found that 3d electrons move from dx2−y2 and dxy orbitals
to dxz, dyz, and dzz orbitals, which correlates with the local
symmetry of the distorted trigonal bipyramid (FeO5) clusters.
Such electronic redistribution in the low-symmetry crystal field
may give the small anisotropic contribution ∼( Ã

orb + Ã
dip

) · S
in the hyperfine field Hhf at 57Fe nuclei. However, we have
shown that the main contribution to the observed anisotropy of
Hhf is due to the anisotropy of the dipole field Ã

D
induced by

the neighboring iron ions.
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