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The spin- 1
2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation,

which establishes a rigorous mapping equivalence with the effective spin- 1
2 Ising zigzag ladder. The investigated

model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states
with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a
competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding
spin- 1

2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-
neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or
without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg
spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring
insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the
specific heat displays temperature dependencies with either one or two separate round maxima.

DOI: 10.1103/PhysRevB.97.104407

I. INTRODUCTION

Crystalline magnetic materials with antiferromagnetic in-
teractions are said to be geometrically frustrated if an ele-
mentary unit cell of the underlying magnetic lattice involves
polygons with an odd number of spins [1–3]. The term
“frustration” describes a situation in which, in the ground state
of the corresponding classical spin system, not all pairwise
spin-spin interactions can be satisfied simultaneously [4,5].
As a result, the geometrically frustrated magnetic materials
exhibit at low enough temperatures a variety of fascinating
phenomena [6]. The geometric spin frustration arising from
the competition of antiferromagnetic interactions has been
studied comprehensively within the framework of classical
Ising spin systems, quantum Heisenberg spin systems, as well
as semiclassical Ising-Heisenberg spin systems [7–9]. It is
worthwhile to remark that the most common geometrically
frustrated spin systems involve antiferromagnetically coupled
spins situated on triangular cells. Among the most widely
studied frustrated spin systems of this type, one could mention
(i) one-dimensional lattices with the geometry of a diamond
chain, a sawtooth chain, a zigzag ladder, an orthogonal-dimer
chain; (ii) two-dimensional lattices such as a triangular lattice,
a kagomé lattice, or a Shastry-Sutherland lattice; or (iii) three-
dimensional lattices such as a pyrochlore lattice [7–9].

Contrary to this, much less attention has been paid so far
to geometrically frustrated antiferromagnetic spin systems,
which involve antiferromagnetically coupled spins situated on
a pentagon as another frustrated polygon with an odd number
of spins in an elementary unit cell. Such spins are present,
for instance, in a discrete pentacopper cluster Cu5 [10] or

*katarina.karlova@student.upjs.sk

a giant Keplerate molecule Fe30 with the shape of an icosi-
dodecahedron [11,12]. The frustrated spin- 1

2 Ising model on
the Cairo pentagonal lattice was investigated in Refs. [13,14],
while the magnetic properties of one-dimensional correlated
electron systems with a pentagonal geometry were examined
in Refs. [15–17]. The spin- 1

2 Heisenberg antiferromagnet on
the Cairo pentagonal lattice was investigated in Refs. [18–22]
in relation to two iron-based experimental representatives—
Bi2Fe4O9 [23] and Bi4Fe5O13F [24]—of this outstanding mag-
netic structure. Recently, it was demonstrated that the spin- 1

2
Ising-Heisenberg pentagonal chain of Cairo type exhibits many
intriguing quantum ground states, including the frustrated
ones with a nonzero residual entropy (i.e., high macroscopic
degeneracy) [25].

In this work, we will investigate another version of the
spin- 1

2 Ising-Heisenberg pentagonal chain, whose magnetic
structure is motivated by the polymeric coordination com-
pound [{CuL}Gd(H2O)3{Fe(CN)6}]·4H2O, to be further ab-
breviated as CuGdFe [26]. The magnetic structure of the
CuGdFe compound consists of low-spin Fe3+ ions (S = 1/2)
with a relatively high magnetic anisotropy and the almost
isotropic Cu2+ (S = 1/2) and Gd3+ (S = 7/2) ions. For the
sake of simplicity, the magnetically anisotropic Fe3+ ions
will be approximated by the notion of classical Ising spins,
while the magnetically isotropic Cu2+ and Gd3+ ions will
be treated as quantum Heisenberg spins all of size 1

2 . In
contrast to our expectations, the present version of the spin- 1

2
Ising-Heisenberg pentagonal chain does not display any highly
degenerate ground state because, surprisingly, a competition
between exchange couplings stabilizes a long-period quantum
antiferromagnetic ground state instead.

The organization of this paper is as follows. The spin- 1
2

Ising-Heisenberg pentagonal chain will be defined in Sec. II,
where a few details of the calculation procedure will also be
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FIG. 1. A schematic representation of the spin- 1
2 Ising-

Heisenberg pentagonal chain (upper panel) and the effective spin- 1
2

Ising zigzag ladder (lower panel) obtained after applying the star-
triangle mapping transformation.

presented. The most interesting results for the ground-state
phase diagram, pair correlation functions, concurrence, and
specific heat will be discussed in Sec. III. Finally, we will
end our study with several concluding remarks mentioned in
Sec. IV.

II. ISING-HEISENBERG PENTAGONAL CHAIN

Let us consider the spin- 1
2 Ising-Heisenberg pentagonal

chain, which is composed of edge-sharing pentagons as de-
picted in the upper panel of Fig. 1. Note that each elementary
pentagon involves one couple of Heisenberg spins (μ1,i ,μ2,i)
and three enclosing Ising spins (σi−1, σi , and σi+1). The spin- 1

2
Ising-Heisenberg pentagonal chain can then be defined through
the following Hamiltonian:

Ĥ = J

N∑
i=1

[
�

(
μ̂x

1,i μ̂
x
2,i + μ̂

y

1,i μ̂
y

2,i

) + μ̂z
1,i μ̂

z
2,i

]

+ J1

N∑
i=1

μ̂z
1,i

(
σ̂ z

i−1 + σ̂ z
i

) + J2

N∑
i=1

μ̂z
2,i σ̂

z
i+1. (1)

Here, μ̂α
j,i (j = 1,2; α = x,y,z) and σ̂ z

i denote spatial com-
ponents of the spin- 1

2 operators, the parameter J > 0 labels
the antiferromagnetic nearest-neighbor interaction between
the Heisenberg spins, the coupling constants J1 and J2 de-
termine two nearest-neighbor interactions between the Ising
and Heisenberg spins, and N denotes the total number of
pentagonal unit cells. Finally, the parameter � determines an
exchange anisotropy in the XXZ Heisenberg interaction. For
the sake of simplicity, the periodic boundary conditions are
imposed under the constraints σi ≡ σN+i .

The total Hamiltonian (1) can be alternatively rewritten as
a sum over cluster Hamiltonians

Ĥ =
N∑

i=1

Ĥi , (2)

where the ith cluster Hamiltonian Ĥi contains all the interac-
tion terms involving the ith Heisenberg dimer

Ĥi = J
[
�

(
μ̂x

1,i μ̂
x
2,i + μ̂

y

1,i μ̂
y

2,i

) + μ̂z
1,i μ̂

z
2,i

]
+ J1μ̂

z
1,i

(
σ̂ z

i−1 + σ̂ z
i

) + J2μ̂
z
2,i σ̂

z
i+1. (3)

The cluster Hamiltonians obviously commute with each other,
[Ĥj ,Ĥk] = 0, and thus the partition function of the spin-
1
2 Ising-Heisenberg pentagonal chain can be written in the
factorized form

Z =
∑
{σ }

Tr exp(−βĤ) =
∑
{σ }

N∏
i=1

Tr[μ1,i ,μ2,i ] exp(−βĤi)

=
∑
{σ }

N∏
i=1

Zi , (4)

where β = 1/(kBT ), kB is Boltzmann’s constant, T is the
absolute temperature, and the symbol

∑
{σ } marks a summation

over all possible spin configurations of the Ising spins. In the
above, we have introduced notation for the expression

Zi = Tr[μ1,i ,μ2,i ] exp(−βĤi), (5)

which represents the effective Boltzmann’s factor obtained
after tracing out spin degrees of freedom of the ith couple
of the Heisenberg spins. To proceed further, one necessarily
needs to evaluate the effective Boltzmann’s factor Zi given
by Eq. (5). For this purpose, it is quite advisable to use a
matrix representation of the cluster Hamiltonian Ĥi in the basis
spanned over four available states of two Heisenberg spins μ1,i

and μ2,i ,

|↑,↑〉i = |↑〉1,i |↑〉2,i , |↑,↓〉i = |↑〉1,i |↓〉2,i ,

|↓,↑〉i = |↓〉1,i |↑〉2,i , |↓,↓〉i = |↓〉1,i |↓〉2,i . (6)

The state vectors |↑〉k,i and |↓〉k,i (k = 1,2) denote two eigen-
vectors of the spin operator μ̂z

k,i with the respective eigen-
values μz

k,i = ±1/2. After a straightforward diagonalization
of the cluster Hamiltonian Ĥi , one obtains the following four
eigenvalues:

Ei1,i2 = J

4
±

[
J1

2

(
σ z

i−1 + σ z
i

) + J2

2
σ z

i+1

]
,

Ei3,i4 = −J

4
± 1

2

√[
J1

(
σ z

i−1 + σ z
i

) − J2σ
z
i+1

]2 + (J�)2

(7)

and the corresponding eigenvectors

|ϕ1,i〉 = |↑〉1,i |↑〉2,i ,

|ϕ2,i〉 = |↓〉1,i |↓〉2,i ,

|ϕ3,i〉 = c1|↑〉1,i |↓〉2,i + c2|↓〉1,i |↑2,i〉,
|ϕ4,i〉 = c2|↑〉1,i |↓〉2,i − c1|↓〉1,i |↑2,i〉, (8)

where

c1 = 1√
2

⎡
⎣1 + J1

(
σ z

i−1 + σ z
i

) − J2σ
z
i+1√[

J1
(
σ z

i−1 + σ z
i

) − J2σ
z
i+1

]2 + (J�)2

⎤
⎦

1
2

,

c2 = 1√
2

⎡
⎣1 − J1

(
σ z

i−1 + σ z
i

) − J2σ
z
i+1√[

J1
(
σ z

i−1 + σ z
i

) − J2σ
z
i+1

]2 + (J�)2

⎤
⎦

1
2

.

(9)
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Now, one may use the eigenvalues (7) for a simple calculation of the Boltzmann’s factor (5). The resulting expression
immediately implies the possibility of performing the generalized star-triangle transformation [27–30]

Zi = Tr[μi,1,μi,2] exp(−βĤi) =
4∑

j=1

exp(−βEij )

= 2 exp

(
−βJ

4

)
cosh

{
β

2

[
J1

(
σ z

i−1 + σ z
i

) + J2σi+1
]} + 2 exp

(
βJ

4

)
cosh

{
β

2

√[
J1

(
σ z

i−1 + σ z
i

) − J2σ
z
i+1

]2 + (J�)2

}

= A exp[β(R1σi−1σi + R2σiσi+1 + R2σi−1σi+1)]. (10)

From the physical point of view, the mapping transformation (10) effectively removes all the interaction parameters associated
with the ith couple of the Heisenberg spins from the pentagonal unit cell and replaces them by the effective interactions R1 and R2

between the three enclosing Ising spins σi−1, σi , and σi+1 (see Fig. 2). In this way, one establishes a simple mapping correspondence
between the spin- 1

2 Ising-Heisenberg pentagonal chain and the spin- 1
2 Ising zigzag ladder with the effective nearest-neighbor

and next-nearest-neighbor interactions R1 + R2 and R2, respectively (see the lower panel of Fig. 1). Moreover, the mapping
transformation (10) must hold for all possible spin combinations of the Ising spins σi−1, σi , and σi+1. This “self-consistency”
condition then unambiguously determines the as yet unspecified mapping parameters A, R1, and R2,

A = (
V1V2V

2
3

)1/4
, βR1 = ln

(
V1V2

V 2
3

)
, βR2 = ln

(
V1

V2

)
, (11)

which are given by the functions V1, V2, and V3 defined as

V1 = Zi

(
±1

2
,±1

2
,±1

2

)
= 2 exp

(
−βJ

4

)
cosh

(
βJ1

2
+ βJ2

4

)
+ 2 exp

(
βJ

4

)
cosh

[
β

4

√
(2J1 − J2)2 + (2J�)2

]
,

V2 = Zi

(
∓1

2
,∓1

2
,±1

2

)
= 2 exp

(
−βJ

4

)
cosh

(
βJ1

2
− βJ2

4

)
+ 2 exp

(
βJ

4

)
cosh

[
β

4

√
(2J1 + J2)2 + (2J�)2

]
,

V3 = Zi

(
±1

2
,∓1

2
,∓1

2

)
= Zi

(
∓1

2
,±1

2
,∓1

2

)
= 2 exp

(
−βJ

4

)
cosh

(
βJ2

4

)
+ 2 exp

(
βJ

4

)
cosh

[
β

4

√
J 2

2 + (2J�)2

]
.

(12)

The partition function of the spin- 1
2 Ising-Heisenberg pen-

tagonal chain can be subsequently calculated from the mapping
correspondence with the partition function of the spin- 1

2 Ising
zigzag ladder,

Z(β,J,J1,J2) = ANZz−z(β,K1 = R1 + R2,K2 = R2). (13)

The effective interactions of the corresponding spin- 1
2 Ising

zigzag ladder are given by Eqs. (11) and (12), and the effective
model can be defined through the following Hamiltonian:

Hz−z = −K1

N∑
i=1

σ z
i−1σ

z
i − K2

N∑
i=1

σ z
i−1σ

z
i+1. (14)

It should be stressed that the effective temperature-dependent
nearest-neighbor interaction K1 = R1 + R2 differs from the

1,i 2,i

i-1

i

i+1
R2

R2

i-1

i

R1
i+1Y-

FIG. 2. A diagrammatic representation of the star-triangle map-
ping transformation, which allows us to replace degrees of freedom of
the ith Heisenberg spin pair through the effective interactions between
the three enclosing Ising spins.

effective temperature-dependent next-nearest-neighbor inter-
action K2 = R2 due to the presence of the additional interac-
tion term R1. The partition function of the spin- 1

2 Ising zigzag
ladder can be rigorously calculated within the framework of
the standard transfer-matrix approach [31–36],

Zz−z =
∑
{σ }

N∏
i=1

〈σi−1,σi |T |σi,σi+1〉, (15)

where the expression 〈σi−1,σi |T |σi,σi+1〉 denotes the transfer
matrix defined by

〈σi−1,σi |T |σi,σi+1〉

= exp

[
βK1

2
(σi−1σi + σiσi+1) + βK2σi−1σi+1

]
. (16)

Recall that the periodic boundary conditions σN ≡ σ0 and
σN+1 ≡ σ1 are assumed. The partition function of the spin-
1
2 Ising zigzag ladder is given through four transfer-matrix
eigenvalues

Zz−z = TrT N = Tr�N = λN
1 + λN

2 + λN
3 + λN

4 , (17)
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which have the following explicit form:

λ1 = exp

(
βK2

4

)[
cosh

(
βK1

4

)
+

√
sinh2

(
βK1

4

)
+ exp (−βK2)

]
,

λ2 = exp

(
βK2

4

)[
cosh

(
βK1

4

)
−

√
sinh2

(
βK1

4

)
+ exp (−βK2)

]
, (18)

λ3,4 = exp

(
βK2

4

)[
sinh

(
βK1

4

)
±

√
cosh2

(
βK1

4

)
− exp (−βK2)

]
.

All thermodynamic functions are given in the thermodynamic
limit N → ∞ only through the largest transfer-matrix eigen-
value Zz−z = λN

1 . According to Eq. (13), the exact closed-
form expression for the partition function of the spin- 1

2 Ising-
Heisenberg pentagonal chain then reads

Z = (Aλ1)N . (19)

Next, one may also calculate all thermodynamic quantities of
interest for the spin- 1

2 Ising-Heisenberg pentagonal chain. For,
instance, the Helmholtz free energy per unit cell is given by

f = −kBT ln A − kBT ln λ1. (20)

The entropy and the specific heat per unit cell can then be
calculated according to the formulas

s = − ∂f

∂T
, c = −T

∂2f

∂T 2
. (21)

To bring insight into a local spin arrangement emerging
within ground states of the spin- 1

2 Ising-Heisenberg pentagonal
chain, one may easily calculate also several local spin-spin
correlation functions according to the formulas

Czz
hh = 〈

μ̂z
i,1μ̂

z
i,2

〉 = − 1

N

∂ lnZ
∂βJ

,

Cxx
hh = 〈

μ̂x
i,1μ̂

x
i,2

〉 = − 1

N

∂ lnZ
∂βJ�

,

Cnn
ii = 〈

σ̂ z
i−1σ̂

z
i

〉 = 1

N

∂ lnZz−z

∂βK1
,

Cnnn
ii = 〈

σ̂ z
i−1σ̂

z
i+1

〉 = 1

N

∂ lnZz−z

∂βK2
. (22)

Note that the final explicit formulas for the correlation func-
tions (22) are too cumbersome to write down here explicitly,
but they can be obtained after performing the relevant differen-
tiation. Two spatial components of the pair correlation function
between the nearest-neighbor Heisenberg spins can be utilized
for the calculation of the concurrence,

C = 4
∣∣Cxx

hh

∣∣ − ∣∣ 1
2 + 2Czz

hh

∣∣, (23)

which serves as a measure of bipartite entanglement [37–39].

III. RESULTS AND DISCUSSION

Let us start our discussion with a ground-state analysis of
the spin- 1

2 Ising-Heisenberg pentagonal chain with the anti-

ferromagnetic interaction J > 0 between the nearest-neighbor
Heisenberg spins, which will henceforth serve as the energy
unit. First, we will perform a closer inspection of the zero-
temperature asymptotic behavior of various pair correlation
functions. The correlation function between the z components
of the nearest-neighbor Heisenberg spins Czz

hh is depicted in
the form of a density plot in Fig. 3(a) within the J1/J -J2/J

plane. The correlation function Czz
hh splits the parameter space

into two different regions visible as dark gray (red) and light
gray (yellow), which imply ferromagnetic and antiferromag-
netic short-range ordering between the z components of the
Heisenberg spins, respectively. Furthermore, the correlation
function between the x components of the Heisenberg spins
shown in Fig. 3(b) suggests that off-diagonal correlations are
totally absent in the dark gray (red) region, while they imply
antiferromagnetic short-range correlations between x and y

components of the nearest-neighbor Heisenberg spins in the
rest of the parameter space.

A density plot for the correlation function between the
nearest-neighbor Ising spins Cnn

ii is presented in Fig. 3(c).
According to this plot, one detects the parameter region
(dark gray or red) with perfect ferromagnetic short-range
order beside the parameter region (light gray or orange) with
a complete absence of short-range correlation between the
nearest-neighbor Ising spins. A zero value of the correlation
function Cnn

ii could be consistent either with a complete
randomness of the Ising spins or an equal contribution of
ferromagnetic and antiferromagnetic nearest-neighbor correla-
tions. However, the first option is excluded by the correlation
function between the next-nearest-neighbor Ising spins Cnnn

ii
depicted in Fig. 3(d), since it gains the strongest possible
antiferromagnetic correlation Cnnn

ii = −1/4 in this parameter
region (light gray or yellow). In the rest of the parameter space,
one finds ferromagnetic short-range correlations between the
Ising spins, in agreement with the extremal values of the
nearest-neighbor and next-nearest-neighbor correlation func-
tions Cnn

ii = 1/4 and Cnnn
ii = 1/4 [dark gray or red in Figs. 3(c)

and 3(d)].
An independent confirmation of the aforementioned results

can be obtained from a comprehensive analysis of the lowest-
energy eigenstates of the spin- 1

2 Ising-Heisenberg pentagonal
chain, which allows us to construct the ground-state phase
diagram displayed in Fig. 3(e) in the J1/J -J2/J plane. As
one can see, the ground-state phase diagram involves three
phases I, II, and III along with their three mirror images I′,
II′, and III′ with flipped Ising spins, which are connected
through an inversion symmetry center located at the axes origin
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Zero-temperature density plots for (a) the correlation function between the z components of the Heisenberg spins; (b) the correlation
function between the x components of the Heisenberg spins; (c) the correlation function between the nearest-neighbor Ising spins; (d) the
correlation function between the next-nearest-neighbor Ising spins; (e) the ground-state phase diagram in the J1/J -J2/J plane; and (f) zero-
temperature density plot for the concurrence of the Heisenberg spin pairs. The quoted numbers determine specific values of the relevant quantities
in a given parameter space.

[J1,J2] = [0,0],

|I〉 =
N∏

i=1

|↓〉σi
|ϕ1,i〉, |I′〉 =

N∏
i=1

|↑〉σi |ϕ1,i〉,

|II〉 =
N/4∏
i=1

|↑〉σ4i−3 |↑〉σ4i−2 |↓〉σ4i−1 |↓〉σ4i
|ϕ4,4i−3(|↑〉σ4i−3 |↑〉σ4i−2 |↓〉σ4i−1 )〉|ϕ4,4i−2(|↑〉σ4i−2 |↓〉σ4i−1 |↓〉σ4i

)〉

× |ϕ4,4i−1(|↓〉σ4i−1 |↓〉σ4i
|↑〉σ4i+1 )〉|ϕ4,4i(|↓〉σ4i

|↑〉σ4i+1 |↑〉σ4i+2 )〉,

|II′〉 =
N/4∏
i=1

|↓〉σ4i−3 |↓〉σ4i−2 |↑〉σ4i−1 |↑〉σ4i
|ϕ4,4i−3(|↓〉σ4i−3 |↓〉σ4i−2 |↑〉σ4i−1 )〉|ϕ4,4i−2(|↓〉σ4i−2 |↑〉σ4i−1 |↑〉σ4i

)〉

× |ϕ4,4i−1(|↑〉σ4i−1 |↑〉σ4i
|↓〉σ4i+1 )〉|ϕ4,4i(|↑〉σ4i

|↓〉σ4i+1 |↓〉σ4i+2 )〉,

|III〉 =
N∏

i=1

|↑〉σi
|ϕ4,i(|↑〉σi−1 |↑〉σi

|↑〉σi+1 )〉, |III′〉 =
N∏

i=1

|↓〉σi |ϕ4,i(|↓〉σi−1 |↓〉σi |↓〉σi+1 )〉. (24)
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II

I

I’

II’

III’

III

FIG. 4. A schematic representation of the ground states of the
spin- 1

2 Ising-Heisenberg pentagonal chain. Ellipses denote a singlet-
like state, whereas greater (smaller) arrows denote the spin state with
a higher (lower) occurrence probability.

In the above, the eigenvectors |ϕj,i〉 (j = 1,4) specifying
eigenstates of the Heisenberg spin pairs are given by Eq. (8)
and the states of three enclosing Ising spins quoted in paren-
theses determine through Eq. (9) the respective probability
amplitudes entering into the eigenvector |ϕ4,i〉. For illustra-
tive purposes, all available ground states are visualized in
Fig. 4. It is worthwhile to remark that each ground state is
at least twofold-degenerate, because flipping all spins in the
eigenvectors (24) provides, due to the validity of time-reversal
symmetry at zero field, another eigenvector with the same
energy. In addition, another eigenvector with the same energy
can be obtained from the eigenvectors |II〉 and |II′〉 by a
trivial shift of indices i → i + 1 because of a peculiar fourfold
symmetry breaking. Consequently, phases I, I′, III, and III′ are
just twofold-degenerate, while phases II and II′ are fourfold
degenerate. Phase I can be viewed as a classical ferrimagnetic
state, phase I′ as a classical ferromagnetic state, phases II and
II′ as modulated quantum antiferromagnetic states, phase III
as a quantum ferrimagnetic state, and phase III′ as a quantum
ferromagnetic state. The quantum character of the ground
states II, II′, III, and III′ is verified by the concurrence depicted
in Fig. 3(f), which exhibits nonzero values within these ground
states in contrast with the classical ground states I and I′ with
no concurrence.

The striking character of the long-period ground states II
and II′ with fourfold symmetry breaking can be understood
with the help of the effective spin- 1

2 Ising zigzag ladder, for
which a remarkable up-up-down-down spin configuration has
the lowest energy upon assuming that the interaction ratio
between next-nearest neighbors and nearest neighbors satisfies

the condition [32]

K2

|K1| = R2

|R1 + R2| < −1

2
. (25)

Due to this fact, the spin- 1
2 Ising-Heisenberg pentagonal chain

exhibits a similar four-fold symmetry breaking within the
ground states II and II′ whenever it falls into the parameter
space specified by the condition (25). To verify this statement,
let us investigate an asymptotic behavior of the effective
couplings at low enough temperature as a function of the
interaction ratio J1/J and J2/J depicted in Fig. 5. The highly
nonmonotonic dependencies of the effective couplings R1 and
R2 generally cause nontrivial dependencies of the effective
nearest-neighbor interaction |R1 + R2|, which enters into the
denominator of the condition (25). If the effective nearest-
neighbor interaction turns to zero, i.e., |R1 + R2| = 0, then
the relative ratio between the effective next-nearest-neighbor
and nearest-neighbor interactions shows a striking divergence
clearly seen in Figs. 5(a) and 5(b). Figure 5(a) depicts the
effective couplings as a function of the interaction ratio J1/J

at the constant value of the other interaction parameter J2/J =
0.5. Under this condition, the long-period phase II becomes the
ground state within the interval J1/J ∈ (0; 1.26) in agreement
with the ground-state phase diagram depicted in Fig. 3(e) and
the condition (25). Figure 5(b) serves as evidence that the long-
period ground state II becomes more stable at the constant value
of the interaction parameter J2/J = 2 because the condition
(25) is satisfied over the wider interval of J1/J ∈ (0; 2.55). The
effective interactions as a function of the interaction parameter
J2/J are depicted in Figs. 5(c) and 5(d) at the fixed value
of the interaction ratio J1/J = 2 and J1/J = 4, respectively.
In the former case, J1/J = 2, the long-period phase II is
maintained as the ground state for J2/J > 0.86 when the
condition (25) is still met [see Fig. 5(c)]. On the other hand, the
relative ratio between the effective next-nearest-neighbor and
nearest-neighbor couplings shown as a dotted-dashed (orange)
line never crosses a dotted line in Fig. 5(d), which means that
the condition (25) is never satisfied in the latter case, J1/J = 4,
in accordance with the absence of the long-period phase II in
this parameter space.

Next, let us comment on the influence of temperature on
two spatial components of the correlation function between the
nearest-neighbor Heisenberg spins. The temperature depen-
dence of the z component of the correlation function is shown
in Fig. 6(a) for several values of the interaction ratio J1/J

by keeping the other interaction ratio J2/J = 0.5 constant.
The selected parameters either fall deep inside phases II and
III or close to their phase boundary [see Fig. 3(e)]. It is
noteworthy that zero-temperature asymptotic values of Czz

hh

corroborate the antiferromagnetic character of this correlation
within both ground states II and III, in agreement with the
previous ground-state analysis. The correlation function Czz

hh

generally diminishes with increasing temperature, whereas
very low temperature is needed to override 80% of the
correlations for the particular value J1/J = 2.5 driving the
investigated model in the vicinity of the triple coexistence
point between the ground states I, II, and III. On the other
hand, the increase of temperature can temporarily reinforce
short-range correlations in a relatively wide region of moderate
temperatures, as evidenced by a nonmonotonic dependence
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(a) (b)

(c) (d)

FIG. 5. The effective couplings of the equivalent spin- 1
2 Ising zigzag ladder as a function of the interaction ratio at sufficiently low temperature

kBT/J = 0.001. The ground state of the effective spin- 1
2 Ising zigzag ladder is driven by the relative strength of the next-nearest-neighbor

interaction R2 to the nearest-neighbor interaction R1 + R2, i.e., the ratio R2/|R1 + R2| plotted by a dashed-dotted line [see Eq. (25)]. The long-
period quantum ground state II emerges if the relative ratio between both effective couplings is below the critical value R2/|R1 + R2| = −1/2
plotted by a thin dotted line.

shown in Fig. 6(b) for the x component of the correlation
function Cxx

hh for J1/J = 0.3 and J2/J = 0.5.
The z and x components of the correlation function be-

tween the nearest-neighbor Heisenberg spins are depicted in
Figs. 6(c) and 6(d) when the interaction ratio J2/J = 2 is fixed
and the interaction parameter J1/J either drives the investi-
gated model deep inside phases I and II or close to their phase
boundary. In agreement with our expectations, the correlation
functions are less resistant against thermal fluctuations in the
vicinity of the relevant phase boundary than deep inside of
the individual ground states. Moreover, it is quite evident from
Fig. 6(c) that the rising temperature may even invoke a striking
ferromagnetic-to-antiferromagnetic crossover signaled by the
vanishing of the correlation function Czz

hh, which indicates the
uncorrelated nature of the z component of the Heisenberg spin
pairs at a certain “frustration” temperature [40].

The temperature dependencies of the z and x components of
the correlation function between the nearest-neighbor Heisen-
berg spins are depicted in Figs. 7(a) and 7(b) for the constant
value of the interaction parameter J1/J = 2 and a few selected
values of the parameter J2/J falling either deep inside phases
II and III or close to their phase boundaries [cf. Fig. 3(e)]. The
appropriate zero-temperature limits are in concordance with
Figs. 3(a) and 3(b), while the increasing temperature generally
causes a gradual cancellation of the relevant short-range order.
It can be understood from Fig. 7(a) that the z component
of the correlation function Czz

hh is less resistant against rising

temperature in phase II with a fourfold broken symmetry than
in phase III without symmetry breaking. Contrary to this, there
is no such obvious trend in the relevant behavior of the x

component of the correlation function Cxx
hh , which exhibits

the strongest antiferromagnetic short-range correlation shortly
after the system passes at the relevant phase boundary to phase
II with a fourfold symmetry breaking [see the dotted line for
J2/J = 0.9 in Fig. 7(b)].

Furthermore, thermally driven variations of the z and x

components of the correlation function between the nearest-
neighbor Heisenberg spins are displayed in Figs. 7(c) and
7(d) at the fixed value of the interaction ratio J1/J = 4.
These curves bring insight into the effect of temperature
upon short-range correlations within the ground states I and
III, whereas short-dashed (green) curves correspond exactly
to their ground-state phase boundaries given by the con-
straint J2/J = 2J1/J

2J1/J−1 . It can be seen that the longitudinal
correlation Czz

hh is totally absent precisely at the respective
phase boundary due to the opposite character of short-range
correlation between the nearest-neighbor Heisenberg spins,
which is ferromagnetic in character within the classical phase I
but antiferromagnetic in the quantum phase III [see Fig. 7(c)].
Moreover, it is quite curious that, above the classical ground
state I, the rising temperature contraintuitively causes an uprise
of antiferromagnetic correlations in the x component of the
correlation function Cxx

hh in addition to a ferromagnetic-to-
antiferromagnetic crossover observable in the z component
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(a) (b)

(c) (d)

FIG. 6. The correlation function between the z and x components of the nearest-neighbor Heisenberg spins as a function of temperature
for a few selected values of the interaction ratio J1/J and two different constant values of the interaction ratio J2/J = 0.5 (upper panel) and
2 (lower panel).

of the correlation function Czz
hh at a certain frustration tem-

perature [40] [see the curves for J2/J = 1.2 in Figs. 7(c)
and 7(d)].

The aforementioned results for the correlation function
between the nearest-neighbor Heisenberg spins might indicate
a highly nontrivial effect of the rising temperature upon their
pairwise quantum entanglement, which could in principle be
present also above the classical ground state I due to thermal
activation of low-lying excited states of a quantum character.
In this regard, let us proceed to a discussion of the concurrence
depicted in Fig. 8 in the J1/J -kBT/J and J2/J -kBT/J planes
for a few selected values of the coupling constants. The
temperature, above which the concurrence becomes zero, can
be regarded as a threshold (sudden-death) temperature for the
bipartite entanglement (see the solid lines in Fig. 8). Hence,
it follows that the nearest-neighbor Heisenberg spin pairs are
quantum-mechanically entangled below the displayed line of
threshold temperatures, while they become disentangled above
it. It can be seen from Fig. 8(a) that the bipartite entanglement
is present at sufficiently low temperatures independently of
the relative strength of the first Ising interaction J1/J when
the relative strength of the second Ising interaction is fixed
to J2/J = 0.5 even though the threshold temperature gen-
erally decreases upon strengthening of the interaction ratio
|J1|/J . This fact provides independent confirmation of the
quantum character of the three ground states III′, II, and
III emergent in this parameter space. Contrary to this, the
threshold temperature shows a rapid decrease upon increasing
the interaction ratio J1/J until it completely disappears due

to the emergence of the classical ground state I when the
relative strength of the second Ising interaction ratio is fixed to
J2/J = 2 [see Fig. 8(b)]. It is worthwhile to remark, moreover,
that the threshold temperature shows just a relatively small
decline when increasing the relative strength of the first Ising
interaction in the ferromagnetic counterpart J1/J < 0 of the
parameter space.

To get a deeper insight into the effect of the second Ising
interaction J2/J upon the thermal entanglement, the density
plot of the concurrence is displayed in Figs. 8(c) and 8(d) in
the J2/J -kBT/J plane when the relative strength of the first
Ising interaction is kept constant, J1/J = 2 or 4, respectively.
In the former case, J1/J = 2, one detects nonzero values of the
concurrence at sufficiently low temperatures regardless of the
coupling ratio J2/J in accordance with the quantum character
of phases II and III being the only two stable ground states
in this parameter space. In addition, a gradual decrease of
the threshold temperature upon increasing the interaction ratio
J2/J can be attributed to a thermal activation of the classical
phase I [see Fig. 8(c)], which becomes close enough in energy
to phase II for this set of interaction parameters [cf. Fig. 3(e)].
On the other hand, there are obvious qualitative distinctions
in the relevant behavior of the concurrence in the latter case
with J1/J = 4 displayed in Fig. 8(d). Under this condition,
the threshold temperature decreases monotonically upon in-
creasing the interaction parameter J2/J until it completely
diminishes at the ground-state boundary between phases III
and I given by J2/J = 8/7 when assuming J1/J = 4. To sum-
marize, the quantity concurrence implies a slightly stronger
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(a) (b)

(c) (d)

FIG. 7. The correlation function between the z and x components of the nearest-neighbor Heisenberg spins as a function of temperature
for a few selected values of the interaction ratio J2/J and two different constant values of the interaction ratio J1/J = 2 (upper panel) and
4 (lower panel).

quantum entanglement in phase II with a fourfold symmetry
breaking compared to phase III without broken symmetry,
while the quantum entanglement cannot be thermally induced

above the classical ground state I, although the off-diagonal
correlations might be nonzero, as exemplified by the specific
case J2/J = 1.2 in Fig. 7(d).

(a) (b)

(c) (d)

FIG. 8. The density plot of the concurrence in the J1/J -kBT/J plane (upper panel) for two selected values of the interaction ratio J2/J and
in the J2/J -kBT/J plane (lower panel) for two selected values of the interaction ratio J1/J . Thick ticks displayed at the x axis correspond to
the phase boundaries between the individual ground states.
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(a) (b)

(c) (d)

FIG. 9. The specific heat as a function of temperature at several selected interaction ratios J1/J and J2/J .

Last but not least, let us discuss typical features of tem-
perature variations of the specific heat, which is depicted
in Fig. 9 for the same set of interaction parameters J1/J

and J2/J as previously used for the discussion of typical
thermal dependencies of the pair correlation functions and
concurrence. As one can see, the specific heat exhibits either
the famous temperature dependence of one-dimensional spin
systems with a single round maximum or a more outstanding
temperature dependence with two separate maxima. It can be
found from Fig. 9 that the marked double-peak structure of
the specific heat emerges whenever the interaction parameters
drive the spin- 1

2 Ising-Heisenberg pentagonal chain sufficiently
close to one of its ground-state phase boundaries. A relatively
sharp low-temperature peak can therefore be attributed to
massive thermal excitations from the ground state to a low-
lying excited state, which has the character of the phase
separated from the ground state by the relevant phase boundary.
As a matter of fact, the more the low-temperature peak moves
toward lower temperatures and becomes sharper, the closer
are the interaction parameters selected to the relevant ground-
state phase boundary. On the contrary, the low-temperature
peak becomes broader and shifts toward higher temperatures
when the interaction parameters are selected farther apart
from the relevant ground-state phase boundary until it com-
pletely merges with the high-temperature peak. The lack of
a low-temperature peak for the particular set of interaction
parameters driving the investigated spin system exactly at the
ground-state phase boundary also convincingly evidences the
aforementioned character of low-lying thermal excitations,

since two ground states have equal energy at their phase
boundary, and any other low-lying excited state is missing in
the energy spectrum [see the dotted (green) curve for J1/J = 4
and J2/J = 8/7 in Fig. 9(d)].

IV. CONCLUSION

The present article provides exact results for the ground-
state phase diagram, pair correlation functions, concurrence,
and specific heat of the spin- 1

2 Ising-Heisenberg pentagonal
chain, which are rigorously solved with use of the star-triangle
mapping transformation and the transfer-matrix method. All
zero-temperature ground states of the spin- 1

2 Ising-Heisenberg
pentagonal chain have been found and completely charac-
terized through the appropriate eigenvectors, which indicate
a remarkable diversity of magnetic ground states with the
character of a classical ferrimagnetic phase, a classical fer-
romagnetic phase, two modulated quantum antiferromagnetic
phases, a quantum ferromagnetic phase, and a quantum ferri-
magnetic phase. The quantum ground states were distinguished
from the classical ground states through the concurrence,
which has allowed us to quantify the bipartite quantum
entanglement between the nearest-neighbor Heisenberg spin
pairs.

It should be pointed out that the most spectacular spin
arrangement has been found in two modulated quantum
antiferromagnetic phases, which exhibit an unusually long
period spanned over four unit cells due to a fourfold symmetry
breaking that is in sharp contrast with magnetic tetrastability
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reported for classical canted spin chains [41]. The existence
of fourfold symmetry breaking within the modulated quan-
tum antiferromagnetic phases has been explained in terms
of a competition between the effective next-nearest-neighbor
and nearest-neighbor interactions of the corresponding spin-
1
2 Ising zigzag ladder, also known in the literature as the
one-dimensional axial next-nearest-neighbor Ising (ANNNI)
model [7]. It is also worth noting that the remarkable up-
up-down-down ground state of the effective spin- 1

2 Ising
zigzag ladder (ANNNI model) was recently verified using
magnetic force microscopy in an artificial spin chain composed
of elongated nanomagnets with a controllable ratio between
the next-nearest-neighbor and nearest-neighbor interactions
[42]. On the other hand, the long-period quantum ground
state with a fourfold broken symmetry scarcely appears in
one-dimensional quantum spin systems, and it was reported
only very recently for the spin- 1

2 Heisenberg kagomé strip [43].
From this point of view, it is worthwhile to remark that the
calculation procedure elaborated on in the present work can
be further generalized to a more complex mixed spin-1/2 and

spin-7/2 Ising-Heisenberg pentagonal chain, which is eligible
for a theoretical modeling of the heterotrimetallic coordination
polymer CuGdFe [26]. This represents a challenging task for
future studies.
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