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Power-law tails and non-Markovian dynamics in open quantum systems:
An exact solution from Keldysh field theory
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The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled
to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions)
linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral
function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise
kernels governing the dynamics have distinct power-law tails. The Green’s functions show a short-time “quasi”-
Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the
spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site
is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for
the Green’s functions of this system, which show power-law decay ∼|t − t ′|−3/2. We use these to calculate the
density and current profile, as well as unequal-time current-current correlators. While the density and current
profiles show interesting quantitative deviations from Markovian results, the current-current correlators show
qualitatively distinct long-time power-law tails |t − t ′|−3 characteristic of non-Markovian dynamics. We show
that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time
scale is shifted to larger values with increasing interaction strength.
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I. INTRODUCTION

The dynamics of open quantum systems (OQS) [1] is
the key to some fundamental questions in statistical physics,
including issues of emergence of irreversibility and generation
of entropy [2], generation of quantum entanglement [3], and
approach to thermal equilibrium [4]. It is also crucial to
understand the dynamics of a quantum system coupled to
an external bath to design and control possible platforms for
creating an architecture of quantum computing, like super-
conducting qubits [5], spin qubits [6], cavity QED [7], cavity
optomechanics [8], quantum dot arrays coupled to cavities [9],
nanowire junctions [10], ultracold atomic systems [11], etc.
The phenomenal experimental advance over the past decade
in implementing and controlling these platforms has reignited
interest in the dynamics of OQS. Additionally, theoretical ideas
of bath/dissipation engineering [12] to guide open quantum
systems to novel steady states [13] and using these states
as resources in quantum computing [14] also require a deep
understanding of behavior of OQS.

A widely used paradigm to analyze the dynamics of OQS
is the Born-Markov approximation, which assumes that (i)
coupling of the quantum system to the bath does not change the
dynamics of the bath and (ii) the effective reduced dynamics
of the system is local in time. This is often presented in the
form of a time local (Markovian) quantum master equation
(QME) [15], where the positive rates of transition from one
configuration of the system to another depends only on the
state of the system at that time. Further approximations lead
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to well-known formulations such as the Redfield [16] and
Lindblad [17] master equations. The other related approach
is that of stochastic Schrodinger equations [18,19], which are
generalizations of familiar Langevin equations in classical
systems. In systems with short-range memory kernels, the
Markovian approximation emerges as a coarse-grained de-
scription of OQS dynamics over a scale τcourse in the limit
τs � τcourse � τb. Here τb and τs are the autocorrelation times
in the bath and the system.

Non-Markovian dynamics of OQS has been gaining promi-
nence in recent years [20]. A broad class of systems, like Bose-
Einstein condensate (BEC) in trapped ultracold atoms [21],
quantum dots coupled to superfluid reservoirs [22], nanome-
chanical oscillators coupled to BEC [23], and atoms/impurities
coupled to a radiation field in photonic crystals [24] have
displayed non-Markovian dynamics in various forms. Non-
Markovian dynamics has been key to recent proposals for
bath engineering [25] and quantum metrology [26], and can
be used as resources for quantum communication [27] and
quantum memory [28]. Recent experiments have been success-
ful in tuning the dynamics of an open quantum system from
Markovian to non-Markovian by controlling the bath degrees
of freedom [29]. Non-Markovian dynamics [30,31] has been
traditionally treated using a Nakajima-Zwanzig–type master
equation [32,33], as well as an effective time convolutionless
master equation [34]. In fact, different types of dynamical
behavior or properties of equation of motion are grouped under
the rubric of non-Markovian dynamics, with debates over the
essential definition of “non-Markovian” ness [35].

A canonical model of OQS [36], consisting of a few bosons
(fermions) coupled linearly to a noninteracting bath of bosons
(fermions), has been studied previously using QME [37,38]
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as well as the nonequilibrium Green’s function technique
[39,40]. In this paper, we use Schwinger-Keldysh field theory
formalism [41] to study a system of bosons (fermions) hoping
on a one-dimensional (1D) lattice where each site is connected
to a noninteracting bosonic (fermionic) bath kept at fixed
temperature and chemical potential. Integrating out the bath
degrees of freedom, we obtain a description of the effective
steady-state dynamics of the OQS. We relate the self-energies
induced by the bath to the dissipative and noise kernels
in a stochastic Schrodinger equation through a saddle-point
approximation. We show that any nonanalyticity in the bath
spectral function leads to temporally long-range dissipative
and noise kernels with power-law tails. The exponent of
the power law is determined solely by the nature of the
nonanalyticity and is independent of other microscopic details.
Such nonanalytic behavior can arise from a variety of sources,
such as band edges, Van Hove singularities, Kohn anomalies
[42] in the phonon spectrum, phase transitions in the bath
[43], and the non-Fermi-liquid [44] nature of the bath. The
power-law tail in the kernels precludes the possibility of coarse
graining to obtain a Markovian description for the dynamics
of the system. We emphasize that, for bosonic baths kept
at fixed chemical potentials, i.e., when the bath decoupled
from the system has a conserved number/charge, the bath
spectrum must be bounded from below and hence its spectral
function must be nonanalytic at the bottom of the band. Hence
non-Markovian dynamics will be ubiquitous in such bosonic
systems.

The Green’s functions inherit these power-law tails along
with a short-time exponential decay. The crossover from the
exponential decay to the power-law tail occurs at a time τ0 ≈
1/ε2, where ε is the scale of system-bath coupling. Thus at
very weak system-bath coupling the system dynamics appears
Markovian for a very long time, and we call this regime “quasi-
Markovian.” With the increase in system-bath coupling, the
power-law tail dominates the dynamics and the non-Markovian
behavior is easier to detect in experiments. We have studied
both the density and current profile in the system, as well as the
unequal-time observables such as current-current correlators.
While the equal-time correlators show important quantitative
differences from a Markovian calculation, the unequal-time
correlators inherit the power-law tails and can be used as a
direct probe of these singularities.

The features described above are robust, i.e., they only
require a nonanalytic bath spectral function and a linear
system-bath coupling. To illustrate these features, we consider
a 1D lattice system of bosonic (fermionic) particles with a
nearest-neighbor hopping, where each site is connected to an
independent bosonic (fermionic) bath with its own temperature
and chemical potential. We consider a semi-infinite 1D bath
whose spectral function has square root derivative singularity
at the band edges. After integrating out the bath, we solve
this problem analytically and obtain closed-form expressions
for the Green’s function and the observables mentioned above.
We show that the noise and dissipative kernel show a |t − t ′|− 3

2

decay at long times. The Green’s function and current current
correlators have a short-time exponential decay followed by
a power-law tail, where the Green’s functions ∼|t − t ′|− 3

2

and current-current correlators ∼|t − t ′|−3. Since the Green’s

functions are known analytically in the model considered here,
we can provide insights into the relative strength of exponential
and power-law decay, as well as the crossover regime between
them. We then generalize these relations to different types of
nonanalyticities and show how the power law changes with the
nature of nonanalyticity. We thus (i) work out in detailed ana-
lytic form the power-law tails and full non-Markovian behavior
of the many-body system for a very important and widely used
model of OQS, and (ii) generalize the description to various
other physically relevant nonanalyticities in the problem. We
also consider the traditional way of studying non-Markovian
dynamics in terms of nonexponential (power-law) decay of
survival probabilities [45–48] and relate the power-law tails in
our formulation to the power-law decay of induced populations
of modes. Our formalism, where we predict a relation between
the power-law tails and bath nonanalyticities, can thus be used
to analyze experiments like Ref. [49]. While it is known that
the nonanalytic bath spectral function leads to nonexponential
decays [31,32], we here provide a closed-form solution for a
number of widely used models of bath spectral function and
hence make a detailed connection between the nature of the
nonanalyticity to the exponent of the power laws measured in
the observable quantities of the system.

The equal-time correlators such as density and current show
important quantitative deviations from Markovian description.
Our exact solution also allows us to study the evolution
of multitime many-body correlators of the open quantum
system under the non-Markovian dynamics. These unequal-
time correlators provide the cleanest observable signal of the
non-Markovian dynamics through long-time power-law tails
related to the nonanalyticity of the bath spectral function.
We have obtained the analytic expressions for the Green’s
function of a full 1D chain which provide the starting point for
calculating the dynamics of the interacting many-body OQS.
We consider the effect of the interparticle interactions in the
system on the dynamics of OQS within mean-field theory. We
find that the power-law tail survives, while the crossover scale
increases with increasing interaction strength.

We have organized the paper into several sections: In Sec. II,
we discuss a model of noninteracting bosons linearly coupled
to a bosonic bath. We set up the Keldysh formalism and
sketch the steps taken to calculate the Green’s function and
observables in the resulting OQS. In Sec. III, we connect the
self-energies induced by integrating out the bath variables with
the dissipative and noise kernels in an equation-of-motion
approach and discuss the power-law kernels induced by the
nonanalyticities in the bath spectral function. In Sec. IV,
we solve the Dyson equation and find the analytic Green’s
function for the linear chain. We discuss the nonanalytic
structure of the Green’s function in frequency space, and its
behavior in real time. In Sec. V, we consider equal-time and
unequal-time observables and show how the unequal-time
correlators show the signature of the power-law tails. We
also relate our formalism with the more standard approach
of studying non-Markovian dynamics in terms of decay of
survival probabilities. In Sec. VI, we generalize the results
to the case of a fermionic system coupled to a fermionic bath
and show that similar results hold in this case. Finally, in Sec.
VII, we consider the effect of interparticle interactions in the
system on the power-law tail and the crossover time scale.
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FIG. 1. Schematic diagram of the open quantum system setup
considered in this paper. The red-blue circles denote the system sites,
whereas the line of light blue circles denote the semi-infinite bath.
Note that the baths are not interconnected to each other and have their
independent temperature Tl and chemical potential μl . The system
sites couple to the first site of the respective bath with scale ε. Here g

is the hopping in the system, while tB is the hopping in the bath.

II. KELDYSH THEORY FOR BOSONIC SYSTEM

We consider a system of a one-dimensional lattice of non-
interacting bosons (representing arrays of oscillators) hopping
between nearest neighbors with an amplitude g (representing
coupling between successive oscillators). The fermionic ver-
sion of this model, which can represent quantum dot arrays,
will be taken up in Sec. VI. Each site l of the lattice is coupled
to an independent bosonic bath with a temperature Tl and a
chemical potential μl . The setup is schematically shown in
Fig. 1. We will be interested in the steady-state response of the
system to different profiles of μl and Tl .

We describe each bath by a semi-infinite one-dimensional
lattice of noninteracting bosons with nearest-neighbor hopping
tB and assume each system site is coupled locally to the first site
of the corresponding bath, as shown in Fig. 1. The system-bath
coupling, controlled by the scale ε, is linear in both the system
and bath degrees of freedom. The total Hamiltonian of the
system (Hs), the baths (Hb), and system-bath coupling (Hsb)
are then given by

Hs = −g

N∑
l=1

a
†
l al+1 + H.c. and Hsb = ε

N∑
l=1

a
†
l b

(l)
1 + H.c.,

Hb = −tB

N∑
l=1

∞∑
s=1

b(l)†
s b

(l)
s+1 + H.c., (1)

where a
†
l creates a boson at site l of the system, b

(l)†
s is

the bosonic creation operator at site s of the lth bath. It is
useful to rewrite the bath degrees of freedom in terms of the
eigenoperators B(l)†

α which diagonalize the bath Hamiltonian,

Hb =
∑
l,α

�αB(l)†
α B(l)

α , Hsb = ε
∑
l,α

καB(l)†
α al + H.c., (2)

where �α is the energy of the eigenmode α, and κα is its
amplitude on the first site of the bath.

We use Schwinger-Keldysh functional integral formalism
[41] to study the effective nonunitary dynamics of the OQS
in the steady state. The field theoretic technique yields exact
results for arbitrary parameter values in the noninteracting
system and is not restricted to weak system-bath couplings.
The Keldysh approach constructs a path integral representation
of the dynamics of the density matrix. It requires two copies
of fields at each instant of time t , namely, φ+(t) and φ−(t),
corresponding to the forward and backward evolution inherent
in ρ(t) = U (t,−∞)ρ(−∞)U†(t,−∞). Here U (t) is the time
evolution operator for the system as well as the baths and
ρ(−∞) is the initial density matrix, which is factorizable
into system and bath density matrices. It is customary to
work with the symmetric or classical φcl = (φ+ + φ−)/

√
2 and

antisymmetric or quantum φq = (φ+ − φ−)/
√

2 fields. Using
φ(l) and ψ (l)

α as the fields corresponding to al and B(l)
α , the

Keldysh action for the system Ss , baths Sb, and the system-bath
couplings Ssb is given by

Ss =
∑
l,l′

∫
dωφ

†
l (ω)

⎡
⎣ 0 G−1A

0 (l,l′,ω)
G−1R

0 (l,l′,ω) G−1K
0 (ω)δl,l′

⎤
⎦φl′(ω),

Sb =
∑
l,α

∫
dωψ

†
lα(ω)

⎡
⎣ 0 ω − �α − iη

ω − �α + iη 2iηFl(�α)

⎤
⎦ψlα(ω),

Ssb = −ε
∑
l,α

∫
dωκαψ

†
lα(ω)σ̂1φl(ω) + H.c., (3)

where σ 1 is the Pauli matrix encoding the Keldysh rotation and
φ
†
l = [φ∗(l)

cl ,φ∗(l)
q ], ψ†

lα = [ψ∗(l)
cl,α,ψ∗(l)

q,α ], and G
−1R/A

0 (l,l′,ω) =
(ω ± iη)δl,l′ + gδl,l′±1, and η → 0+ [50]. Here Fl(ω) =
coth (ω−μl

2Tl
) is related to the distribution function in the lth bath.

We assume that all the baths remain in thermal equilibrium with
the bath Green’s functions given by

G
R/A

b (α; ω) = 1

ω − �α ± iη
,

GK
b (α,l; ω) = −2π iδ(ω − �α) coth

(ω − μl

2Tl

)
. (4)

Since the action (3) is quadratic in ψ (l)
α , we can integrate out

the bath degrees of freedom to obtain the effective dissipative
action for the open quantum system, which describes the
nonunitary dynamics of the system coupled to the bath,

Soqs =
∑
l,l′

∫
dωφ

†
l (ω)

⎡
⎣ 0 G−1A

0 (l,l′,ω) − �A(w)δl,l′

G−1R
0 (l,l′,ω) − �R(w)δl,l′ −�K

l (ω)δl,l′

⎤
⎦φl′(ω), (5)

where �̂l(ω) = ∑
α |κα|2ε2σ̂1Ĝb(α,l; ω)σ̂1. Here, integrating

out the bath induces a finite Keldysh component of the
self-energy matrix, �K

l (ω), which is purely imaginary. Thus,

although we start from a unitary description of the combined
system, the effective dynamics of the OQS after tracing
over bath degrees of freedom, governed by the action (5), is
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nonunitary. The summation over the bath eigenmodes makes
the self-energy matrix a function only of the bath spectral
function

J (ω) = 2π
∑

α

|κα|2δ(ω − �α) (6)

and the distribution function Fl(ω). All the results of this
paper will depend on properties of J (ω) and not on other
microscopic details of the baths. In that sense, we can simply
think of different kinds of baths being represented by different
J (ω), and the results obtained here are applicable to a large
class of systems. For our particular case, we will mainly
focus on 1 − d semi-infinite bath given by the Hamiltonian (2)
which is diagonalized in the quasimomentum basis α with the
eigenenergies, �α = −2tB cos(α). In this formalism, baths are
assumed to have infinite number of degrees of freedom so that
their energy spectrum is continuous, and κα is proportional
to the eigenfunction of Hb at the first site of the bath, κα =√

2/π sin(α). Using Eq. (6) we then get

J (ω) = �
(
4t2

B − ω2
) 2

tB

√
1 − ω2

4t2
B

, (7)

which has a square root derivative singularity at the band edges
ω = ±2tB , where |2tB | < |μl|∀l, to avoid BEC forming in the
baths. We discuss the cases of some other physically relevant
J (ω) in Sec. III. Writing the components of self-energy matrix
explicitly, we have

�R(ω) = −ε2
∫

dω′

2π

J (ω′)
ω′ − ω − iη

,

�K
l (ω) = −iε2J (ω) coth

[
ω − μl

2Tl

]
. (8)

Inverting the kernel in the action (5) we obtain exact expres-
sions for the one-particle Green’s function of the bosons. Using
this, we calculate equal-time observables (e.g., current, occu-
pation number) as well as unequal-time observables (e.g., cur-
rent current correlation functions) in the steady state. Green’s
functions and current-current correlators in the steady state
show power-law tails indicative of non-Markovian dynamics
of the system. In the next section, we work in the real time
domain and connect the Keldysh formalism with the widely
used stochastic Schrodinger equation [18] formalism.

III. POWER-LAW TAIL IN DISSIPATIVE
AND NOISE KERNELS

The Keldysh field theory description obtained in the pre-
vious section can be connected to a stochastic Schrodinger
equation with nonlocal memory kernels for dissipation and
noise in the system given by the self-energies �R and �K

l . To
see this, we write the effective Keldysh action for the OQS in
real time,

S =
∑
l,l′

∫
dtdt ′φ†

l (t)

[
0 G−1A

ll′ (t,t ′)
G−1R

ll′ (t,t ′) −�K
l (t,t ′)δl,l′

]
φl′(t

′),

(9)
where G−1R

l,l′ (t,t ′) = δ(t − t ′)(i∂tδl,l′ + gδl,l′±1) − �R(t −
t ′)δl,l′ . The terms quadratic in φq are first converted

into terms linear in φq (source terms) by a Hubbard-
Stratanovich transformation with an auxiliary field
ζl(t). The Keldysh partition function is then given by
Z = ∫

D[ζ ∗ζ ]F (ζ ∗ζ )
∫
D[φ∗φ]eiS(φ∗,φ,ζ ∗,ζ ), where

S =
∫

dt

∫
dt ′

∑
l,l′

[
φ∗(l)

q (t)G−1R
l,l′ (t,t ′)φ(l)

cl (t ′) + H.c.
]

+
∫ ∞

−∞
dt

∑
l

[
φ∗(l)

q (t)ζl(t) + ζ ∗
l (t)φ(l)

q (t)
]

and

F (ζ ∗ζ ) = ei
∫ ∞
−∞

∫ ∞
−∞ dtdt ′ζ ∗

l (t)[�K
l (t,t ′)]−1ζl (t ′). (10)

The equation of motion, obtained from the classical saddle-
point condition ∂S

∂φq
|
φq=0

= 0, is

i∂tφ
(l)
cl (t) −

∫
dt ′�R

l (t,t ′)φ(l)
cl (t ′) + gφ

(l)±1
cl (t) = ζl(t), (11)

where ζl(t) is a complex random field with a nonlocal
but Gaussian distribution, 〈ζ ∗

l (t)ζl′(t ′)〉 = −iδl,l′�
K
l (t,t ′). The

imaginary part of the retarded self-energy is thus the dissipative
kernel, while the Keldysh self-energy is the noise correlation
kernel. The self-energies in real time are related to the bath
spectral function by

�R(t − t ′) = −iε2�(t − t ′)
∫

dω

2π
J (ω)e−iω(t−t ′),

�K
l (t − t ′) = −iε2

∫
dω

2π
J (ω) coth

[
ω − μl

2Tl

]
e−iω(t−t ′).

(12)

We note that for any J (ω) which is even in ω, the retarded
self-energy is purely imaginary and hence dissipative in nature.
For the bath spectral function that we consider [Eq. (7)],

�R(t,t ′) = −i�(t − t ′)
ε2

tB

J1(2tB |t − t ′|)
|t − t ′| , (13)

where J1(x) is the Bessel function of first order. It is
clear from the above exact expression that �R(t − t ′) ≈
−iε2[tB(t − t ′)]−

3
2 cos[2tB(t − t ′) − 3π/4] for |t − t ′| → ∞,

i.e., the dissipative kernel decays slowly as a power law in
the long-time limit. Hence, there is no time scale in the
system over which one can coarse grain to obtain an effec-
tive local description. The dynamics is thus essentially non-
Markovian. Although a closed-form expression for �K (t − t ′)
cannot be obtained, it can be shown (see Appendix A) that
at long times the envelope of �K ≈ −ε2(2/π )1/2|2tB(t −
t ′)|−3/2(coth [(2tB − μ)/2T ] ∓ coth [(2tB + μ)/2T ]), where
the −(+) sign corresponds to its real (imaginary) part. Hence
it has the same ∼|t − t ′|−3/2 tail as �R . In Fig. 2, we plot the
imaginary part of the Keldysh self-energy of a site coupled to
a bath with temperature T/tB = 0.625 and chemical potential
μ/tB = −2.25 as a function of |t − t ′| on a log-log plot. The
analytic envelope of �K is plotted in the same figure with
a solid line. It matches with the numerically obtained results
remarkably well. Here, the chemical potential is kept below the
band bottom to avoid the pathological case of noninteracting
BEC in the bath. We note that in the limit μ → −2tB , i.e.,
a BEC transition is approached, the �K (ω) has a square-root
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FIG. 2. The imaginary part of the noise kernel (Keldysh self-
energy) �K

l (t − t ′) of a site l coupled to a bath with Tl = 0.625tB and
μl = −2.25tB as a function of |t − t ′| on a log-log plot. The system-
bath coupling in this case is ε = 0.3tB . Note that the absolute value
of the self-energy is plotted in this case. The solid line is the analytic
answer for the envelope of the leading power-law ∼|t − t ′|−3/2 decay
of the kernel. We use tB = 2 to set units of t − t ′ and �K (t − t ′).

divergence at ω = ±2tB and the power-law tail will change to
|t − t ′|−1/2.

The origin of the power-law tail can be traced back to
the fact that the bath spectral function J (ω) is nonanalytic
at ω = ±2tB . This is similar to Friedel oscillations [51] or
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction for
impurities in a Fermi gas, where the nonanalyticity of the
polarization function leads to power-law decays in space. We
will focus on a particular model of OQS with square-root
derivative singularity at the band edge of the density of states
of the bath in most of the parts of this paper, which will allow us
to obtain analytic expressions for various quantities. However,
the relation between power-law tails and singularities is very
robust, and we will work out the power-law exponents for
different types of nonanalytic spectral functions. For example,
one can consider the arrangement where each lattice site is
coupled to a one-dimensional bath, where the coupling is to a
central site of the bath (infinite 1D bath) as opposed to one end
of the bath (semi-infinite 1D bath). In this case, the bath spectral
function is J (ω) = �(4t2

B − ω2)(2/tB)[1 − ω2/(4t2
B)]

−1/2
.

Using the same formalism, the analytical expression for
�R(t,t ′) = −i�(t − t ′)2ε2J0(2tB |t − t ′|), which scales
as |t − t ′|−1/2 for large |t − t ′|. Another commonly used
spectral function [32] is J (ω) = �(ω) ωx

ωx+1
c

exp(− ω
ωc

), which
is a prototype of Ohmic (x = 1), sub-Ohmic (x < 1), and
super-Ohmic (x > 1) baths, respectively. In this case, we
obtain closed-form analytic solutions �R(t,t ′) = −i�(t −
t ′)ε2�[1 + x]/(2π )[1 + iwc(t − t ′)]−(x+1) ≈ |t − t ′|−x−1 in
the long-time limit. Finally, we consider the spectral density of
a two-dimensional (2D) square lattice which has a logarithmic
Van Hove singularity (not coming from the band edge) of
the form J (ω) ≈ 1/wc log (|w − w0|/wc) as ω → ω0. In
this case, we obtain �R(t,t ′) ≈ eiw0(t−t ′)sgn(t − t ′)/(t − t ′),
which decays as power law ∼|t − t ′|−1. This provides a
clear exposition of how the power-law exponent is related
to the nature of nonanalyticity in the bath spectral function.
We summarize these results in Table I, where the exact and
asymptotic forms are tabulated.

For bosonic baths, which can have a chemical potential,
HB must have a conserved particle number. In that case,
the spectrum of HB must be bounded from below to avoid
pathologies of condensation at infinitely negative energies, and
at least one nonanalytic point is guaranteed for the bath spectral
function. Non-Markovian dynamics is thus ubiquitous for
systems linearly coupled to such bosonic baths. Nonanalytic
J (ω) can occur due to a variety of reasons, e.g., Van Hove
singularities (both bosons and fermions), Kohn anomalies
(phonons) [42], non-Fermi liquids (fermions) [44], critical
fluctuations near a quantum phase transition (bosonic modes)
[43], etc. The non-Markovian dynamics can then be used to
detect the presence and nature of these nonanalyticities. If
the bath spectral function has sharp but nonsingular features,
the kernel will be an approximate power law for a large
intermediate time period before showing exponential decay
on the time scale at which the singularity is smoothed out.

In the next section, we obtain the analytic expression for
the Green’s function of a linear chain, which we will later use
to calculate correlation functions in the OQS.

IV. ANALYTIC GREEN’S FUNCTION
FOR A LINEAR CHAIN

We consider bosons hopping on a 1D chain of N sites
where each site is connected to an independent bath with its
own temperature and chemical potential. We note that this
arrangement is different from the standard transport setup [40],
where two reservoirs are connected to the two end sites of the
chain. We revert back to Eq. (5) and solve the Dyson equation
to obtain the exact retarded and Keldysh Green’s functions of
this model.

For the 1D chain, the retarded inverse propagator is a sym-
metric tridiagonal matrix: G−1R

ll′ = g[Dδl,l′ + δl,l′±1], where
DR(ω) = g−1[ω − �R(ω)] is independent of the site index.
This can be inverted [52] to obtain

GR
i,j (ω) = (−1)i+j Mi−1MN−j

gMN

for i < j (14)

and GR
i,j = GR

j,i for i > j , where

Mi = sinh[(i + 1)λ]

sinh[λ]
with cosh [λ] = D/2. (15)

The Keldysh Green’s function is then given by

GK
i,j (ω) = −iε2J (ω)

N∑
l=1

GR
i,l(ω) coth

(
ω − μl

2Tl

)
G∗R

j,l (ω).

(16)

To obtain a clear insight about the structure of the Green’s
function, we first consider a simplified toy model consisting of
two sites connected to two different baths [38]. In this two-site
model,

GR
α,α(ω) = D

g(D2 − 1)
and GR

α,ᾱ(ω) = −1

g(D2 − 1)
. (17)

For the bath spectral function given in Eq. (7), �R(ω) =
ε2ω/2t2

B − i(ε2/tB)[1 − (ω + iη)2/4t2
B]1/2. In this case, the
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TABLE I. Leading power-law decay in a dissipative kernel [�R(t − t ′)] at large t − t ′ for different nonanalytic bath spectral functions J (ω).

Physical model Form of J (ω) �R(t − t ′) ∼ Asymptotic limit

Semi-infinite 1D bath �(4t2
B − ω2) 2

tB

√
1 − ω2

4t2
B

J1(2tB |t−t ′ |)
|t−t ′ | |t − t ′|− 3

2

Infinite 1D bath �(4t2
B − ω2) 2

tB

1√
1− ω2

4t2
B

J0(2tB |t − t ′|) |t − t ′|− 1
2

Ohmic, sub- and super-Ohmic bath �(ω) ωx

ωx+1
c

exp(− ω

ωc
) �[1+x]

[1−iwc(t−t ′)]x+1 |t − t ′|−x−1

2D square lattice bath 1
wc

log ( |w−w0 |
wc

) −eiw0(t−t ′) sgn(t−t ′)
t−t ′ |t − t ′|−1

Green’s functions GR(z) have isolated poles at z0, where

z0 = g

1 − ε2

t2
B

[
1 − ε2

2t2
B

]
− i

ε2

tB

(
1 − ε2

t2
B

)[
1 − g2

4t2
B

− ε2

t2
B

]1/2

.

(18)

For g2/4 + ε2 < t2
B, z0 has a finite imaginary part leading

to an exponential decay in GR(t,t ′) with a rate γ ≈ ε2/tB .
For g2/4 + ε2 > t2

B , the pole is on the real axis (outside the
bandwidth), leading to an oscillation in the long-time limit,
similar to the behavior found by Nori et al. in Ref. [32]. In
this paper we will focus on the regime where the presence of
the bath leads to damping in the system. Even in this case,
there is an additional nonanalyticity in GR(ω) at ω = ±2tB ,
inherited from the nonanalytic nature of �R(ω). A careful
analysis (see Appendix A) shows that the nature of the leading
nonanalyticity of GR(ω) is the same as that of �R(ω). This
leads to a power-law tail at long time with GR(t − t ′) ≈ (t −
t ′)−3/2. The Keldysh Green’s function also inherits the same
power-law tail in long time, as can be easily seen from Eq. (16).
In Figs. 3(a) and 3(b), we plot respectively the retarded Green’s
function GR

12(t − t ′) and the real part of the Keldysh Green’s
function GK

12(t − t ′) for the two-site model as a function of
time in a log-log plot. The plots are obtained for a system with
ε = 0.3tB and g = 0.5tB connected to two independent baths
of common temperature T = 0.625tB and chemical potential
μ1 = −2.5tB and μ2 = −5tB . At short times, the Green’s
functions are dominated by the exponential decay from the
poles, while the long-time behavior is governed by the power
law due to the nonanalytic J (ω). The power law is clearly
visible after the exponential part has decayed, i.e., beyond a
time scale τ0 = γ −1 ≈ tB

ε2 , which is marked in the figures with
an arrow. τ0 is large at weak system-bath coupling, and we
recover a quasi-Markovian dynamics for a long time, t < τ0,
which finally crosses over to a non-Markovian regime for t >

τ0. However, at strong system-bath coupling, τ0 is very short
and the dynamics is mostly governed by the non-Markovian
power-law decay in the memory kernels. Thus, it would be
easier to detect observable consequences of non-Markovian
dynamics at large ε. τ0 has a very weak dependence on
temperature and is essentially set by the system-bath coupling.
We emphasis that in spite of the presence of a scale τ0 in the
system dynamics, we cannot coarse grain over this scale and
obtain a Markovian description, as we are then left with the
power-law decay of the Green’s function.

The characteristic features shown by the two-site system
is carried over to the solution for the N site system
given in Eq. (14). In this case, the poles are given by

sinh[(N + 1)λ] = 0, where the location of the poles satisfies

z0(1 − ε2/2t2
B) + iε2/tB

√
1 − z2

0/4t2
B = 2g cos[mπ/(N +

1)], with m = 1,2,...N [53]. The pole has a positive imaginary
part γ ≈ ε2/tB for g2 cos2[π/(N + 1)] + ε2 < t2

B . With this
modification, a similar structure of an exponential decay
followed by a power-law tail is also obtained in this case. We
consider a N = 50 site chain with ε = 0.3tB and g = 0.5tB ,
connected to independent baths with common temperature
T = 0.625tB and a chemical potential profile which varies
linearly with the site number of the system going from
μ1 = −2.5tB and μ50 = −5tB . In Figs. 3(c) and 3(d), we
respectively plot the retarded Green’s function GR

i,j (t − t ′)
and the real part of the Keldysh Green’s function GK

i,j (t − t ′)
of the system as a function of time in a log-log plot. We
have used i = 16 and j = 18 to avoid the boundary of the
chain. These Green’s functions also show a quasi-Markovian
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FIG. 3. (a, b) Green’s functions of a two-site system connected
to two baths with μ1 = −2.5tB and μ2 = −5tB , plotted as a function
of t − t ′ for (a) GR

1,2 and (b) Re[GK
1,2]. (c, d) Green’s functions for a

N = 50 site chain, where each site is connected to an independent
bath, plotted as a function of t − t ′ in (c) GR

16,18 and (d) Re[GK
16,18].

The baths have a μ profile linearly varying with site number,
with μ1 = −2.5tB and μ50 = −5tB . Note that absolute values are
plotted in the log-log plot. All the Green’s functions show an initial
exponential decay, followed by a power-law tail ∼|t − t ′|−3/2. The
arrows mark the crossover time scale between exponential decay and
the non-Markovian power-law tail, τ0 = γ −1 ≈ tB/ε2. All graphs
are calculated for system hopping g = 0.5tB , system-bath coupling
ε = 0.3tB , and uniform bath temperature T = 0.625tB .
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FIG. 4. (a) Change in occupation of ground state (δn+) of a two-site system with g = 0.5tB as a function of system-bath coupling ε (solid
lines) for coupling to a bath with common μ = −2.25tB and common temperature T = 0.5tB and T = 1.25tB . Also plotted are the distribution
functions obtained from the Markovian master equation given in Ref. [38] (dotted line). The exact answer deviates from the Markovian results
as ε increases. The deviation increases with temperature. (b) Occupation number of the two sites and (c) current through a two-site system with
g = 0.25tB , coupled to two baths with common temperature T = tB and chemical potentials μ1 = −2.5tB and μ2 = −5.0tB as a function of ε.
In (c) the current is also plotted for a system with g = 0.5tB . The steady-state current deviates from the quantum master equation result given
in Ref. [38] for ε > g. (d) Number density profile (measured with respect to density of the N th site) and (e) current profile for a N = 250 site
chain, where each site is connected to an independent bath. The baths have a μ profile linearly varying with site number, with μ1 = −2.25tB
and μ250 = −5tB . In (d) the common temperature for the baths are T = 0.33tB,0.5tB,tB , while in (e) T = 0.17tB,0.25tB,0.5tB . In both cases
ε = 0.2tB and g = 0.5tB . Both density and current profiles show an exponential decay. The length scale of the decay ξ is plotted as a function
of T in (f). The length scale increases linearly with T .

exponential decay followed by a non-Markovian |t − t ′|− 3
2

decay, similar to those found in the two-site system.
In the next section, we will construct experimentally ac-

cessible quantities which can clearly distinguish between the
quasi-Markovian and non-Markovian dynamics and discuss
the observable consequences of long-range memory kernels.

V. OBSERVABLES IN STEADY STATE

In this section, we focus on experimental observables which
can detect non-Markovian behavior in these open quantum
systems. We will divide these observables into two classes:
(i) equal-time observables like occupation numbers and cur-
rents and (ii) unequal-time current-current correlators. While
the first class of observables shows interesting quantitative
deviations from Markovian answers, especially in the limit
of large system-bath couplings, the unequal-time correlators
show qualitatively different behavior indicating the presence
of non-Markovian power-law tails.

A. Equal-time correlators

We will study two types of equal-time correlators: (a)
occupation number of sites or eigenmodes and (b) current
through the system. We first consider the two-site problem. In
absence of any coupling to the bath, the system Hamiltonian
can be diagonalized to obtain two states at E = ∓g with mode
operator A± = (1/

√
2)(a1 ± a2). The first observable we focus

on is the occupation number of these modes, n±. The change

in occupation number of the modes is due to coupling to baths,

δn± = i
4

∑
α

∫
dω

2π

[
GK

α,α(ω) ± GK
α,ᾱ(ω)

]
. (19)

We first consider the case where a system with g = 0.5tB is
coupled to two baths kept at the same temperature and chemical
potential. In Fig. 4(a) we plot the change in occupation of the
ground state δn+ in solid (red and green) lines as a function of
the system-bath coupling ε for two different bath temperatures,
T = 0.5tB andT = 1.25tB . The common chemical potential of
the baths is μ = −2.25tB . We have also plotted the distribution
function obtained from the Markovian description given in Ref.
[38], n+

eq = [e
−g−μ

T − 1]−1, in dotted lines. The exact steady-
state distribution approaches the Markovian answer at small ε

but starts deviating as ε grows. This deviation increases with
the temperature of the bath. However, the one-particle Green’s
functions of the two-site system do satisfy the fluctuation dissi-
pation relation, GK

α,α(ω) = 2iIm[GR
α,α(ω)] coth [(ω − μ)/2T ],

indicative of thermalization of the system.
We now consider the steady state where the two baths

coupled to the two sites are kept at same T , but different μ.
In this case, a finite current flows through the system and it
is simpler to analyze the system in the site basis. The change
in the local occupation numbers, δn1 and δn2, is plotted with
ε in Fig. 4(b) for T = tB and g = 0.25tB, μ1 = −2.5tB , and
μ2 = −5.0tB . As ε increases, the influx of particles to site 1
increases, but the probability of particles tunneling from site 1
to 2 saturates when ε � g. The steady-state number density on
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site 1 then needs to increase to match the outflux with the influx,
as seen in Fig. 4(b). The density at site two simultaneously
shows a decrease with ε in the same regime, since the influx to
site 2 has saturated. The number density at site 2 then needs to
decrease to to maintain a steady current. Finally, the current,
Il = ig〈a†

l al+1 − a
†
l+1al〉, in the link between sites l and l + 1

is given by

Il = g

∫
dω

2π
Re

[
GK

l,l+1(ω)
]
. (20)

The current on the link between site 1 and 2 is plotted as a
function of ε in Fig. 4(c) for two different values of g = 0.5tB
and 0.25tB . The current matches with the Born-Markov answer
obtained through the solution of Redfield’s equations [38] in
the small ε limit and deviates from the master equation result
for ε � g. At small ε, the current in the system is constrained
by exchange of particles between baths and sites of the system.
Any particle that has reached site 1 can be thought to be
delocalized to site 2 on a time scale g−1 with g−1 << ε−1

in the Markovian limit. For ε � g, this is no longer true and
steady-state current is constrained by the hopping rate g and
becomes almost independent of ε for ε >> g. This leads to
the saturating trends seen in Fig. 4(c). The increase of n1 and
decrease of n2 in Fig. 4(b) is a consequence of this bottleneck
between sites 1 and 2.

We now consider a linear chain of N sites where each
site l is connected to an independent bath of temperature Tl

and chemical potential μl . We focus on the situation where
the baths have a fixed temperature Tl = T and a chemical
potential linearly varying with space, i.e., μl = μ1 + ν(l −
1). Specifically, we look at a N = 250 site system with
g = 0.5tB, ε = 0.2tB, μ1 = −2.25tB , and μ250 = −5tB . The
density profile in the system shows an exponential decay with
site number on top of a constant value, as seen in a semilog plot
in Fig. 4(d), where the local density is measured with respect to
the density at the N th site. We plot the density profile for three
different temperatures, T = 0.33tB,0.5tB,tB . We find that the
decay length scale increases with temperature. The current
through the link between sites l and l + 1, Il , is plotted as
function of l in Fig. 4(e). The current initially increases with
distance from the boundary, then settles into an exponential
decay over a large range of sites, as seen in the linear graph in
the semilog plot. We plot the current profile for three different
temperatures, T = 0.17tB,0.25tB,0.5tB . Once again we find a
decay length scale increasing with temperature. In Fig. 4(f), we
plot the decay length from the current profile ξ as a function of
temperature and show that ξ is proportional to T . In the extreme
classical limit, when T → ∞, the system shows a constant
current independent of the link number. The exponential decay
and the variation of the decay length with temperature can
be understood from the exact Green’s function for the linear
chain, as shown in Appendix B. We have checked that a similar
exponential decay is also seen when the temperature of the
baths varies linearly in space while the chemical potential is
kept fixed.

B. Unequal-time correlators

The density and current profiles in the open quantum system
show important quantitative traits as a function of the system-
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FIG. 5. Unequal-time current-current correlator Ckl(t − t ′) is
plotted as a function of |t − t ′| for (a) an N = 2 site model and (b)
an N = 50 site chain with k = 16,18. Here each site is connected
to a bath. The baths have common temperature T = 0.625tB and
linearly varying μl , where μ1 = −2.5tB, μN = −5.0tB, g = 0.5tB .
In (a) the blue dots correspond to ε = 0.1tB while the orange line
corresponds to ε = 0.9tB . In (b) the blue dots correspond to ε = 0.4tB
while the orange line corresponds to ε = 0.9tB . It shows a short-
time exponential decay followed by a non-Markovian power-law
tail ∼|t − t ′|−3 in the long-time limit. The power-law tail appears
at shorter times as ε increases.

bath coupling. However, they do not provide a smoking-gun
signature of the underlying non-Markovian dynamics. This
is provided by the unequal-time density-density or current-
current correlator, which shows a long-time power-law decay
with an exponent that is twice the exponent of the power-law
tail in � and G. Here we compute the unequal-time current-
current correlator, which is given by

Ckl(t − t ′) = 〈Ik(t)Il(t
′)〉 = g2[G<

l+1,k(t ′,t)G>
k+1,l(t,t

′)

+G<
l,k+1(t ′,t)G>

k,l+1(t,t ′) − (l ↔ l + 1)],

(21)

where G>(<) = [GK ± (GR − GA)]/2. We note that we have
considered here a current-current correlator symmetrized be-
tween the forward and backward contours; however, the
qualitative statements we make are also true for a normal
ordered correlator. We first focus on the two-site system.
In Fig. 5(a), we plot C1,1(t − t ′), normalized by I 2

1 , as a
function of t − t ′ on a log-log plot. We plot the correlator for
two values of ε: a weak system-bath coupling of ε = 0.1tB
(blue circles) and a strong system-bath coupling of ε = 0.9tB
(orange line). The graphs are obtained for a system with
g = 0.5tB , coupled to two baths with common T1 = 0.625tB
and chemical potentials μ1 = −2.5tB and μ2 = −5.0tB . In
the weak-coupling limit (ε = 0.1tB ), we see that C1,1(t − t ′)
decreases exponentially in time before crossing over to a
power law C1,1(t − t ′) ≈ |t − t ′|−3 at a very large time ∼tB/ε2.
However, by this time the correlator has decayed by orders
of magnitude and the power-law tail may be hard to observe
experimentally. Thus, although the behavior of the system is
not Markovian in the long-time limit, experiments may see an
effectively Markovian dynamics. However, at large ε ≈ 0.9tB ,
the initial exponential dynamics is extremely short lived and
the power-law tail in the autocorrelation function should be
clearly visible in the experiments. This observable can hence
be used to identify non-Markovian dynamics in the system and
detect the nature of nonanalyticity in the corresponding bath
spectral function. Further, one can tune the system dynamics
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from “quasi” Markovian to non-Markovian by tuning the
system-bath coupling in these OQS.

We now consider the current-current correlations in a linear
chain of N = 50 sites coupled to independent baths of fixed
temperature and linearly varying chemical potential. We ignore
the boundary regions (where the current is not exponentially
decaying) and focus on the middle of the chain. In Fig. 5(b),
we plot the current-current correlator Cij (t − t ′) as a function
of t − t ′ by fixing i = 16 and j = 18 for a system with
g = 0.5tB coupled to baths with μ1 = −2.5tB, μ50 = −5.0tB ,
and T = 0.625tB . The current-current correlation function
is normalized by I16I18 in this case. Once again, we plot
Ci,j (t − t ′) for two values of ε: (i) a moderate value of ε =
0.4tB (blue dots), where an exponential decay is followed by
a slow decrease |t − t ′|−3, and (ii) a large ε = 0.9tB , where
the exponential decay is almost invisible and the power-law
decay dominates. This regime should be easily observed in
experiments.

C. Connection with survival probability

Non-Markovian dynamics has been traditionally studied by
observing nonexponential decay [45,46] of survival probability
of a particular state/density matrix in time. This was first
proposed to a closed system, where a discrete mode couples to
a semi-infinite continuum by Khalfin et al. [45] and recently
extended to provide bounds on decay in the presence of baths
by Beau et al. [47]. The detailed calculation of survival proba-
bility of a generic density matrix is beyond the current scope of
Keldysh field theory, which can only treat situations in which
the system is initially in a thermal state. We can, however, relate
the power-law tails in the Green’s functions in our formalism
to the power laws seen in the behavior of survival probability,
especially for noninteracting systems. To see this, consider
an initial state where a particular mode α has occupation
number n0 at initial time t = 0. The occupation probability
of that level at time t is nα(t) ≈ 0.5[(2n0 + 1)|GR(t,0)|2 +
i
∫ t

0

∫ t

0 dt1dt2G
R(t,t1)�K (t1,t2)GR∗(t,t2) − 1], where the first

term represents propagation which keeps the particle in the
excited state, with |GR(t,0)|2 giving the probability of sur-
viving in this state. Note that this term does not depend on the
bath temperature (occupation of bath modes). The second term,
which is independent of the initial condition, represents the
fluctuations in the occupation due to stochastic exchange with
the bath, and hence depends on the temperature of the bath. In
a Khalfin-like picture [45], where a semi-infinite continuum is
present in a closed system, only the first term would contribute
and hence the occupation should decay as |GR(t,0)|2 ≈ 1/t3 in
our specific example. In addition to providing a continuum to
scatter from, the bath also provides a stochastic contribution to
the occupation number, which should in principle be captured
by the extension of Khalfin’s work [47]. We can show that the

second term leads to a constant occupation in the long-time
limit, but this constant value is approached as a power law
∼1/t3. Thus the occupation of the mode will decay from its

initial value to a constant value, but dnα/dt ≈ 1/t4 for large
times in this system. We note that dnα/dt is related to the
fluorescence intensity measured in Ref. [49]. Our connection
of the power-law exponent with the nonanalyticities can be
used to analyze these experiments.

VI. FERMIONIC SYSTEM COUPLED
TO FERMIONIC BATHS

The formalism developed in the previous sections for
treating a bosonic open quantum system with non-Markovian
dynamics can be easily modified to treat a system of fermions
interacting with fermionic baths. The key features, which make
it exactly solvable, are noninteracting Hamiltonians for the
system and bath and a linear system-bath coupling. As long as
these conditions are met, minor changes in the formalism allow
us to treat the fermionic system with similar power-law tails
obtained for self-energies, Green’s function, and unequal-time
correlators.

For fermions, the Keldysh field theory is set up in terms of
doubled Grassmann fields χ± and their conjugates χ∗

±. The
only difference from the bosonic theory is that it is more
convenient to work in terms of χ1(2) = [χ+ ± χ−]/

√
2 and

χ∗
1(2) = [χ∗

+ ∓ χ∗
−]/

√
2, which take care of anticommutation

relations between fermionic fields in a natural way. We
consider a fermionic chain, where each site is coupled to
an independent fermionic bath with its own temperature and
chemical potential. The Hamiltonian of the system is given by
Eqs. (1) and (2), with a

†
l and B(l)†

α now representing fermionic
creation operators. The Keldysh action for the system is given
by

Ss =
∑
l,l′

∫
dωχ

†
l (ω)

[
G−1R

0 (l,l′,ω) G−1K
0 (ω)δl,l′

0 G−1A
0 (l,l′,ω)

]
χl′(ω),

Sb =
∑
l,α

∫
dωξ †(l)

α (ω)

[
ω − �α + iη 2iηFl(�α)

0 ω − �α − iη

]
ξ (l)
α (ω),

Ssb = −ε
∑
l,α

∫
dωκαξ †(l)

α (ω)χl(ω) + H.c., (22)

where χ
†
l = [χ∗(l)

1 ,χ
∗(l)
2 ] are the system fields and ξ †(l)

α =
[ξ ∗(l)

1,α ,ξ
∗(l)
2,α ] are the fields for bath degrees of freedom in

eigenbasis. The main difference from the bosonic case is
the equilibrium distribution function of the fermionic baths
Fl(�α) = tanh ( �α−μl

2Tl
). Integrating out the bath degrees of

freedom, we obtain the action for the reduced dynamics of
the system,

Soqs =
∑
l,l′

∫
dωχ

†
l (ω)

[
G−1R

0 (l,l′,ω) − �R(ω)δl,l′ −�K
l (ω)δl,l′

0 G−1A
0 (l,l′,ω) − �A(ω)δl,l′

]
χl′(ω), (23)

where �R(ω) is given by Eq. (8), just as in case of bosons, while the Keldysh self-energy �K
l (ω) is given by

�K
l (ω) = −iε2J (ω) tanh

(ω − μl

2Tl

)
. (24)
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ε=0.9tB

FIG. 6. The current-current correlator C11(t − t ′) (normalized by
I 2

1 ) is plotted for a two-site fermionic system with g = 0.5tB , coupled
linearly to two fermionic baths of the same temperature T = 0.625tB
and chemical potentials μ1 = −2.5tB and μ2 = −5.0tB . It shows a
short-time exponential decay followed by a non-Markovian power-
law tail ∼|t − t ′|−3 in the long-time limit. The power-law kernel
appears at shorter times as ε increases.

The Keldysh self-energy function for the fermionic case can
thus be obtained from the bosonic case by replacing coth (ω−μl

2Tl
)

by tanh ( ω−μl

2Tl
), as one would expect due to different statistics

of particles.
With this replacement, all the expression for the Green’s

functions and observables, obtained in Secs. III, IV, and V
for a bosonic system, can be used for the fermionic system as
well. We note that, unlike the bosonic case, there is no reason
to place the bath chemical potentials below the band bottom
for the fermionic baths. The self-energies in real time show
similar power-law behavior �R(t − t ′) ≈ �K

l (t − t ′) ≈ |t −
t ′|− 3

2 for large time, with the power law originating from the
nonanalyticities in the bath spectral function given by Eq. (7).
However, it is harder in this case to give an interpretation
to self-energies, since fermions do not have a classical limit
and it is impossible to talk about a “classical saddle point”
for noninteracting fermionic action. We note that the mere
presence of the singularity in the bath spectral function is
enough to generate the power-law tail; the singularity does
not need to be either close to the spectral gap of the system
or to the chemical potential of the bath. The Green’s functions
then inherit this power law along with an exponential decay,
which also gets reflected in the long-time behavior of the
density-density autocorrelation function and current-current
correlation function, similar to the bosonic system considered
earlier. Working with the two-site fermionic system, we plot
C1,1(t − t ′) = 〈I1(t)I1(t ′)〉, normalized by I 2

1 , as a function
of t − t ′ on a log-log plot in Fig. 6 for a system with g =
0.5tB coupled to baths with μ1 = −2.5tB, μ2 = −5.0tB , and
T = 0.625tB . The current-current correlator clearly shows an
exponential decay followed by a power-law tail ∼|t − t ′|−3,
as seen in the bosonic system. Once again, the power law
dominates the dynamics and leads to large values of the
correlators for long t − t ′ at strong system-bath coupling.

We have obtained exact solutions for Green’s functions of
1D noninteracting bosonic and fermionic chains coupled to
independent baths and demonstrated non-Markovian behavior

in both systems. An obvious question is how the interaction
among system degrees of freedom, which is inadvertently
present in any realistic system, affects the description we have
obtained here. In the next section, we try to answer this question
by focusing on the bosonic system and making a mean-field
approximation to the underlying interaction terms.

VII. EFFECT OF INTERACTION

We consider the case of an interacting chain of bosons
coupled linearly to independent noninteracting bosonic baths.
In addition to the hopping g, the system bosons are interacting
with each other with a local repulsion U and nearest-neighbor
repulsion V , i.e., we add to the Hamiltonian given by Eq. (1)
a term

Hint = U
∑

i

n̂i(n̂i − 1) + V
∑

i

n̂i n̂i+1, (25)

where n̂i = a
†
i ai is the density at site i. The bath degrees of

freedom can be integrated out as before to obtain the quadratic
dissipative action Soqs [Eq. (5)]. This action and its associated
Green’s functions can then be used as a free theory around
which we consider the effects of interactions. The Keldysh
action corresponding to the interparticle interaction is given
by [54]

Sint = −U

2

∑
l

∫
dtφ

∗(l)
cl (t)φ(l)

cl (t)φ∗(l)
cl (t)φ(l)

q (t)

− V

2

∑
l

∫
dtφ

∗(l)
cl (t)φ(l)

cl (t)φ∗(l±1)
cl (t)φ(l±1)

q (t)

+ H.c. + cl ↔ q. (26)

We consider the effect of this interaction on the Green’s
functions within mean-field theory. This is equivalent to con-
sidering the one-loop corrections to the self-energy, shown in
Figs. 7(a) and 7(b) for the Keldysh and retarded self-energies.
Note that the Keldysh self-energy correction vanishes because
GR(t,t) + GA(t,t) = 0 [41], while the retarded self-energy
due to the interaction is purely real. This is related to the
fact that the one-loop terms do not lead to redistribution of
energy among the modes. The corrections to self-energy �R

induced by the interaction term are given by �I
ii = Uni,i +

(V/2)ni±1,i±1 − U , and �I
i,i+1 = (V/2)(ni,i+1), where nij =

i
∫

(dω/2π )GK
i,j (ω). The retarded self-energy due to interparti-

cle interaction changes the retarded Green’s functions obtained
from (G−1R

l,l′ − �I
l,l′ )

−1, where G−1R already includes self-
energies induced by the bath. These retarded Green’s functions
in turn change GK through GK = GR�KGA, where �K is
the Keldysh self-energy induced by the bath. (The interaction
contribution to it is zero, as shown above.) The Keldysh Green’s
function used in calculating the retarded self-energy shown in
Fig. 7(b) is this renormalized GK , obtained self-consistently.
Hence, this completes a self-consistency loop. The mean-field
approximation is then equivalent to resummation of a particular
set of loop diagrams. From an equation of motion perspective,
this is also equivalent to solving the stochastic Gross-Pitaevskii
equation [55].

A key question we want to answer is how does the interac-
tion affect the non-Markovian dynamics? We have seen earlier
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FIG. 7. (a, b) Feynman diagrams corresponding to (a) Keldysh
and (b) retarded self-energy due to interparticle interactions in a two-
site bosonic system coupled to an external bath in the mean-field
approximation. The correction to Keldysh self-energy vanishes. The
loop propagator in (b) is the self-consistent Keldysh Green’s function.
(c) The real part of the local Keldysh Green’s function GK

11(t,t ′) for
a two-site bosonic system coupled to two baths plotted as a function
of t − t ′ in a semilog plot. In both cases the bath temperature T =
0.625tB and chemical potentials μ1 = −2.5tB and μ2 = −5.0tB . The
systems have a hopping g = 0.5tB and system-bath coupling ε =
0.2tB . The orange line is for a noninteracting system, while the blue
circles are for an interacting system with U = 0.75tB and V = 0.6tB .
The interaction increases the crossover scale but does not eliminate
the power-law tail.

that the Green’s functions and unequal-time observables for
noninteracting systems show a pattern of exponential decay
at short times, which crosses over to a power-law tail with
exponent fixed by the nature of the nonanalyticity in the bath
spectral function. We can then ask if the power-law tail survives
in the interacting system, and, if it survives, whether the
crossover time scale increases or decreases with the interaction
strength.

In order to gain analytic insight into the problem, we
once again consider the case of a chain with two sites.
In this case, �I

11 = Un11 + (V/2)n22 − U,�I
22 = Un22 +

(V/2)n11 − U , and �I
12 = (V/2)n12. The retarded Green’s

function is then given by

GR(ω) = 1

Q(ω)

[
ω − �R − �I

22 −g + �I
12

−g + �∗I
12 ω − �R − �I

11

]
, (27)

where Q(ω) = [ω − �R − �I
11][ω − �R − �I

22] − |�I
12 −

g|2. Considering the denominator of Eq. (27), we find that
the poles of the Green’s function are shifted from z0 in the
noninteracting case to z±, where z± is obtained from z0 [given
in Eq. (18)] by replacing g with c± = a ±

√
b2 + |g̃|2.

Here a(b) = (�I
11 ± �I

22)/2, and g̃ = −g + �I
12. The

interaction-induced self-energy splits the single pole
of the noninteracting case into two. Using the fact that
a = (U + V/2)(n1 + n2) + V/2, where n1(2) are the densities

at site 1(2), one can show that a > 0 and hence c+ > g for
small �12. We have checked that �I

12 is not large enough
to change this argument for a wide range of U and V (see
Appendix C for details). Comparing z+ and z0, we then see
that z+ has a smaller imaginary part compared to z0. This
leads to an exponential decay slower than the noninteracting
case. The power-law tail survives (in fact, it can be shown
to survive to all orders in perturbation theory), but the
crossover scale is further pushed out because of the slower
exponential decay. In Fig. 7(c), we plot the real part of the
Keldysh Green’s function GK

1,1 of the two-site system with the
same noninteracting parameters g = 0.5tB, ε = 0.2tB , bath
temperature T = 0.625tB, μ1 = −2.5tB, μ2 = −5.0tB for
two cases in a semilog plot: (i) the noninteracting case plotted
with orange lines and (ii) the interacting system plotted with
blue circles for U = 0.75tB and V = 0.6tB . We clearly see
that crossover to the power-law tail is pushed out to larger
values of |t − t ′| for the interacting case. In Appendix C, we
have shown how the crossover time scale changes with U and
V for a range of interaction strengths.

The fact that the exponential decay is slowed down in the
presence of the interaction seems odd, given our expectation
of faster decay due to scattering events. This is due to the
fact that the mean-field theory misses processes leading to
redistribution of energy, which contribute at two loops or higher
order. The one-loop corrections lead to the dressing of the
one-particle Green’s function (to form quasiparticles) without
leading to additional energy relaxations. Thus, although the
mean-field theory is nonperturbative in interaction strength, we
expect that at larger interaction strengths, additional processes
may increase the rate of exponential decay of the Green’s
function, thus pulling back the time scale for crossover from
“quasi” -Markovian to non-Markovian dynamics in the system.

VIII. CONCLUSIONS

We have used a Schwinger-Keldysh field theory to describe
the dynamics of a bosonic (fermionic) system coupled linearly
to a noninteracting bosonic (fermionic) bath. Integrating out
the bath degrees of freedom, we obtain the effective dissipative
action for the open quantum system. We identify the retarded
and Keldysh self-energies induced by the bath with the dissi-
pative and noise kernel in a nonlocal stochastic Schrodinger
equation. We show that the presence of nonanalyticities in the
bath spectral function leads to power-law tails in these kernels
for both bosonic and fermionic system. The exponent of the
power law is governed solely by the nature of the nonanalyticity
and is independent of the location of the nonanalyticity. This
leads to retarded and Keldysh Green’s functions showing
an exponential decay followed by a power-law tail with the
same exponent as the kernels. The crossover time scale is
set by the system-bath coupling and decreases quadratically
with increasing system-bath couplings. It is independent of
the temperature and chemical potential of the baths. Thus
the non-Markovian dynamics, characterized by the power-law
tails, are easier to observe in systems with stronger system-
bath couplings. We note that for bosonic baths with chemical
potentials, the spectrum must be bounded from below, ensuring
at least one point of nonanalyticity, and hence non-Markovian
dynamics will be ubiquitous in such systems. The power-law
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tails in the Green’s functions lead to corresponding power laws
in unequal-time correlators like the current-current correlator,
which can be measured by noise spectroscopy.

As a concrete example, we consider a linear chain of bosons
(fermions) hopping between nearest neighbors, where each site
is coupled to an independent bath of noninteracting bosons
(fermions). The bath consists of another one-dimensional
lattice of bosons (fermions) with nearest-neighbor hopping.
We consider a linear coupling between the system and the
bath, where the system is coupled to an edge site of the bath.
This leads to a bath spectral function which has square root
derivative singularities at the band edge of the bath, leading to
a (t − t ′)−3/2 power law in the dissipative and noise kernels.
We obtain analytic expressions for the self-energies and hence
for the exact Green’s functions of the open quantum system
of a 1D chain, and verify the existence of the power-law tails.
We use a two-site model with simpler expressions for Green’s
functions to illustrate the main features, before showing that
the features are retained in the exact Green’s functions for the
full 1D chain.

We focus our attention on two classes of observables in
the open quantum system: equal-time correlators like density
and current, and unequal-time correlators like current-current
correlation functions. We first consider a two-site system
coupled to two baths of the same temperature and chemical
potential and show that the steady-state mode occupation
numbers deviate from the thermal equilibrium answers with
increasing strength of the system-bath couplings, which cannot
be explained by a simple dressing of the system spectrum. For
the same system, if the two baths are kept at different chemical
potentials, as the system-bath coupling becomes larger than
the hopping within the system, both local densities and current
through the system deviates from the answers provided by
the quantum master equation approach. The densities show
a pileup on one site compared to the other, while the current
saturates for ε > g. We then consider the 1D chain, with sites
coupled to independent baths at the same temperature, but
with a chemical potential profile. For a linear variation of μ

with space, we find an exponential decay of the current with
distance. The density also shows an exponential variation in
space on the top of a constant value. The length scale obtained

from the decay of the current increases with temperature,
with a spatially independent current obtained in the limit of
infinite temperature. This behavior of the current is understood
analytically from the exact Green’s function obtained for the
chain.

We next focus our attention on the unequal-time current-
current correlators and show that they follow a pattern similar
to the Green’s functions: a short-time exponential decay,
followed by a power-law tail ∼(t − t ′)−3. This occurs both
in the two-site system and in the linear chain, and is common
to both bosonic and fermionic systems. The time scale for
the crossover from exponential to power-law decay decreases
while the value of the correlator in the power-law regime
increases with system-bath coupling. These power-law tails
can then be used to detect nonanalyticities in the bath spectral
functions, and hence possible phase transitions in the baths.

We finally consider the effect of interactions on the above
picture. The power-law tails survive to all orders in pertur-
bation theory in the interaction strength. Within a mean-field
theory for the bosonic two-site system, which is equivalent to
solving a stochastic Gross-Pitaevskii equation, we find that the
exponential decay slows down and the crossover time scale
for observing the power-law tails is pushed to larger values.
We understand this analytically in terms of the structure of
the Green’s functions in the system. Increasing interaction
strength should, in principle, lead to a larger scattering rate
and hence to faster decays, but such two-loop processes
redistributing energy are not captured within the mean-field
theory. This needs to be further investigated, although our
prediction of a larger crossover time scale should hold in the
weakly interacting interacting system.
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APPENDIX A: POWER-LAW TAILS AND NONANALYTIC BATH SPECTRAL FUNCTIONS

In Secs. III and IV of the main text, we have claimed that the nonanalyticity of the bath spectral function leads to power-law
tails in self-energies and Green’s functions using Keldysh formalism. We have also claimed that the exponent of the power
law depends solely on the nature of the nonanalyticity and is independent of its location. In the main text we had shown
this with an exact expression for retarded self-energy for the spectral function of a semi-infinite bath having J (ω) = �(4t2

B −
ω2)(2/tB)[1 − ω2/(4t2

B)]
1/2

. In this Appendix, we make the connection between nonanalyticities of J (ω) and power-law tails
clearer by showing the relation between the nonanalyticity and the exponent of the power law for �K (t − t ′) and GR/K (t − t ′)
for the semi-infinite bath, where the Fourier transform cannot be obtained in a closed form. To do this, we will first focus on
nonanalyticity in �K (ω) for J (ω) = �(4t2

B − ω2) 2
tB

√
1 − ω2

4t2
B

and show how this is connected to the power-law exponent. This

connection will help up in understanding the nature of the power law for any nonanalytic spectral function, if we know its
leading-order nonanalytic piece. We will then use this argument to show that �K (ω),GR(ω),GK (ω) all have the same leading
singularity, and hence the same power-law tail appears in their long-time profile. The Keldysh self-energy is given by

�K
l (t − t ′) = −iε2

∫
dω

2π
J (ω) coth

[
ω − μl

2Tl

]
e−iω(t−t ′). (A1)
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We note that the chemical potential μl < −2tB and hence coth [ω−μl

2Tl
] is a smooth function in the integration range and J (ω)

and hence �K (ω) is nonanalytic only at ω = ±2tB . Expanding w = ±2tB(1 − δ) we get J (ω) ≈ δ
1
2 for δ → 0+ and hence

the integrand I(ω) = 1
2π

J (ω) coth [ω−μl

2Tl
] can be expanded as I[±2tB(1 − δ)] = ∑∞

n=0 C±
n δn+ 1

2 , where C±
0 =

√
2

πtB
coth [±2tB−μl

2Tl
].

Considering the combination of the nonanalytic piece, we get

�K (t − t ′) = −iε22tB

∞∑
n=0

[ ∫ 1

0
dδC+

n δn+ 1
2 e−i(1−δ)τ +

∫ 1

0
dδC−

n δn+ 1
2 ei(1−δ)τ

]

= −iε2 2tB

τ
3
2

[
e−iτ

∫ τ

0
dz

∞∑
n=0

C+
n

τ n
zn+ 1

2 eiz + eiτ

∫ τ

0
dz

∞∑
n=0

C−
n

τ n
zn+ 1

2 e−iz
]
, (A2)

where τ = 2tB(t − t ′), z = δτ , and the subscript l is dropped here for notational convenience. These integrations can be performed
in the form of an incomplete � function �(α,z),∫ τ

0
dzzn+ 1

2 eiz = −(−i)−n− 3
2

[
�

(
n + 3

2
,−iτ

)
− �

(
n + 3

2
,0

)]
, (A3)

which has its asymptotic form,

�

(
n + 3

2
,−iτ

)
= eiτ (−iτ )n+ 1

2

[
1 + i

τ

(
n + 1

2

)
+ O

(
1

τ 2

)]
.

Using this and substituting the values of C±
0 , we obtain �K (t − t ′), which is given by Eq. (A4). It is thus clear that the leading-order

power-law tail in �K (t − t ′) goes as |t − t ′|− 3
2 ,

�K (t − t ′) ∼ −iε2tB

√
π

|2tB(t − t ′)|3 ((−i)−
3
2 e−i2tB (t−t ′)C+

0 + (i)−
3
2 ei2tB (t−t ′)C−

0 ) + O
(

1

τ 2

)

∼ −iε2

√
2

π |2tB(t − t ′)|3
(

e−i[2tB (t−t ′)− 3π
4 ] coth

[
2tB − μ

2T

]
+ ei[2tB (t−t ′)− 3π

4 ] coth

[−2tB − μ

2T

])
+ O

(
1

τ 2

)
.

(A4)

The leading-order answer for Im[�K (t − t ′)] is then

Im[�K (t − t ′)] ∼ −ε2

√
2

π |2tB(t − t ′)|3
(

coth

[
2tB − μ

2T

]
+ coth

[−2tB − μ

2T

])
cos

[
2tB(t − t ′) − 3π

4

]
. (A5)

The expression, without the oscillation, is plotted in Fig. 1 as a solid line and matches with the numerically obtained plot very
well.

Having shown the connection between the nonanalyticity and power-law tails, we now show that for the two-site model, GR
1,2

also has a |t − t ′|− 3
2 tail. Similar considerations will apply for other GR

i,j and GK
i,j , both in the two-site model and in the chain.

Writing D = D′ + iD′′
the retarded Green’s function GR

1,2 is given by

Re
[
GR

1,2

] = − 1

g

D′2 − D′′2 − 1

(D′2 − D′′2 − 1)2 + 4D′2D′′2

Im
[
GR

1,2

] = − 1

g

−2D′D′′

(D′2 − D′′2 − 1)2 + 4D′2D′′2 , (A6)

where

D′ = 1

g

[
w

(
1 − ε2

2t2
B

)
+ ε2

tB
sgn(ω)�(|ω| − 2tB)

√
ω2

4t2
B

− 1

]

D′′ = 1

g

ε2

tB
�(4t2

B − ω2)

√
1 − ω2

4t2
B

. (A7)

We note that D′′ ≈ δ
1
2 for ω = ±2tB(1 − δ), while D′ ≈ (1 + C0δ

1
2 ) for ω = ±2tB(1 + δ), and one needs to consider all these

nonanalytic pieces to calculate the power-law tail. For Fourier transform of Im[GR
1,2], the integration goes from −2tB < ω < 2tB ,

and since D′
is smooth in this region, only nonanalyticity of D′′

leads to a power law. One can then follow an argument similar
to that of �K (t − t ′) and show that leading δ

1
2 nonanalyticity implies a power law of ∼|t − t ′|− 3

2 . For Re[GR
1,2], the argument
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is more complicated. The integral is broken into three ranges: (a) from −∞ to −2tB , (b) from 2tB to ∞, and (c) from −2tB to
2tB . Note that in the regions (a) and (b) the integrand can be expanded near ω = ±2tB(1 + δ) as

∑∞
n=0 C±

n δ
n
2 coming from D′2,

while the same in region (c) goes as
∑∞

n=0 C±
n δn near ω = ±2tB(1 − δ). Then all three integrals in ranges (a), (b), and (c) have

O(τ−1) coefficients which add up to zero and only integrals (a) and (b) contribute to obtain a finite O(τ− 3
2 ) coefficient. Thus

Fourier transform of Re[GR
1,2] also scales as |t − t ′|− 3

2 for |t − t ′| → ∞. We note that similar arguments can also be applied in

the analysis of GK to show its |t − t ′|− 3
2 decay in the long-time limit.

APPENDIX B: EXPONENTIAL DECAY OF CURRENT IN A LINEAR CHAIN

In Sec. IV of the main text, we have derived the retarded and the Keldysh Green’s function for a linear chain, where each site
is coupled to an independent bath with its own temperature and chemical potential. In Sec. V, we found that when the baths have
a common temperature but the chemical potential of the bath varies linearly with lattice site number, the current in the links of
the system show an exponential decay in space, away from the edges of the chain. In this Appendix we use the analytic forms
of the Green’s function in Sec. IV and consider their low-temperature form to explain the exponential decay of current. We will
also show that the decay length is proportional to the temperature of the baths. To illustrate this, we use Eqs. (14) and (16) of the
main text to write

GK
l,l+1 = i

ε2J (w)

g2|MN |2
(

MN−lM
∗
N−l−1

l∑
j=1

|Mj−1|2 coth

[
w − μj

2T

]
+ Ml−1M

∗
l

N∑
j=l+1

|MN−j |2 coth

[
w − μj

2T

])
, (B1)

where Ml is now written in a form different from Eq. (15) of the main text to facilitate the derivation. We now write

Ml =
yl+1 − 1

yl+1

2
√

D2

4 − 1
with y = D

2
+

√
D2

4
− 1, (B2)

where D is given by Eq. (A7) of Appendix A. One can easily check that this definition of Ml is equivalent to that in Eq. (15) of
the main text.

We now consider the low-temperature limit, where (ω − μj ) >> T,∀ω, and ∀j . In this case, coth [w−μj

2T
] ∼ 1 + 2e−(ω−μj )/T =

1 + 2e−(ω−μ1+ν)/T eνj/T , where μl = μ1 + ν(l − 1) with ν = dμ

dx
setting the slope of linear variation of μ. Now the first term in

the expansion of coth must sum up to zero, since this has no information about the variation of μ across the chain and current
must be zero if all μj = μ. We then focus on the second term. Writing y = reiθ , we then get for this term,

l∑
j=1

|Mj−1|2 coth

[
w − μj

2T

]
= 2e−(ω−μ1+ν)/T

l∑
j=1

[r2j + r−2j − 2 cos(2jθ )]eνj/T

l∑
j=1

|MN−j |2 coth

[
w − μj

2T

]
= 2e−(ω−μ1+ν)/T

l∑
j=1

{r2(N−j+1) + r−2(N−j+1) − 2 cos[2(N − j + 1)θ ]}eνj/T .

Now we can have either r > 1 or r < 1. We will first focus on the case r > 1 and later show that similar argument works for
r < 1. Here, we are interested in the region of the chain far away from its boundary so that rN >> rl . The first series can then be
summed (GP) to obtain terms such as [(r2eν/T )

l − 1]r2eν/T /(r2eν/T − 1) + r ↔ e±iθ . One can then multiply with appropriate
factors using Eq. (B1) to obtain GK

l,l+1, whose leading-order terms fall off exponentially ∼eνl/T where the other terms are
suppressed by a factor of r2N coming from |MN |2. This shows that ξ = T/ν and explains the linear scaling of ξ with T seen in
Fig. 3(f). One can similarly work out the other terms and the conclusion obtained above remains robust. If r < 1, one can neglect
ri in favor of r−i , but the final conclusion I ≈ eνl/T works out. Note that ν < 0 in our case, and hence this indicates a decay of
current in space. A similar argument can be made for the density profile, except the term with 1 in the expansion of coth does not
sum to zero. So n(x) ≈ n0 + n1e

νl/T , i.e., the variation around the constant value decays exponentially.

APPENDIX C: EFFECT OF INTERACTION ON
NON-MARKOVIAN DYNAMICS

In Sec. VII, we had shown that, within mean-field theory,
the exponential decay in the temporal profile of the Green’s
functions of the interacting system is slower than that of the
noninteracting system, and hence the time scale for crossover
from the “quasi-Markovian” to non-Markovian dynamics in-
creases. We argued this based on the fact that the imaginary

part of one of the poles of the Green’s function which controls
the decay rate decreases with interaction. In Fig. 8 we plot
the differences in the imaginary part of the pole between
noninteracting and interacting systems as a function of U and
V . We have considered a two-site system with g = 0.5tB, ε =
0.2tB , coupled to two baths with common temperature T =
0.625tB, μ1 = −2.5tB , and μ2 = −5.0tB . We find that the
difference > 0 for all U and V for one of the poles, i.e., the
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FIG. 8. The difference between the imaginary part of the pole for the noninteracting case (z
′′
0) and those of the interacting case (z

′′
±) is

plotted as a function of the interaction strength U/tB and V/tB for the two-site model connected to two independent baths of same temperature
T = 0.625tB but different chemical potential μ1 = −2.5tB and μ2 = −5.0tB where we use g = 0.5tB, ε = 0.2tB . It shows that in the entire
parameter space of the interaction strength, one of the two poles (z+) of the interacting model always has a smaller imaginary part than the
noninteracting one. Hence the crossover time scale from the exponential decay to the power-law tail in the Green’s function and consequently
in unequal-time observables always shifts to larger t − t ′ values as depicted in Fig. 6(c).

noninteracting Green’s function, decays faster. For the other
pole, the difference is negative for small vales of U and V and
becomes positive for larger values of U and V . We note that

the long-time decay (before the power-law tail) is governed
by the smallest decay rate, and hence the crossover time scale
increases for all U and V .
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