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We study band-structure properties of periodic optical systems composed of lossy and intrinsically dispersive
materials. To this end, we develop an analytical framework based on adjoint modes of a lossy periodic
electromagnetic system and show how the problem of linearly dependent eigenmodes in the presence of material
dispersion can be overcome. We then formulate expressions for the band-structure derivative (∂ω)/(∂k) (complex
group velocity) and the local and total density of transverse optical states. Our exact expressions hold for 3D
periodic arrays of materials with arbitrary dispersion properties and in general need to be evaluated numerically.
They can be generalized to systems with two, one, or no directions of periodicity provided the fields are localized
along nonperiodic directions. Possible applications are photonic crystals, metamaterials, metasurfaces composed
of highly dispersive materials such as metals or lossless photonic crystals, and metamaterials or metasurfaces
strongly coupled to resonant perturbations such as quantum dots or excitons in 2D materials. For illustration
purposes, we analytically evaluate our expressions for some simple systems consisting of lossless dielectrics with
one sharp Lorentzian material resonance added. By combining several Lorentz poles, this provides an avenue to
perturbatively treat quite general material loss bands in photonic crystals.
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I. INTRODUCTION

The concept of band structures (BS) is at the very heart of
condensed-matter physics [1], where the wave dispersion rela-
tions of electrons, phonons, etc., are discussed almost entirely
in terms of real-valued energies and wave vectors, forming
also a natural starting point for important concepts such as the
group velocity and the density of states (DOS). In these systems
with lossless and energy-independent Hamiltonians, group
velocity and DOS are intimately linked. It should be stressed,
that this relationship between the band-structure derivative
(group velocity) and the imaginary part of the Green tensor
(DOS) is not trivial and in fact no longer holds for lossy and
explicitly energy-dependent Hamiltonians, as we show below.
Obviously, the lossless theory developed in solid-state theory
was a fruitful starting point also for common accounts for
light waves in periodic dielectric structures [2], i.e., photonic
crystals (PhCs). As such, the real band structures (i.e., real-
valued frequencies as functions of real-valued wave vectors)
of photonic crystals composed of lossless and nondispersive
materials have been studied in detail [3,4], as well as additional
investigations of lossless, but dispersive problems [5]. This
includes the retrieval of effective permittivities and perme-
abilities in the long-wavelength limit [6–8], the study of stop
band and complete band gaps [9–12], and the investigation
of singular points, such as Dirac [13] or Weyl points [14],
van-Hove singularities and the density of states [15], and band
edges in the context of slow light [16,17]. In many cases,
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the focus was on the modification of thermal, spontaneous or
stimulated emission in the aforementioned unusual dispersion
regimes [18–23]. Here, the key quantity is the group velocity
v = (∂ω)/(∂k), whose inverse (the group slowness) is propor-
tional to the photonic DOS for lossless, dispersionless periodic
systems. The focus on lossless systems can be motivated by
the applications’ emphasis on transparent optical materials and
the obvious requirement of low loss for lasers or single-photon
sources.

On the other hand, even inherently weak absorption will be
enhanced in the slow-light regime [24,25], thus emphasizing
the importance of including optical absorption in photonic
band-structure theory. Furthermore, optical absorption is cru-
cial for the study of thermal emission and moreover, some
studies on enhancing Purcell factors at band edges used PhC
infiltrated with many narrow-band emitters, which are bound to
modify the optical properties of the structure. The same holds
true to even greater extent for lasing in photonic crystals. In
recent years, researchers have investigated the band structures
of periodic structures composed of lossy and dispersive mate-
rials [26], e.g., in the context of effective medium theory [27].
However, to the best of our knowledge, a general theoretical
framework for 3d structures as well as a sound foundation for
Green functions and densities of states has been missing to date.

From a mathematical point of view, loss and in particular
dispersive material response pose the problem that the solu-
tions to the wave equation no longer form a Hilbert space
or even a basis of the function space they span. The reason
underlying this is the fact that the macroscopic Maxwell equa-
tions do not cover the complex physical processes and internal
degrees of freedom that result in the dispersive permittivity
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of a nonidealized dielectric. One remedy to this is to include
these degrees of freedom as auxiliary polarization fields to
the master equation, leading to states that form a Hilbert
space and whose time-evolution is described by a unitary
operator [28]. This comes at the expense of a vast (effectively
infinite) number of auxiliary differential equations and while
without any doubt it led to very fundamental insight into
the physics of lossy electromagnetic structures, it is a little
unwieldy for numerical evaluation. In contrast, we accept
the mathematical limitations and derive expressions for key
quantities such as the band structure derivative and the DOS
from only the electromagnetic fields using the notion of adjoint
states [29] and adjoint operators. The present study is not re-
stricted to classic photonic crystals. We explicitly allow for an
already lossy and dispersive initial structure, which especially
includes metallic metamaterials and plasmonic lattices [30,31].
It furthermore applies to any bulk material through an empty
lattice approach and to any system that can be obtained as the
limit of a uniformly converging sequence of periodic systems,
especially including planar waveguides and states bound to
two-dimensional (2D) materials or metal-dielectric interfaces
supporting surface-plasmon polaritons (SPP) [32]. We justify
this claim in Sec VI. We note, however, that the framework
as presented here cannot account for so-called leaky modes
where the energy loss is not due to absorption, but scattering
into free-space modes. The underlying reason is that our
derivation of the adjoint operator requires the eigenstates to
be square-integrable, which is not the case for leaky modes
and scattering states.

The remainder of this paper is structured as follows. In the
Sec. II, we precisely state the problem covered in this paper
and in Sec. III, we state our assumptions and approximations.
This is followed by our main section, Sec. IV, in which
we lay out the basic mathematical tools for the treatment
of periodic systems with lossy and dispersive constituents.
Specifically, we introduce a family of bilinear forms to replace
the common scalar product, we explicitly state the adjoints of
the Maxwell operator and its solutions, we derive the band
structure derivative (complex group velocity) and finally the
transversal DOS. In Sec. V, we demonstrate the relevance of
our finding by analytically discussing three simple examples:
a homogeneous material, a perturbation theory for nondegen-
erate bands in arbitrary periodic structures, and the case of
an isotropic band edge with a Lorentzian material resonance
added as a model system for the self-limiting of strong Purcell
factor enhancement by the emitters themselves, as one might
find in PhC-based lasers. The paper ends with a discussion and
conclusions and is followed by three appendices.

II. THE PROBLEM OF BAND STRUCTURES IN
DISPERSIVE SYSTEMS

The theme of this paper is the effect of material dispersion
and loss on the propagation of optical pulses and the emission
dynamics of excited two-level systems in periodic media. As a
prototypical source of loss and dispersion, we often explicitly
study Lorentzian resonances (e.g., caused by color centers or
quantum dots). The central quantities for pulse propagation and
photon emission are the group velocity and the density of states,
respectively. While both are very well defined and intuitive in

lossless structures, their meaning can become slightly obscure
in the presence of loss and dispersion.

This is, because—despite the common focus on just real-
valued wave vectors and real frequencies—the dispersion
relation (i.e., the frequency function) is in fact a multival-
ued complex function of complex wave vectors [33]. More
precisely, the frequency bands are the zeros of an operator
that depends analytically on k and are therefore analytic
functions of the wave vector away from branch points, which
appear for example at the boundaries and the center of the
first Brillouin zone. The branch points connect the individual
frequency sheets, which are the continuations of the energy
bands into the complex k space. This fact is well known
within the solid-state theory community and has been used,
e.g., to analyze the localization properties of electronic and
photonic Wannier functions [34–36] (see also other references
within Ref. [33]). Since such a manifold is already hard to
visualize for a single direction of periodicity (complex ω and
a scalar complex k would require a four-dimensional plot), it
is instructive to restrict oneself to contours where either ω or k
is purely real-valued. We refer to them as “real-ω” contours
and “real-k” contours, respectively, and they often play a
special role in the analysis of the band structure, especially
for Fourier transforms. The reason for this is that a Fourier
transform in time corresponds to an integral over real ω and a
(lattice-)Fourier transform in space corresponds to an integral
over the first real Brillouin zone. In the absence of loss, this is
easily dealt with, because all frequencies associated with real k
are real, hence the real-k contour is part of the real-ω contour;
Fourier transforms with respect to space are compatible with
transforms in time. However, even for lossless problems, the
real-ω contour has substantial contributions with complex k.
In electronic crystal theory, they are known as “Heine’s lines
of real energy” [34]. However, these purely evanescent states
usually do not contribute to the bulk properties (e.g., the bulk
Green tensor) of a lossless system and therefore are usually
ignored.

With the inclusion of loss, the picture changes significantly,
because the eigenstates in the real k space now correspond
to complex frequencies, i.e., the contour of real ω no longer
includes the real k space. Conversely, solutions with real-
valued ω appear away from the real k axis. Further practical
problems arise because the eigenstates of a lossy system are
not orthogonal in the usual way and those of a dispersive
system can be even linearly dependent, hence not forming
a basis (as we show in this paper). Some researchers try to
circumvent these problems by neglecting the imaginary part
of either ω or k, e.g., by evaluating the band structure in the
real k space, ignoring imaginary parts in order to treat this
“sanitized” function ω(k) as a conventional (lossless) band
structure, potentially reintroducing the loss perturbatively in
a second step. Such a treatment may work acceptably for
very weak loss, but suffers from the fundamental problem
that “sanitizing” the band structure (i.e., ignoring imaginary
parts) can be done in at least two ways. One way is ignoring
the imaginary part of k when solving for the real-ω contour.
This can be justified by the fact that the DOS is a function
of the (real) frequency. Alternatively, one can ignore the
imaginary part of ω when solving the band-structure in the
real k space, which can be equally justified, because a real k
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FIG. 1. Example for the difficulty of deriving the DOS from
common band-structure plots. The system is a gas of strong Lorentzian
oscillators in vacuum. The frequency band-structure is really a
complex function of complex wave number. (a) shows two typical
(and equally correct) projections: purely real frequency vs real part of
the (complex) wave number and real part of the (complex) frequency
associated with purely real wave numbers. (b) shows the correct DOS
(derived from the Green tensor) and incorrect results found by naively
computing a “DOS” from the apparent group velocities of either curve
in (a). The example is taken from the discussion in Sec. V A.

is the appropriate quantum number to label physical states in a
periodic system. The probably more damning problem is that
this approach of “sanitizing” the complex band structure can
produce substantially incorrect results. We illustrate this by the
simple case of a homogeneous isotropic material (the simplest
possible periodic structure) with one Lorentzian material
resonance, which has been studied in depth about twenty years
ago [37,38]. In the example shown in Fig. 1 (see Sec. V A for
further details), the “sanitized” real-k BS shows two bands
with vanishing group velocity at the resonance frequency,
where the “sanitized” real-ω BS only shows one band with
infinite group velocity at the resonance frequency. While the
“DOS” computed from the group velocity on the real-ω contour
predicts a substantial dip and potentially vanishing DOS right
at the resonance, the “DOS” computed from the group velocity
on the real-k contour predicts a divergence around the same
frequencies; the correct DOS (more precisely the transversal
DOS [37,38], see next paragraph), however, is nearly constant
across the resonance in this example (it can diverge in extreme
cases). This illustrates that a more detailed analysis is required
to correctly predict the DOS of lossy periodic systems.

Some key points of the theory of a homogeneous material
with Lorentzian resonance [37] are that the emission dynamics
of a quantum emitter in a lossy environment must be based on
the imaginary part of the Green tensor, where the total density
of states (DOS) comprises two contributions: a radiative
transversal DOS (tDOS) derived from the Green tensor of
modes that satisfy Maxwell’s divergence conditions as well as
a nonradiative longitudinal DOS (lDOS) due to evanescently
excited longitudinal polarization fields. This is an illustration
of the fact that the divergence-free solutions of the electro-

magnetic wave equation do not form a complete basis [39].
However, the influence of these quasistatic longitudinal modes
is restricted to an atomic length scale in lossy dielectrics and
metals below the plasma frequency. Finally, the physically
relevant DOS differs from the imaginary part of the Green
tensor by local field correction factors (derived e.g., from
Clausius–Mossotti theory or through similar approaches [37])
to account for the atomic structure of physical materials.
While the material dependence of the lDOS and the local
field correction factors are usually restricted to an atomic
length scale, the tDOS is determined by long-range (quasi-
)propagating optical modes. Therefore, substantial differences
between the DOS for (lossy and dispersive) homogeneous
and periodic arrangements of such materials can be expected
to emanate from the tDOS, while local corrections based on
the immediate host material of the dipole can be expected to
provide a decent approximation. Therefore, in the following,
we restrict our analysis of the DOS to the tDOS without
local field corrections. It should be noted that this restriction
becomes inadequate if one of the constituent materials supports
long-range longitudinal modes, e.g., bulk plasmons. In this
case, the long-range corrections to the lDOS must be revised
analogously to Sec. IV D.

III. ASSUMPTIONS AND NOTATION

We consider a three-dimensional (3D) periodic electromag-
netic system (photonic crystal or metamaterial) composed of
materials with dispersive, lossy, and anisotropic but spatially
local dielectric response, where any frequency-dependence is
assumed to be smooth. At one point, we must assume that
the material properties also vary smoothly in space, although
on an arbitrarily short length scale. In the following, we will
use capital letters to emphasize physical fields in the time or
frequency domain, such as full Bloch modes, while lower case
letters denote the lattice-periodic parts of Bloch modes in the
frequency domain. They are connected via the Bloch-Floquet
theorem. For the electric field, this is

Enk(r,t) = enk(r,ω) exp(ikr − iωt), (1)

where mathematically both ω and k can be complex-valued.
We emphasize that it is only through further physical consid-
erations that we may confine ω and k in the complex plane,
e.g., assuming ω real as appropriate for a discussion of the
photonic states that can be excited by a spectrally well-defined
continuous wave from a narrow-linewidth laser.

Within the perturbation theory of Sec. IV C, we will assume
a Bloch mode with wave vector k that is perturbed in the
Cartesian z direction ẑ = (0,0,1)T without loss of generality,
because the relative orientation of the system and the Cartesian
axes is arbitrary.

Within the derivation of the DOS in Sec. IV D, we will
expand the Green tensor in an auxiliary basis constructed
for each physical frequency ω. All quantities related to this
auxiliary basis are highlighted by an additional subscript ω.
Finally, we assume reciprocity for the derivation of the Green
tensor.
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IV. GENERAL PROPERTIES OF LOSSY DISPERSIVE
PERIODIC STRUCTURES

In this section, we will first introduce a set of mathematical
tools to study lossy yet nondispersive periodic media. This
includes the definition of a family of bilinear forms to replace
the common scalar product for physical states and the intro-
duction of adjoint fields and wave operators with respect to
a chosen bilinear form. We then show how to generalize this
for the case for lossy and dispersive problems, after which we
derive the (complex) band-structure derivative of an arbitrary
lossy, dispersive periodic system. We close this section with a
derivation of the transverse electromagnetic density of states
inside a general lossy, dispersive periodic system.

A. Nondispersive eigenvalue problem: adjoints and
orthogonality

We start our discussion with Maxwell’s curl equations in
frequency domain,

μ−1∇× E = iωH, (2)

ε−1∇× H = − iωE, (3)

where ε and μ are complex-valued, tensorial functions of r,
which we assume not to depend on frequency for the moment.
We also note that we exclude solutions that violate Maxwell’s
divergence equations, which results in an incomplete function
space [39] and ultimately to the distinction between transversal
and longitudinal DOS. The corresponding equations for the
lattice periodic parts are

μ−1(∇ + ik) × e = iωh, (4)

ε−1(∇ + ik) × h = − iωe. (5)

To ease our later notation, this can be formally simplified by
introducing an operator L(k) and state vectors � or ψ for
physical or lattice-periodic states, respectively:

� =
(

H
E

)
, ψ =

(
h
e

)
, (6)

L0 =
(

0 −iμ−1∇×
iε−1∇× 0

)
, (7)

L(k) =
(

0 −μ−1(i∇ − k)×
ε−1(i∇ − k)× 0

)
. (8)

With this, Maxwell’s equations reduce to

L0� = ω�, L(k)ψ = ωψ, (9)

for stationary eigenstates and their lattice-periodic parts, re-
spectively. The latter is a regular eigenvalue problem (EVP) for
the angular frequency ω and an implicit eigenvalue problem
for the wave vector k (it can be transformed into a regular EVP
for one component of k).

In the lossy case, the operator L(k) is not self-adjoint with
respect to any standard scalar product and as a consequence
the eigenmodes are not orthogonal in a conventional sense.
We decide to allow for maximal flexibility and thus introduce
a family of bilinear forms, which maps a pair �1,2 of frequency-
domain states (not necessarily eigenstates) to a generally

complex scalar:

(�1,�2) = lim
N→∞

1

VN

∫
VN

d3r �1(r)W(r)�2(r), (10)

where the integration is carried out over volumes VN composed
of N Wigner-Seitz cells (WSC). This is a straightforward gen-
eralization of how a scalar product and orthogonality between
eigenstates is introduced in (lossless) solid state theory [40].
The various bilinear forms are determined by the choice of the
weight function W(r) that has the periodicity of the lattice and
must evaluate to a full-rank 6 × 6 matrix everywhere. Using
the Bloch-Floquet theorem, this can be decomposed:

(�1,�2) = 1

VWSC

∫
WSC

d3r ψ1(r)W(r)ψ2(r)

× lim
N→∞

1

N

∑
R∈VN

exp[i(k1 + k2) · R)]︸ ︷︷ ︸
Sk1 ,k2

, with

(11)

Sk1,k2 =
⎧⎨⎩1, for k1 + k2 = 0

∞, for �{k1 + k2} �= 0
0, otherwise

. (12)

As a result, Bloch states (but not lattice-periodic wave func-
tions) associated with opposite imaginary part of k are or-
thogonal to each other and we can restrict ourselves to the
WSC-integral:

(ψ1,ψ2) =
∫

WSC
d3r ψ1(r)W(r)ψ2(r). (13)

As a crucial next step, we can now formally introduce the
adjoint state ψ‡ and the adjoint operator L‡(k), which satisfy
with respect to a given choice of W:

(L‡(k)ψ‡
1 ,ψ2) = (ψ‡

1 ,L(k)ψ2), (14)

for an arbitrary pair of lattice-periodic parts and for any wave
vector k. For a pair of appropriately normalized, nondegenerate
eigenstates, they therefore satisfy

(ψ‡
n,ψm) = δnm, (15)

where δnm is the Kronecker delta. Note that the exact form
of the adjoint operator and the adjoint modes depend on the
choice of the bilinear form.

The most natural (but not necessarily always best suited
as demonstrated throughout this paper) choice is the “energy
form” defined by

W (U)(r) = 1

2

(
μ(r) 0

0 ε(r)

)
. (16)

It is most natural, because it is the straightforward generaliza-
tion of the standard scalar product in lossless, dispersionless
dielectric structures. It can be shown (see Appendix A) that for
this bilinear form the adjoint operator is

L‡(k) =
(

0 μ−1(i∇ + k)×
−ε−1(i∇ + k)× 0

)
, (17)
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and consequently the adjoint of any state �(r,ω,k) with
angular frequency ω and wave vector k is given as

�‡(r,ω,k) = �(r,−ω,−k) (18)

modulo an arbitrary factor. Thus we can conclude for adjoint
modes with respect to the energy form

(�‡
nk,�mq) = δnmδ(q − k), (19)

with δ(. . .) being the Dirac delta function, while k and q are
two complex wave vectors with equal imaginary part, i.e.,
�{q − k} = 0. In other words, for a nondispersive system, all
eigenstates with the same �{k} and different eigenfrequencies
are orthogonal to each other.

We are not the first to introduce the notion of adjoint modes
for the study of lossy periodic structures. To the best of our
knowledge, the first to do so were Botten et al. [29]. In our
opinion, this work does have one shortcoming, though: the
authors study the eigenmodes and adjoints of the wave operator
rather than of the Maxwell operator. While it is true that both
operators provide the same set of solutions, the wave equation
only directly provides one electromagnetic field (electric or
magnetic), while the other must be constructed from one of
Maxwell’s curl equations, which involves the square root of
the wave equation’s eigenvalue. As a result, the relative phase
between electric and magnetic field depends on the branch
one chooses for the square root function (roughly speaking,
positive or negative frequency), especially for the adjoint
field. This is of no concern in the context of Ref. [29] as
it is only concerned with scattering problems involving one-
dimensional gratings, which only requires one electromagnetic
field. However, in later work [41], they studied a problem where
both electric and magnetic fields appear, they chose a branch
that is not compatible with the common scalar product for
lossless modes and therefore for an expression of the group
velocity that seems at odds with lossless theory (we will come
back to this in Sec. IV C). We avoided such problems in the
derivation above by starting from the full Maxwell operator
and deriving adjoint modes in a transparent and concise way.

B. Mathematical tools for dispersive problems

Next, we consider the case where the material response
functions ε and μ are dispersive. As a result, both the Maxwell
operatorL(k) and the weight functionW depend on frequency.
The stationary solutions satisfy the equation

L(k,ω)ψnk = ωψnk. (20)

This is now an implicit eigenvalue problem for both the angular
frequency ω and the wave vector k. While it can still be
transformed into a regular EVP for one component of k, this
is no longer possible with respect to ω, because Eq. (20) is in
general nonlinear in ω.

One major problem with dispersive systems is that the set
of physical solutions for a given wave vector is no longer
orthogonal in the sense of the previous section. Even worse,
a resonance in ε or μ in general also introduces additional
photonic bands and makes the set of physical eigenstates lin-
early dependent (cf. Appendix B). As a result, the eigenstates
no longer form a basis of the function space they span and,
for example, the familiar expression of the Green tensor in

terms of eigenstate-projectors divided by energy poles—i.e.,
of the form

∫
dk |k〉〈k|/(ω − ωk)—is no longer applicable. A

third, more subtle but equally prohibitive problem is the incom-
pleteness of the physical eigenstates introduced by Maxwell’s
divergence condition [39]. In a nondispersive system, the
physical eigenstates associated with different eigenfrequencies
satisfy the same divergence condition and therefore form an
appropriate expansion basis for a physical field distribution
(e.g., the transverse Green tensor) at any frequency. In contrast,
the eigenstates of the dispersive problem satisfy different
divergence conditions and therefore they cannot be used to
represent a physical field distribution at any specific frequency.

This can be only solved by removing the nonlinearity in
the eigenvalue, i.e., by fixing ω in one way or another and
separating it from the eigenvalue. The first way is to use ω and
some components of k as parameters and study the eigenvalue
problem with the remaining component of k as the eigenvalue.
This approach has advantages for numerical band-structure
calculations [42,43], where it often referred to as the on-shell
approach.

The way we will use in the following is to regard both ω

and k as fixed parameters and introduce a new variable λ as a
frequencylike eigenvalue:

L(k,ω)φnkω = λnkωφnkω. (21)

This recovers the physical states whenever ω = λnkω, which
is also sometimes used to compute band-structure relations
for a dispersive system by starting with an initial guess for
ω, setting ω = λ and repeating this until self-consistency is
achieved [42]. Much more importantly in our context, however,
is the fact that the eigenfunctions of Eq. (21) are linearly
independent [yet only orthogonal in the sense of Eq. (20)] and
thereby provide a convenient expansion basis for mathematical
objects associated with a given ω, especially the Green tensor
and consequently the DOS (see Sec. IV D). Since every
physical frequency ω requires a different auxiliary problem,
we designate quantities related to Eq. (21) with a subscript ω,
whereas quantities related to the original physical, dispersive
problem (9) lack this subscript. Eq. (21) provides a convenient
expansion basis for stationary problems at frequency ω because
the eigenstates form a complete basis. At the same time, we also
fix ω in the weight function W . In this sense, we find based on
the “energy form” for arbitrarily dispersive material response
that can be represented in time domain as a real-valued memory
kernel, i.e., for material functions that satisfy the relations
ε(−ω) = ε(ω) and μ(−ω) = μ(ω):

L‡(k,ω) = − L(−k,−ω), (22)

�‡(r,ω,k) = �(r, − ω,−k), (23)

again modulo an arbitrary factor.

C. Band-structure derivative

Next, we derive the expression for the derivative of ω with
respect to k. To this end, we perturb these two quantities:

ω′ = ω + 
ω, k′ = k + κẑ, (24)

with, in general, complex scalars 
ω and κ . As mentioned
earlier, the assumption that k is perturbed in the z direction
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does not lead to any loss of generality. It is natural to generalize
the notion of the group velocity to the complex band-structure
derivative (∂ω)/(∂k) in a lossy system and while some au-
thors [41] are hesitant about the physical meaning of the
imaginary part of a complex group velocity, others [44] have
interpreted it in the context of a loss rate. This discussion is
beyond the scope of this paper and in order to avoid confusion,
we will refer to the term (∂ω)/(∂k) just as the band-structure
derivative for the remainder of this paper.

Since the weight functionW may be dispersive, the bilinear
form in general depends on the eigenvalue ω:

(ψ1,ψ2)ω =
∫

WSC
d3r ψ1W(r,ω)ψ2. (25)

We now perturb the operator in Eq. (9),

(L(k) + κPz)ψ = ω′ψ, (26)

with the perturbation operator

Pz =
(

0 μ−1ẑ×
−ε−1ẑ× 0

)
. (27)

Next, we project onto the adjoint mode ψ‡:

(ψ‡,[L(k) + κPz]ψ)ω′ =ω′(ψ‡,ψ)ω′ . (28)

Note that the bilinear forms and all operators must be eval-
uated at the perturbed frequency. We now use the identity
(ψ‡,L(k)ψ)ω = ω(ψ‡,ψ)ω, and we introduce Taylor expan-
sions of the form

W(ω + 
ω) = W(ω) + 
ω
∂W
∂ω

∣∣∣∣
ω

+ O(
ω2) (29)

for W , L(k), and Pz. In the integral definition of the bilinear
form, we assume that O(
ω2) is at least of order O(κ2),
because 
ω and κ are related via the complex group velocity,
which we assume to be bounded:


ω

∫
WSC

d3r ψ‡ ∂{W[ω − L(k)]}
∂ω

ψ

= κ

∫
WSC

d3r ψ‡WPzψ + O(κ2), (30)

where the symbols W , L, and Pz are evaluated at the unper-
turbed frequency ω. From this, we can now easily find the
projected BS derivative along the z direction:

vz = lim
κ→0


ω

κ
= F

N ; (31)

F =
∫

WSC
d3r ψ‡W(ω)Pψ ; (32)

N =
∫

WSC
d3r ψ‡ ∂{W[ω − iL(k)]}

∂ω
ψ. (33)

This is a very general form of the BS derivative for complex k
and complex ω.

The quantities N and F as well as the definition of the
adjoint modes depend on the choice of W , but the expression
F/N is always the BS derivative. Therefore we may conclude
that whenever it is possible to interpret N as a conserved
physical density per WSC, then F must be the associated flux

through the WSC. In the case of the “energy form,” the product
WL does not depend on ω and the denominator becomes

N (U) = 1

2

∫
WSC

d3r e‡
∂(εω)

∂ω
e + h‡ ∂(μω)

∂ω
h = U , (34)

which is reminiscent of the modal energy of a (lossy and dis-
persive) Bloch mode. Conversely,F (U) resembles the Poynting
flux integrated over the unit cell:

F (U) = 1

2

∫
WSC

d3r ẑ · (e × h‡ + e‡ × h). (35)

The explicit form of the BS derivative with respect to the
“energy form” is

vz =
∫

WSC d3r ẑ · (e‡ × h + e × h‡)∫
WSC d3r e‡ ∂(εω)

∂ω
e + h‡ ∂(μω)

∂ω
h

. (36)

As we show in Appendix A, the adjoint modes with respect
to the “energy form” are given as

ψ‡(r,k,ω) = Cψ(r, − k,−ω), (37)

with some constant C. In the absence of loss (and only
then), this reduces to the familiar relationship ψ‡(r,k,ω) =
ψ∗(r,k,ω). Another possible choice for the weight function is

W (L) = 1

2

(−μ(r,ω) 0
0 ε(r,ω)

)
. (38)

This induces the “Lagrangian form” [we chose this name,
because the integrand resembles the Lagrangian density, while
the integrand of the “energy form” Eq. (16) resembles the
electromagnetic energy density]. It leads to adjoint modes of
the form ψ‡(r,k,ω) = ψ(r,−k,ω), i.e., in lossless systems
ψ‡(r,k,ω) = ψ∗(r,k,−ω). This is the definition employed in
Ref. [41]. Thus it is no surprise that the “Lagrangian form”
reproduces that expression for the BS derivative:

vz =
∫

WSC d3r ẑ · (e‡ × h − e × h‡)∫
WSC d3r e‡ ∂(εω)

∂ω
e − h‡ ∂(μω)

∂ω
h

. (39)

D. Transversal densities of states

The transversal local density of states (tLDOS) ρt(ω,r) is
fundamentally linked [45] to the the electromagnetic Green
tensor G(ω,r,r′) evaluated for r = r′:

ρt(ω,r) = − 2ω

πc2
�{G(ω,r,r)}. (40)

Often, the Green tensor is expressed in terms of the eigenstates
of the physical system. This becomes less straightforward in a
dispersive medium, because the physical eigenstates no longer
form a basis. Therefore, for any given frequency ω, we use the
linearly independent eigenfunctions derived from the auxiliary
EVPs,

L0(ω)�nkω = λnkω�nkω, (41)

L(k,ω)φnkω = λnkωφnkω, (42)

as an ω-specific expansion basis. This is meant merely as a
mathematical tool to obtain a result that ultimately does not
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FIG. 2. Sketch of the process of transforming the k-space integration for the case of a one-dimensional (1D) system stacked along the ẑ

axis with an arbitrarily small kx �= 0. The top left box shows the conventional integration procedure, where the different bands are distinguished
by colors. (a) Conventional band structure for a lossless system. (b) Outline of the reduced zone scheme integration path in the complex kz

plane; all bands are integrated over the first BZ. Each stop band corresponds to a pair of branch points (indicated as “x” symbols) at the BZ
boundary connected by a branch cut (thin dashed line). The resonance pole of the Green function is indicated by a “+” symbol and lies away
from the kz-real axis for lossy systems. The top right box shows the transformation to two integrals (one solid, one dotted line) in an extended
zone scheme, i.e., integration over the ith band is shifted to the ith BZ; the individual integral segments remain disconnected. (c) Conventional
dispersion diagram for a loss-less system. Each integral covers eigenvalues with opposite sign for positive and negative kz to match the symmetry
of adjoint modes [see Eq. (23)]. (d) Extended zone scheme integration path in the complex plane. The bottom left box (e) shows the integration
contour after connecting the individual integral segments around the stop band branch points except the one at kz = 0. In the limit r′ → r, the
integrand is symmetric under (k,λ) → (−k,λ) and the hairpins are equivalent to a set of closed integral loops, each of which vanishes. The
complex plane above this integration contour includes exactly one branch point at �{kz} = 0, i.e., closing the contour around the top brings
us from the positive λ bands to negative bands and vice versa. Integrating twice along the contour C shown in (f) provides a closed integral to
which the residue theorem can be applied. See the main text and Appendix C for further details.

contain any reference to the auxiliary EVP. We can now find
the Green tensor of the nondispersive auxiliary problem:

L0(ω)Gω(λ,r,r′) = δ(r − r′), (43)

in terms of the basis �, where the expansion coefficients
are given as the projection of the Dirac-source onto the
adjoint modes �‡. We choose the adjoint modes to be normal-
ized (�‡

nkω,�mqω) = δnmδ(k − q) with respect to the “energy
form.” The resulting Green tensor is

Gω(λ,r,r′) =
∑

n

∫
BZ

d3k
[�nkω(r) ⊗ �

‡
nkω(r′)]W(ω,r′)

λ − λnkω

.

(44)

The integral covers all real wave vectors inside the first
Brillouin zone and the sum runs over all bands with both
positive and negative energy. Note that the denominator in
general remains finite, because the real frequency eigenvalues

occur at k vectors with nonzero imaginary parts. Therefore
the familiar identity (λ − λnkω)−1 = iπδ(λ − λnkω) + P(λ −
λnkω)−1 cannot be used, where P represented the Cauchy
principal value. This would be of limited use anyway, because
the numerator is in general complex-valued, i.e., the resulting
tDOS would contain the unwieldy principal value integral.
Instead, we transform this integral (defined over the first
Brillouin zone) to a contour integral to which the residue
theorem can be applied.

In the remainder of this section, we now assume that the
Cartesian ẑ axis is parallel to one of the reciprocal lattice
vectors and we assume that kx and ky remain real-valued
while kz will be allowed to take nonreal values. The sum of
integrals over all bands in Eq. (45) can be recast into four
integrals, each over an extended path in complex k space:
one path with positive and one with negative λ for each
of the two independent polarizations. This is illustrated in
Fig. 2 for the simplified case of a single polarization in 1D
(stacked along the ẑ direction): the first band is integrated
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over the first BZ, the integral over the second band is moved
to the second BZ and so on. Then, separate integrals over
the different BZs are connected by “hairpin” paths running
around the upper branch points at the BZ boundaries in the
complex plane. The connecting hairpins do not change the
value of the integral in the limit r′ → r (cf. Appendix C 1),
which is the appropriate limit for the calculation of densities
of states. Since the numerator �nkω(r) ⊗ �

‡
nkω(r′) of Eq. (45)

is the product of two Bloch functions, it implicitly contains a
factor exp[ik · (r − r′)]. Therefore we can close the integration
contour at infinity in the upper complex half-plane of kz if
we decide to approach the limit r′ → r such that z′ < z,
leading to the integration path C shown in Fig. 2(e). One slight
complication is that the contour C encircles a branch point
at �{kz} = 0. Traversing it once takes us from the branch of
positive λ to the branch of negative λ and vice versa. Thus
traversing the contour C twice results in an integration path
that allows to apply the residue theorem. This description of the
case of a single polarization in 1D can be readily generalized
to two polarizations in 3D (cf. Appendix C 2).

Following the above argument, the collocal Green tensor
elements can be represented by the residues

Gω(λ,r,r) = 2π i
∫
Iz,ω(λ)

d2k
∂kz

∂λ
[�nkω(r) ⊗ �

‡
nkω(r)]W(ω,r).

(45)

Here, Iz,ω(λ) is the contour in complex k-space on which
the auxiliary problem (21) takes the eigenvalue λ with the
additional constraint that kx and ky remain real numbers.
This and the exact meaning of our notation is explained more
precisely in Appendix C 2. Finally, the special case Iz,ω(ω) =
Iz(ω) is the isofrequency contour of the physical, dispersive
problem Eq. (9).

We can now replace the partial derivative in Eq. (45) with
the corresponding expression we found in Sec. IV C to obtains
an expression that no longer contains any reference to the
auxiliary eigenvalue problem (21) and is therefore suitable to
express the collocal Green tensor elements for the original,
physical, dispersive system (9):

G(ω,r,r) = 2π i
∫
Iz(ω)

d2k

× [�nk(r) ⊗ �
‡
nk(r)]W(ω,r)∫

WSC d3r ẑ · (e‡nk × hnk + enk × h‡
nk)

. (46)

From this, we find for the tLDOS tensor:

ρt(ω,r) = −4ω

c2

∫
Iz(ω)

d2k

× �
{

[�nk(r) ⊗ �
‡
nk(r)]W(ω,r)∫

WSC d3r ẑ · (e‡nk × hnk + enk × h‡
nk)

}
.

(47)

The total tDOS is the trace of the tLDOS-tensor integrated
over the WSC, i.e., we replace the numerator in the tLDOS
with

∫
WSC d3r �

‡
nk(r)W(ω,r)�nk(r) = 1. We find for the

total tDOS:

ρt(ω) = 4ω

c2

∫
Iz(ω)

d2k

×�
{ ∫

WSC d3r e‡nkεenk + h‡
nkμhnk∫

WSC d3r ẑ · (e‡nk × hnk + enk × h‡
nk)

}
(48)

= 4ω

c2

∫
Iz(ω)

d2k �
{

(ψ‡
nk,ψnk)

(ψ‡
nk,Pzψnk)

}
. (49)

In the nondispersive, but potentially lossy case, the integrand
is the real part of the inverse BS derivative (the group slowness
in lossless systems). In the dispersive case, it differs from the
latter by a factor ∫

WSC d3r e‡εe + h‡μh∫
WSC d3r e‡ ∂(εω)

∂ω
e + h‡ ∂(μω)

∂ω
h

.

V. BAND STRUCTURES WITH MATERIAL RESONANCES

Optical dispersion due to material resonances deforms
the optical dispersion in a characteristic way. In particular,
Lorentzian resonances can lead to the emergence of additional
optical bands (see also Appendix B), which are separated by
an anti crossing near the resonance frequency. This is closely
related to the appearance of mini-gaps and “band-structure
bubbles” that have been found in systems involving a strong
material resonance near a photonic band edge [42]. In essence,
this is equivalent to local band backbending. Other examples
include the effect of a plasma resonance, leading, e.g., to the
well-known surface plasmon polaritons in half-space problems
and back-folded photonic bands in periodic systems [46].
Oftentimes, these problems are studied ignoring optical loss
in order to avoid dealing with nonreal frequencies or wave
vectors. In this section, we qualitatively discuss the effect of
material resonances on dispersion relations, specifically on the
BS derivative and the density of states. We study this using
a narrow-band Lorentzian resonance as an example, but the
results qualitatively apply to plasmonic resonances, as well.

A. Homogeneous isotropic material with single
resonance pole

The simplest periodic system is an isotropic bulk material.
Due to its simplicity, it can be solved analytically and the results
show the effect of resonant dispersion as clearly as possible.
The bulk band structure of a homogeneous material with speed
of light c and one additional resonant pole is given by the
relation:

c2k2 =
(

1 + A

ω − �̃

)
ω2 = ω2(ω − �̃ + A)

ω − �̃
, (50)

where k is the absolute value of the wave vector, A is the
oscillator strength, and �̃ = � − iγ is its pole with undressed
resonant frequency � and damping γ . In the absence of
dispersion, the function ω(k) is double-valued (one-band in-
cludes the positive real ω, the other the negative real values).
The resonance increases the number of bands from two to
three, so the function ω(k) has three sheets. The connecting
branch points are the points of degeneracy, i.e., where the
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FIG. 3. Complex band structure of an isotropic homogeneous
medium with Lorentz resonance (� = 1.0, γ = 0.03). The line
colors represent different oscillator strengths A: −0.4 × 10−3 (black),
−1.0 × 10−3 (red), −1.8 × 10−3 (blue), and −4.0 × 10−3 (green).
The left column shows views of the real-ω curve, i.e., the part of the
path in complex k-space that is associated with real frequencies. In
contrast, the right column shows views of the real-k band structure,
i.e., the complex frequencies associated with real wave numbers.
Crosses and thin solid lines in panel (b) indicate the resonance-related
branch points and branch cuts. Solid and dashed lines indicate
corresponding solutions in panels (c) and (d). See text for further
discussion.

function

f (ω) = ω3 − (�̃ − A)ω2 − c2k2ω + c2k2�̃ = 0 (51)

has a double zero. These points can be found as the zeros of
the derivative f ′(ω):

ωBr = �̃ − 1
4 (A ±

√
8�̃A + A2), (52)

where the corresponding wave numbers follow from Eq. (50).
The position of these branch points and their connecting branch
cut relative to the real k axis and the curve of real frequencies
determines the topology of the band structure.

We identify four main cases as illustrated in Fig. 3. Weak
oscillators (small parameter A) lead to a band structure that
is qualitatively not different from the lossless case both on
the real k axis and on the real-ω curve (black curves). As the
oscillator strength increases, the topology on the real k axis
changes from a purely photonic band and an oscillator band
separated in imaginary ω direction to a more conventional
anticrossing exactly when the upper branch point (indicated
by crosses in Fig. 3) moves into the upper half plane (black
and red lines in Fig. 3). Thus the position of the upper branch
point determines two regimes that might be identified as weak
and strong coupling. It should be stressed that the real-ω curve
(solid lines in left column of Fig. 3), which defines the density
of states, does not change qualitatively during this transition.
However, for very strong oscillators, the upper branch point
can reach the real-ω curve (blue curves in Fig. 3). This leads
to a cusp, where the BS derivative is not defined (blue curves).
For even stronger oscillators, the real-ω curve crosses the

FIG. 4. Comparison of the proper tDOS [Eq. (48), black solid
line] and incorrect expressions based on the group slowness derived
from “sanitized” real-ω (red dashed) and the real-k (blue dotted)
contours for an isotropic bulk medium with a Lorentz resonance
(� = 1.0, γ = 0.03) for four different oscillator strengths (annotated
in the graphs). See text for further discussion.

branch cut twice, forming a loop around the branch point (green
curves), which manifests as band backbending in the projected
band-structure plots. It leads to a point of purely real negative
BS derivative at the absorption maximum and two points with
vanishing real part of the BS derivative.

The existence of points with undefined or negative BS
derivatives are troublesome, because they could indicate un-
usual behavior in the tDOS. On the other hand, the appearance
of an avoided crossing between the optical band and a fixed
resonance might cause unusual features in the tDOS, as well.
In Fig. 4, we compare expressions for the tDOS based on the
full inverse BS derivative (i.e., (∂k)/(∂ω)) evaluated on the
real-ω and the real-k band structures with our result derived
from Eq. (48) (note: we excluded the disconnected second
band from the real-k expression in panel a). Indeed, the real-k
result incorrectly shows a divergence of the tDOS around the
resonance as soon as the strong coupling regime is entered.
Conversely, the real-ω result incorrectly predicts a completely
vanishing tDOS at the resonance in the case of a cusp in the
real-ω contour and a frequency range with negative tDOS in
the presence of a loop in the real-ω contour. The actual tDOS
derived from the bulk Green tensor does exhibit a slight wavy
perturbation due to the presence of a material resonance, but
remains well-behaved and does not exhibit any discontinuous
behavior for any finite damping rate γ [37]. It should be noted
that the different tDOS-like curves differ significantly even for
fairly low oscillator strengths [Fig. 4(b)] in a homogeneous
material. This illustrates the significance of Sec. IV D for
the analysis of emission dynamics in structured dispersive
systems. As an example of a slightly more complex system,
we here mention plasmon-exciton polaritons in 2D semicon-
ductor/metal interfaces where the exciton line resembles our
Lorentzian resonance, while the surface-plasmon polariton
represents a strongly dispersive medium as the Lorentzian
resonance is tuned toward the surface-plasmon resonance [47].
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B. Perturbation theory for nondegenerate bands

We will now derive the modification of the real-ω contour of
the complex band structure due to a change in the permittivity
or permeability. We focus on this contour, because it is the
relevant one, e.g., for the computation of densities of states.
An analogous derivation for the real-k (or any other) contour
is straightforward. We chose the “energy form” and start by
introducing perturbed material distributions:

ε′ = ε + 
ε, μ′ = μ + 
μ. (53)

As a result, the expressions for W , L, and Pz are also modified
according to

W ′ = W + 
W = W + 1

2

(

μ 0
0 
ε

)
. (54)

One property of the “energy form” (as well as the “Lagrangian
form”) is that the products WL and WPz are not affected by
this type of perturbation. We now evaluate Eq. (26) for the same
frequency ω, but using the perturbed weight function W ′:

(ψ‡,[L′ + κP ′
z]ψ)(W ′)

ω = ω(ψ‡,ψ)(W ′)
ω . (55)

In this context, κ describes the change of the (complex) wave
number in addition to the ω dependence of k found in the un-
perturbed band structure. We now assume normalized adjoints
(ψ‡,ψ) = 1, we substitute the integral definition of the bilinear
form and use the identities W ′(L′ + κP ′

z) = W(L + κPz) and
Lψ = ωψ to find for the leading order in 
W:

κ = ωsz(ψ
‡,W−1
W ψ) (56)

= ωsz

2

∫
WSC

d3r e‡
εe + h‡
μh, (57)

where sz = (∂kz)/(∂ω) is the projected inverse BS derivative
introduced earlier.

From this, we can now compute the perturbative change in
the Green tensor, Eq. (46). Its integrand consists of two factors:
a projector and the band structure derivative of the auxiliary
problem (∂kz)/(∂λ). When computing the tDOS, the projector
always becomes unity assuming normalized adjoint modes.
Therefore we focus on the derivative. The perturbation leads
to a change in the wave number kz(λ) to a new value k′

z(λ):

k′
z(λ) = kz(λ) + ∂kz

∂λ
· λ(ψ‡,W−1
W ψ), (58)

where we adapted Eq. (56) to the auxiliary eigenvalue problem.
Its λ derivative is

∂k′
z

∂λ
= ∂kz

∂λ
[1 + (ψ‡,W−1
W ψ)]

+ ∂2kz

∂λ2
· λ(ψ‡,W−1
W ψ). (59)

This result is only valid for nondegenerate bands and away
from points where both (∂kz)/(∂λ) and (∂2kz)/(∂λ)2 diverge,
i.e., away from proper band edges, for example, in loss-
less PhCs. Assuming that the band curvature is weak, i.e.,
(∂kz)/(∂λ) � λ(∂2kz)/(∂λ)2, we can neglect the band curva-
ture term and insert into Eq. (48) to find for the first-order

correction to the tDOS:

ρ ′
t (ω) = 4ω

c2

∫
I ′

z(ω)
d2k �

{
1 + (ψ‡

nk,W−1
W ψnk)

(ψ‡
nk,Pzψnk)

}
. (60)

From this result, we can see that in spectral ranges with
a predominantly real band structure derivative, the addition
of a perturbation modifies the tDOS mostly with a term
proportional to 1 + �{
W}. In contrast, the modification of
the tDOS is mostly proportional to �{
W} whenever the
original band structure derivative is predominantly imaginary
(i.e., in stop bands and band gaps).

As an example, we now assume that the perturbation of the
material functions is given by a narrow-band resonance in the
dielectric function, which implies 
μ = 0. As before, we add
one pole:


ε(r,ω) = �(r)

ω − �̃
, (61)

where �̃ still comprises the resonance frequency and damping
and the real-valued function �(r) is the spatial distribution
of the Lorentzian perturbation. It could be, for example, the
product of the oscillator strength and the spatial distribution of
color centers in a dielectric or of dye molecules in some solvent
that infiltrates the voids of a periodic structure. We find for the
perturbative change in the wave number:

κ = szω

2

1

ω − �̃

∫
WSC

d3r e‡�(r)e︸ ︷︷ ︸
2α

, (62)

where the real-valued parameter α reflects the overlap between
individual oscillators and the electromagnetic eigenmodes. It
can be regarded as an oscillator strength density.

Assuming a narrow-band Lorentzian, we can assume the
BS derivative to be constant across the resonance frequency
ω = �. Then, the real-ω contour in the spectral vicinity of the
resonance becomes

k′(ω) ≈ k(�) − sz� + szω

(
1 + α

ω − �̃

)
, (63)

where k′ and k refer to wave numbers of the perturbed and
unperturbed systems, respectively. This equation shows the
same four regimes discussed in Figs. 3 and 4. For example,
the case “c” (existence of a cusp in real-ω contour and onset
of band backbending) corresponds to the existence of a real
frequency with vanishing BS derivative:

∂k′

∂ω
= sz

[
1 + α

ω − �̃
− αω

(ω − �̃)2

]
= 0. (64)

From the assumption that α is real-valued, we find that the zero
occurs at the frequency ω = |�̃| =

√
�2 + γ 2. Upon back-

substituting this in Eq. (64), we find

α = 2(� − |�̃|) ≈ −γ 2

�
for γ � �. (65)

Weaker damping (or stronger overlap) leads to case “d,”
stronger damping (or weaker overlap) leads to the cases “b”
and then “a.” It should be noted that the BS derivative 1/sz of
the unperturbed system does not enter this relationship. Finally,

104203-10



MODAL EXPANSIONS IN PERIODIC PHOTONIC SYSTEMS … PHYSICAL REVIEW B 97, 104203 (2018)

we can determine the effect of a resonant pole on the tDOS of
a lossless periodic structure.

C. Perturbation theory for parabolic band edges

One question of particular interest is to which extent a
material resonance at the band edge of a band gap material
modifies the density of states. The motivation for this question
is the problem that the singularities and band gaps of photonic
crystals are used to control the enhancement and suppression
of spontaneous emission from quantum emitters. However,
usually, the effect of the mere presence of resonantly polar-
izable particles on the DOS is neglected, which is generally
questionable in the strong coupling limit. In the past, the effect
of nondispersive loss on the density of states near a parabolic
photonic band edge has been studied [24].

As our final example, we now present the effect of a
dispersive perturbation on the tDOS near a parabolic band edge
described by the relation

kz(ω) = k0 − A
√

ω0 − ω, (66)

where ω0 and k0 are the band edge frequency and the wave
number at which it occurs, respectively. We assume that the
unperturbed PhC is lossless (which implies the absence of
material dispersion and also that k0 is real-valued) both for
simplicity and because lossy and dispersive PhCs can be treated
using the perturbation theory outlined in Sec. V C. The latter
is not possible for a band edge in a lossless PhC, because all
derivatives of k with respect to ω diverge, i.e., it constitutes
a singularity in the real-ω contour. Since we aim to include a
perturbation with material dispersion, we again assume a fixed
physical frequency ω and study the frequencylike eigenvalue λ.

The perturbation 
L(ω) of the Lorentzian resonance to
the Maxwell operator L of the unperturbed system leads to
a correction 
 in the eigenvalue λ according to

[L + 
L(ω)]ψ = (λ + 
)ψ = λ′ψ ; (67)


 = (ψ‡,
L(ω)ψ)ω
(ψ‡,ψ)ω

. (68)

From the parabolic dispersion relation of the perturbed system
near the original band edge k′ = A

√
ω0 − λ′, we can therefore

find the tDOS:

∂k′

∂λ
= − A

2
√

ω0 − λ − 

; (69)

ρt (ω) = �
{

2Aω

π

(
ω0 − ω − α

ω − �̃

)−1/2}
. (70)

This is the dispersive generalization of the approach chosen by
Pedersen et al. for the case of a PhC composed of lossy, yet
dispersion-free constituent materials [24]. An example for our
result is shown in Fig. 5 for the parameters A = ω0 = � = 1,
γ = 10−3 and varying oscillator strength density α. It shows
how the loss of a weakly coupled oscillator regularizes the
divergent tDOS of the ideal band edge in analogy to the
nondispersive case [24]. Increasing the oscillator strength,
however, leads to the familiar signature of strong coupling:
a Rabi-splitting in the real-k band structure (top right panel in

FIG. 5. Comparison of the loss spectrum (top left panel), tDOS
(bottom left), and two projections of the complex dispersion relation
(right column) of hybrid system composed of a two-level system
strongly coupled to an isotropic band edge. The parameter varied
is the oscillator strength density α: −2 × 10−7 (black), −1 × 10−6

(red), −3 × 10−6 (blue), and −1 × 10−5 (green). The tDOS of the
unperturbed band edge is shown as a shaded area. See text for further
discussion.

Fig. 5) and in the loss and scattering spectrum (top left panel)
as well as the onset of band backbending in the real-ω contour
and a splitting in the tDOS, which is a bit smaller than the Rabi
splitting. This is of some interest in the study of the emission
spectra from quantum emitters that are strongly coupled to a
lattice resonance. The spectrum of the emission of the PhC
can be expected to be the product of the loss spectrum and
the tDOS of the composite system, whose splitting is a bit
smaller than the Rabi splitting. As a result, the splitting found
in the spectrum of photons emitted into the PhC is smaller
than the Rabi splitting. However, in experiments photons are
detected outside the PhC, i.e., the emitted radiation must pass
the PhC-air interface, which can significantly modify both the
spatial and spectral distribution of the emitted radiation [23,48]
and clearly is beyond the scope of this simple example section.

VI. DISCUSSION AND CONCLUSIONS

In the previous sections, we have investigated the band
structure in periodic photonic systems involving material
dispersion and loss based on an adjoint modal representation.
We have focused our attention on the band structure derivative
(∂ω)/(∂k) and the density of transverse photonic states ρt (ω),
obtained general expressions that lend themselves very well
to numerical evaluation and we have analytically analyzed
a few simple examples, especially highlighting the dangers
of simply applying expressions known from lossless periodic
structures to cases involving dispersive constituent materials
such as metals or narrow-band resonances. Our findings are in
agreement with the established literature on emission dynamics
in lossy and dispersive media [28,37], but allow for efficient
evaluation in general periodic systems.

Our main focus was the relationship between the band
structure derivative (sometimes also referred to as complex
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group velocity) and the density of transverse optical states
(tDOS). We found that the well-known connection between
the tDOS and the real part of the group velocity still holds
in case of frequency-independent material loss, but ceases to
do so in the case of dispersive materials. The main reason
for this is the fact that at each wave vector point k inside
the first Brillouin zone, the dispersion relation with dispersive
material parameters can support eigenfunction field patterns
that are linearly dependent, i.e., it supports more modes than
are required for a basis of the function space of physical modes.
The reason for this are the internal degrees of freedom of the
dispersive material that can be treated via auxiliary differential
equations leading to the Hamiltonian treatment by Tip [26,28].
In contrast, we eliminated the need for additional degrees
of freedom by expanding the transverse Green tensor in an
eigenvalue problem at fixed frequency and found the tDOS in
terms of a group-velocity-like quantity, Eq. (48).

Throughout this study, we have assumed periodicity, which
mainly includes bulk materials, 3D photonic crystals and
metamaterials with right-handed, left-handed or hyperbolic
effective material parameters. It can be further generalized
straightforwardly to systems which lack periodicity in any
number of dimensions, provided the relevant states are square-
integrable with respect to the nonperiodic dimensions. For such
problems, the adjoint operator is still found by partial integra-
tion as described in Appendix A, with the only difference that
the surface integral appearing from the divergence theorem
vanishes for the nonperiodic directions due to localization and
for the periodic ones as described in Appendix. This wider
class of problems includes mostly guided modes, e.g., inside
slab or ridge waveguides, in PhC slabs, the coupling between
excitons and structured metal surfaces and particle plasmon
polaritons and metasurfaces that support bound surface states
and guided lattice resonances. It also can be applied to leaky
modes provided the field pattern decays at infinity, e.g., due
to some absorption in the surrounding material. In all these
cases, the adjoint operator and adjoint fields take the form of
Eqs. (17) and (18), except that the wave vector is restricted to
the periodic dimensions.

In our examples, we demonstrated that attempting to
compute the density of states of a lossy system involving
material dispersion by evaluating the dispersion relation for
real-valued wave vectors, ignoring the imaginary part of ω

and then applying the relationship between group velocity
and DOS known from lossless problems can lead to a grossly
incorrect result, especially in the strongly coupled regime with
an avoided crossing. We further demonstrate that attempting
a similar procedure by evaluating the dispersion relation with
real-valued frequencies and ignoring the imaginary part of the
wave vector equally leads to incorrect results.
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APPENDIX A: EXPLICIT DERIVATION OF ADJOINT
OPERATOR AND FIELDS

In this appendix, we provide an explicit derivation of the
relationship between Maxwell operator and Bloch modes and
their respective adjoints with respect to the “energy form.” To
this end, we reformulate (ψ‡

1 ,Lψ2) into (L‡ψ‡
1 ,ψ2), starting

with

(ψ‡
1 ,Lψ2)(U) =

∫
WSC

d3r e‡1 · [(∇ + ik) × h2]

−
∫

WSC
d3r h‡

1 · [(∇ + ik) × e2]. (A1)

We apply the identity ∇ · (f × g) = g · (∇ × f) − f · (∇ × g)
to the first integral:∫

WSC
d3r e‡1 · [(∇ + ik) × h2]

=
∫

WSC
d3r div (h2 × e‡1)

+
∫

WSC
d3r h2 · [(∇ − ik) × e‡1]. (A2)

Using Gauss’s theorem, we transform the first term to an
integral over the surface of the Wigner-Seitz cell. Within this
integral, opposing faces cancel each other, because the func-
tions e‡1 and h2 are periodic and the respective normal vectors
point in opposite directions. Treating the second integral in
Eq. (A1) likewise leaves us with

(L‡ψ‡
1 ,ψ2)(U) =

∫
WSC

d3r h2 · [(∇ − ik) × e‡1]

−
∫

WSC
d3r e2 · [(∇ − ik) × h‡

1]. (A3)

Using the identity (L‡ψ‡
1 ,ψ2) = (ψ‡

1 ,Lψ2) = ω(ψ‡
1 ,ψ2) we

find that the adjoint modes satisfy the equation

μ−1(∇ − ik) × e‡ = − iωh‡, (A4)

ε−1(∇ − ik) × h‡ = iωe‡, (A5)

⇒ ψ‡(r,k,ω,ε,μ) = ψ(r, − k, − ω,ε,μ). (A6)

In the lossless case, this reduces to the familiar relationship
ψ‡(r,k) = ψ∗(r,k).

Our expression for the (electric) adjoint modes obtained
from the “energy form” (the natural generalization of the
standard scalar product in lossless electromagnetism) is in
conflict with the definition of adjoint modes employed in
Ref. [41], which incidentally is obtained when repeating the
same steps starting with the “Lagrangian form:”

ψ‡(r,k,ω,ε,μ) = ψ(r, − k,ω,ε,μ). (A7)

The magnetic adjoint modes are not explicitly given in
Ref. [41], but differ by a minus sign from our “Lagrangian
adjoint,” which explains the overall minus sign in the numer-
ator of Eq. (39).
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APPENDIX B: MULTIVALUEDNESS DUE TO
MATERIAL RESONANCES

Here, we show that the addition of a pole in the material
response of a periodic optical system results in the appearance
of additional bands and therefore causes the eigenmodes for
a given k to become linearly dependent. We assume that the
material properties ε and/or μ are nondispersive except for
a resonance at some complex frequency �. Then, we can
decompose the total wave operator:

L(k,ω) =L0(k) + L′(k)

ω − �
. (B1)

Now we approximate the true operators as a sequence of
discrete operators by representing them in some spatial func-
tion basis (e.g., a plane-wave basis) with increasing number
N of functions. These discrete operators can be expressed
as matrices of dimension N . The eigenfrequencies of the
nondispersive part satisfy

det[L0(k) − ω] = P0(k,ω) = 0, (B2)

where P0(k,ω) is a polynomial of degree N in both ω and k. As
a result, the nondispersive eigenvalue problem has N solutions,
which form a basis for the complete base function space as long
as L0 is not defective (guaranteed for Hermitian L0).

In contrast, the eigenfrequencies for the dispersive problem
satisfy

0 = det[L0(k) + (ω − �)−1L′(k,ω) − ω] (B3)

= det[(ω − �)L0(k) + L′(k) − ω(ω − �)]

(ω − �)N
(B4)

= 1

(ω − �)N
P ′(k,ω). (B5)

The zeros of this are given by the zeros of P ′(k,ω), which is
a polynomial of degree N in k and of 2N in ω. As a result,
the number of eigenfrequencies will be in general greater than
the matrix rank, i.e., additional frequency bands appear due to
the resonance and the set of physical eigenstates is in general
linearly dependent. In particular, the set of physical eigenstates
no longer forms a basis for any function space.

APPENDIX C: INTEGRATION OF THE DIAGONAL
GREEN TENSOR ELEMENTS IN 3D

1. Contribution from hairpin sections for r′ → r

The integration paths connecting the individual band inte-
grals [shown as red hairpin-shaped paths in Fig. 2(e)] come in
pairs of kz and −k∗

z . If the integrand in Eq. (45) is invariant
under the transformation kz → −kz, every such pair of hairpin
sections is equivalent to one bone-shaped integral around a
complete branch cut, i.e., a closed integral of an analytic
function, which is zero, because the contour does not include
any poles. In this case, connecting the integration segments
around the branch cuts does not change the result of the
integral. This is the case in the limit r′ → r assuming that
W(r′) is a continuous function, an assumption that we can live
with in physical problems and that is strictly correct for the
plane-wave expansion or related spectral expansions.

To see the equivalence, we choose the “Lagrangian form,”
whose adjoint modes satisfy the relationship [41]

�‡(r,t,k,λ) = �(r,t, − k,λ). (C1)

This also implies the existence of a pole at λn−kω. Furthermore,
in the presence of time reversal the tensor product [�nkω(r) ⊗
�

‡
nkω(r′)] is symmetric under matrix transposition. Therefore

the integrand satisfies the identity

[�nkω(r) ⊗ �
‡
nkω(r′)]W(ω,r′)

λ − λnkω

(C2)

= [�n(−k)ω(r) ⊗ �
‡
n(−k)ω(r′)]W(ω,r)

λ − λn(−k)ω
. (C3)

Note that the argument ofW changed from r′ to r. Thus they are
the same in the limit r′ → r provided that W is continuous.
It can be easily seen that the integrand does not depend on
whether one chooses the “Lagrangian form” or the “energy
form,” so the results apply to the latter as well.

2. Extended zone integration in 3D and isocontours

In Sec. IV D, we outlined how the collocal elements of
the transverse Green function can be found in a 1D periodic
system. This can be generalized to 2D and 3D periodicity,
by choosing one reciprocal lattice primitive G1 and treat k
space along this direction as described for the 1D problem,
i.e., one allows for a nonreal contribution to the total wave
vector in this direction and one moves on to an extended
zone scheme along this direction. For simplicity and without
loss of generality, we refer to this as the z direction. In
contrast, the contributions k⊥ to the wave vector from the
other reciprocal lattice primitives G2,G3 are kept real-valued
and in the reduced zone scheme. We call this the real wave
vector offset. The resulting integration zone in k-space is the
tensor product of a parallelogram �⊥ spanned by the reciprocal
lattice primitives G2 and G3 and the full complex plane oriented
along the reciprocal lattice primitive G3. Within this domain,
we integrate over the real-λ contour. For all real wave vector
offsets and all unique bands therein, we integrate along the
complex G1 direction as described in Sec. IV D, i.e., encircling
a branch point at each lattice resonance except for the � point.
We end up with an integral of the form∑

n

∫
�⊥

d2k⊥
∫ ∞

−∞
dkz

∫ ∞

−∞
dκ δ

(
λ − λn(kG1)ω

)
fω(k,λ),

(C4)

where k = k⊥ + (kz + iκ)G1,n labels the unique band indices,
and fω is the function to be integrated, in our case the projector
onto the respective eigenmode. As a simplified notation for
this, we introduce the symbolIz,ω(λ), which is to be understood
as the λ isocontour in the k-space integration domain. The
expression ∫

Iz,ω(λ)
d2k

∂kz

∂λ
fω(k,λ), (C5)

is understood to be a simplified notation for the integral shown
in Eq. (C4).
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