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Tunneling probe of fluctuating superconductivity in disordered thin films
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Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding
quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum
fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral
gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating
side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled
diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find
that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range
correlations. Our approach offers a quantitative description of existing measurements on disordered thin films
and accounts for tunneling spectra with suppressed coherence peaks.
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Introduction. Superconducting thin films have attracted
recently a lot of attention due to the possibility of observing
a direct superconductor-to-insulator transition (SIT) [1–3].
The SIT is considered as an excellent example of a quantum
phase transition [4]: It occurs at temperature T = 0 and is
driven by a nonthermal tuning parameter g. Experimentally,
the SIT can be driven by a wide variety of g’s, such as
thickness [5–16], magnetic [11,12,17–26] or electric fields
[27], chemical composition [28,29], and disorder [25,30]. Near
the quantum critical point g = gc, the system is governed by
quantum fluctuations [31–35] and cannot be described in terms
of classical Ginzburg-Landau theories [36–39].

In the vicinity of the SIT, experiments show an intriguing
behavior of the superconducting energy gap �. Traditionally,
� is determined by fitting the tunneling conductivity to a
phenomenological extension of the BCS theory, which takes
into account an effective energy broadening � and is known as
the Dynes formula [40],

dI

dV
(V ) = Re

[
V − i�√

(V − i�)2 − �2

]
. (1)

This procedure is very useful in extracting values of � as a
function of temperature for a relatively clean superconductor.
In these materials,� shrinks to zero asT approaches the critical
temperature Tc, in agreement with the predictions of the BCS
theory [41]. In contrast, in disordered thin films, tunneling
experiments have revealed that � smoothly evolves across the
transition [42,43] and through Tc [44].

In addition to this nonconventional behavior of �, su-
perconducting thin films show a significant deviation of the
experimentally measured density of states (DOS) from Eq. (1)
due to a considerable suppression of the coherence peaks at the
gap edges [43,44]. A similar disagreement was observed in
high-temperature superconductors [45,46]. This discrepancy
can be accounted for by assuming the two �’s that appear in
the numerator and in the denominator of Eq. (1) are different

[47–49], but this approach lacks physical insight (see the
Supplemental Material [50]).

In this Rapid Communication we suggest an alternative
approach which relates the experimental findings to a well-
defined theoretical model. Instead of considering an effective
energy broadening, we include superconducting fluctuations
by postulating a bosonic field �(r,t) with a finite correlation
length. By summing the contributions of short-range (SR) and
long-range (LR) fluctuations, we obtain an excellent agreement
with experimental curves on the insulating side of the SIT. Our
results demonstrate that there are two important length scales:
One is the effective size of a superconducting island ξsc, and
the other is the typical size of quantum fluctuations ξfluc, which
diverges at the SIT.

Superconducting fluctuations. We begin our analysis by
introducing the Hamiltonian H = H0 + H�, where H0 =∑

k,σ εkc
†
k,σ ck,σ describes free electrons (quasiparticles) with

a Fermi surface at εk = 0. Superconducting fluctuations are
represented by a randomly fluctuating bosonic field �(r,t)
coupled to the fermions by

H� = �(r,t)c†↑(r,t)c†↓(r,t) + H.c. (2)

The effects of small fluctuations of � on the superconducting
side of the transition were analyzed self-consistently in Refs.
[51–53]. In this Rapid Communication, we instead focus on
the insulating side of the transition where the superconducting
order parameter averages to zero 〈�(r,t)〉 = 0. We model
finite-range superconducting fluctuations by a free field with
two-point correlations,

C(r − r′,t − t ′) = 〈�(r,t)�∗(r′,t ′)〉. (3)

The function C describes the decay of the superconducting
correlations and tends to zero at long distances and long
times. Our phenomenological model can be justified by the
numerical solution of the attractive Hubbard model with on-site
disorder [32,54,55]. These earlier studies showed that, on the
insulating side of the transition, the interplay between disorder

2469-9950/2018/97(10)/100503(6) 100503-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.100503&domain=pdf&date_stamp=2018-03-09
https://doi.org/10.1103/PhysRevB.97.100503


DENTELSKI, FRYDMAN, SHIMSHONI, AND DALLA TORRE PHYSICAL REVIEW B 97, 100503(R) (2018)

FIG. 1. One-loop diagram—second-order perturbation in �(r,t).
The black thick arrows represent charge (i.e., the right arrow for a
particle and the left arrow for a hole), whereas the thin red ones
represent momentum and energy.

and interactions gives rise to a superconducting gap with
short-range correlations.

We now derive the relation between C(r − r′,t − t ′) and
tunneling measurements. The tunneling differential conduc-
tivity is proportional to [56]

dI

dV
(V ) ∝

∫ ∞

−∞
dω ρ(V + ω)f ′(ω). (4)

Here V is the voltage bias, f ′(ω) = df/dω is the derivative
of the Fermi-Dirac distribution function, and ρ(ω) is the
DOS of the sample. Equation (4) assumes a constant DOS
of the tip and at T = 0 simply reduces to dI/dV ∝ ρ(V ).
Within the Green’s function formalism in Nambu space [57],
ρ(ω) = −(1/π )〈Im{Tr[

∑
k Gret(k,ω)]}〉, where Gret(k,ω) is

the retarded Green’s function, Tr is the trace in Nambu space,
Im is the imaginary part, and 〈· · · 〉 implies an average over the
fluctuations of the superconducting field �(r,t).

Our first step involves a Dyson resummation of the one-loop
contributions shown in Fig. 1, whose two vertices represent the
coupling term (2). By performing a trace over particle and hole
contributions, we find (see the Supplemental Material [58])

Tr[Gret(k,ω)] = ω + i0+

(ω + i0+)2 − ε2
k − D2(k,ω)

. (5)

Here we defined the pairing-fluctuations’ function D as

D2(k,ω) =
∫

d2q
∫

d

ω + i0+ + εk

i
 + ω + i0+ + εk−q
C(q,
),

(6)

with C(q,
) = ∫
d2r dt C(r,t)eiq·r−i
t .

Because the Green’s function in Eq. (5) is strongly peaked
at k = kF , we can approximate the density of states as

ρ(ω) = Re

[
ω√

ω2 − D2(ω)

]
, (7)

where we defined D(ω) ≡ D(kF ,ω).
Equation (7) is analogous to (1), but involves the frequency-

dependent D(ω) instead of the quasiparticles’ lifetime �. Note
that, if the correlation function C(r,t) does not decay in
space and time (i.e., the BCS limit), its Fourier transform is
C(q,
) = �2

0δ(q)δ(
). In this case, Eq. (6) yields a frequency-
independent D2(ω) = �2

0, and one recovers the well-known
result.

Our approach has some similarities to Refs. [36–38] where
superconducting fluctuations with a finite lifetime were con-
sidered as well. These authors were interested in the thermal
regime T > Tc where superconducting fluctuations are weak
and lead to small deviations of the density of states. As a
consequence, their approximation scheme does not recover
the diverging density of states predicted by BCS. The Dyson
resummation employed in the present Rapid Communication
allows us to consider strong superconducting fluctuations and
get closer to the SIT. See also Ref. [59] for a microscopic model
describing the effect of superconducting fluctuations close to
the SIT and their effects on the DOS.

In what follows, for simplicity, we will generically assume
that the correlations are time independent, i.e.,

C(q,
) = C(q)δ(
). (8)

This assumption is justified if the collective-mode velocity v is
much smaller than the Fermi velocity vF (see the Supplemental
Material [60]). Assuming a quadratic dispersion relation εk =
(k2 − k2

F )vF /2kF and assuming that C(q) decays to zero at
q ∼ kF , we obtain

D2(ω) =
∫

d2q
ω

ω − vF qx

C(q). (9)

Equations (7) and (9) are the key theoretical results of our
analysis, and we will now use them to model the density of
states of disordered superconductors under various assump-
tions in the form of C(q). In the following, the films are
assumed to be thin enough such that both k and q can be
treated as two dimensional.

Short range vs long range. In order to understand the
effects of superconducting fluctuations on the density of states,
we consider correlation functions decaying over a typical
inverse length scale q0. This quantity can be associated with
the average size of superconducting islands in the granular
materials and with an emergent electronic granularity of
amorphous materials [31–35]. In the specific case of C(q) =

�2
0

π3/2v2
F q2

0
exp(−q2/q2

0 ), we can analytically solve the integral in
Eq. (9) to find

D2(ω) = �2
0

1

vF q0
exp

(
− ω2

v2
F q2

0

)
ω

[
erfi

(
ω

vF q0

)
− i

]
.

(10)

Here erfi is the imaginary error function, which is a real
function. The real and imaginary parts of Eq. (10) are shown
in the upper panels of Figs. 2(a)–2(c) and the corresponding
DOS in the lower panels. Note that the real part of D2(ω)
closely resembles the local density of states ρ(ω), but these
two quantities have a different physical meaning: The former
actually needs to be substituted in Eq. (7) to deliver the latter.
We observe that both Re[D2] and Im[D2] are peaked at a typical
energy scale vF q0. The effect of superconducting fluctuations
on the DOS changes dramatically, depending on the ratio
between vF q0 and �0.

Let us consider two extreme cases, which we denote by
long range (LR) and short range (SR), respectively. The
former occurs for vF q0 ∼ vF ξ−1

fluc � �0. In this case, D2(ω)
is approximately constant, and we recover the BCS limit [see
Fig. 2(a)]. On the other hand, when vF q0 ∼ vF ξ−1

sc 
 �0, the
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FIG. 2. Upper panel: (a)–(c) Real and imaginary parts of Eq. (10) for different values of vF q0/�0. (d) Real and imaginary parts of Eq. (12).
Lower panel: the corresponding density of states, Eq. (7).

fluctuations are short ranged. In this regime,

D2(ω) ≈ −iωγ (11)

is purely imaginary, and the DOS shows a deep without
coherence peaks [see Fig. 2(c)]. The distinction between
LR and SR fluctuations does not depend on the specific
choice of C(q) and can be related to the Anderson limit
of superconductivity [55,61]. The crossover between these
two regimes occurs when �0 is on the order of the typical
energy level spacing of a superconducting island of size 1/q0

(the superconducting correlation length), i.e., �0 ∼ vF q0. As
q0 increases, the coherence peaks become less pronounced,
and their positions move to higher energies [62,63] (see the
Supplemental Material [64]).

In the vicinity of the SIT, superconducting fluctuations
are described by a universal critical theory [65], which in its

simplest form is given by C(q) = �2
0

π3

1

q2 + q2
0

, where q0 =
1/ξfluc tends to zero at the transition. In this case, which we
denote as QLR, we can again solve analytically Eq. (9) to

10 -1 10 0 10 1

r 0/v F
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FIG. 3. (a) Normalized spatial correlations of the superconduct-
ing fluctuations C(r). (b) Density of states ρ(ω) for different types
of superconducting correlations. Note that adding SR fluctuations
(vF q0/�0 = 3) suppresses the peaks even in the presence of LR
superconducting correlations (vF q0/�0 = 0.1).

obtain

D2(ω)= �2
0

π2

ω√
v2

F q2
0+ω2

⎡
⎣ln

⎛
⎝

√
v2

F q2
0 + ω2+ω√

v2
F q2

0+ω2−ω

⎞
⎠ − iπ

⎤
⎦.

(12)

As shown in Fig. 2(d), for q0 → 0, the real part of Eq. (12)
diverges logarithmically, whereas the imaginary part is propor-
tional to sgn(ω). The resulting DOS resembles the LR situation
and is very weakly dependent on the infrared cutoff q0. As we
will see below, QLR superconducting fluctuations give a better
description of the experiment than true LR correlations.

In actual materials, one generically expects to find a
combination of superconducting fluctuations with long-range
and short-range correlations. The former are universal and
determine the emergent properties of the material, whereas
the latter depend on the microscopical details and are often
neglected. In contrast to this common practice, we find that
short-range correlations strongly affect the density of states
(see Fig. 3): Although the correlation functions denoted by LR
and SR + LR have the same asymptotic behavior [subplot (a)],
the corresponding DOS are very different [subplot (b)].

TABLE I. Comparison between different correlation functions,
i.e., Dynes, SR + LR, and SR + QLR.

DOS Best fit (meV) χ 2

Dynes Equation (1) �0 = 0.73 0.046
� = 0.16

SR + LR Equation (7) with �0 = 0.67
D2(ω) = Eqs. (11) + (10) γ = 0.22 0.022

vF q0 = 0.22

SR + QLR Equation (7) with �0 = 0.69
D2(ω) = Eqs. (11) + (12) γ = 0.11 0.011

vF q0 = 0.022
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FIG. 4. Comparison between theoretical predictions and actual
measurements performed on an insulating thin film close to the SIT.
The best theoretical fits for each curve are presented in Table I. The
best fit to the experiment is given by SR + QLR. The inset shows the
corresponding superconducting correlation functions (ξSC = 1

3 q0).

Comparison with experiments. We now compare our
theoretical calculations with the tunneling measurement of
Ref. [43], performed on an InO film at T = 1 K on the
insulating side of the SIT. Note that, in order to isolate the
superconducting contribution to the DOS, the experimental
raw data were normalized by the tunneling spectra at a high
magnetic field. The results of our analysis are summarized in
Table I and Fig. 4 where we show the best-fitting parameters
and the minimal normalized χ2 distribution between theory
and experiment. We find that the sum of short-range and long-
range superconducting fluctuations is required to obtain a good
fit. Furthermore, a detailed analysis reveals that the long-range
part is best described by Eq. (12) (χ2 = 0.011) rather than
Eq. (10) (χ2 = 0.022), in agreement with the expected critical
behavior of the SIT [65].

Discussion. In this Rapid Communication we studied the
effects of superconducting fluctuations on the tunneling con-
ductivity of disordered thin films, focusing on the insulating
side of the SIT. The common approach, known as the Dynes
formula (1), relies on a phenomenological parameter � that
describes the inverse lifetime of the quasiparticles. In this
Rapid Communication, we showed that the experiments are
better fit by a theory of free electrons, coupled to supercon-

ducting fluctuations with finite-range correlations. By using
a controlled diagrammatic approach, we derived a simple ex-
pression that connects the correlations of the superconducting
fluctuations to the tunneling spectra Eqs. (6) and (7). This
result has potential applications that go beyond the present
Rapid Communication, including quantum as well as classical
superconducting phase transitions. Our analytical results show
that, generically, short-range fluctuations lead to tunneling
spectra with reduced or absent coherence peaks even in the
presence of long-range superconducting correlations.

By comparing our analytic expressions to experimental
measurements, we find that, in disordered thin films, the
superconducting fluctuations are given by the sum of two
components. The long-range component is associated with
universal fluctuations close to the SIT quantum critical point,
characterized by a diverging length scale ξfluc. Accordingly,
the experimental data are best fit by a critical theory with q0 ∼
1/ξfluc � kF (see the last row of Table I, taking into account
that vF kF ∼ 1 eV). In contrast, the short-range component
is determined by the microscopic details of the material.
Specifically, short-range correlations are expected to play a
predominant role in amorphous materials where Cooper pairs
are localized by disorder. In granular materials, on the other
hand, the superconducting correlations decay over a much
longer range, set by the typical scale of the grains. This distinc-
tion can explain why the Dynes formula fits well experiments
on granular Pb films [9] but does not fit amorphous InO
films [43]. The distinction between short-range and long-range
fluctuations can bridge the long-standing controversy between
the fermionic and the bosonic approach to the SIT [55]. On
a broader prospective, our approach contributes to the under-
standing of puzzling spectrometric experiments in unconven-
tional superconductors. Specifically, we find that, although SR
fluctuations contribute to the local superconducting gap, they
generically lead to a tunneling spectra with suppressed coher-
ence peaks in analogy to the experimental observations in the
pseudogap regime of underdoped cuprates (see, for example,
Refs. [47,48,66,67]).
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