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Long-range spin-singlet proximity effect for a Josephson system with a single-crystal
ferromagnet due to its band-structure features
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A possible explanation for the long-range proximity effect observed in single-crystalline cobalt nanowires
sandwiched between two tungsten superconducting electrodes [Nat. Phys. 6, 389 (2010)] is proposed. The
theoretical model uses properties of a ferromagnet band structure. Specifically, to connect the exchange field
with the momentum of quasiparticles the distinction between the effective masses in majority and minority spin
subbands and the Fermi-surface anisotropy are considered. The derived Eilenberger-like equations allowed us to
obtain a renormalized exchange interaction that is completely compensated for some crystallographic directions
under certain conditions. The proposed theoretical model is compared with previous approaches.

DOI: 10.1103/PhysRevB.97.100502

Recent advances in fabrication and design of layered
superconductor (S-) ferromagnet (-F) structures based on
the proximity effect [1] have led to significant progress in
superconducting spintronics [2–12]. One of the key questions
hotly debated in the past years is an origin of the long-range
proximity effect. Usually in SF structures, the penetration
depth (LSF ) of induced singlet superconducting correlations
into the F region is strongly restricted by the exchange
field h. This tends to align the electron spins in parallel,
breaking superconducting Cooper pairs with antiparallel spins
[2,3]. In conventional ferromagnets, such as Co, Fe, etc., the
penetration depth can be estimated as LSF ∼ ξh = √

D/2h,
which is about 1–10 nm. Here, D is a diffusion constant in
the ferromagnet, and we assume h̄ = kB = 1 hereinafter. This
value is much less than the corresponding decay length (LSN )
for the nonferromagnetic (N) metals LSN ∼ ξN = √

D/2πT ,
that can reach 0.1–1 μm at sufficiently low temperatures of
T � h. Moreover, in contrast to normal metal, Fulde-Ferrell-
Larkin-Ovchinnikov- (FFLO-) like superconducting state in
ferromagnet has oscillating behavior [13,14].

The long-range proximity effect arises if the superconduct-
ing correlations in an SF structure become insensitive to the
exchange field, and LSF is comparable to LSN . The latter
conditions are possible for superconducting triplet correlations
with total spin projection Sz = ±1. The triplet type of super-
conductivity occurs when the exchange field is inhomogeneous
[3,4,15–20]. This can be realized in SF multilayers with non-
colinear magnetizations in different F layers [11,12,16,21–24]
in the presence of domain walls [25–27] or a spin-active
interface [10,28].

Recently, Wang et al. [29] investigated transport properties
of single-crystal ferromagnetic cobalt nanowires sandwiched
between superconducting tungsten electrodes. This was a first
observation of a long-range singlet proximity effect in clean
SFS structures. The following features of the cited work
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were the most striking: (a) a zero resistance was detected
at the excitation current of about 1 μA for a wire length
of L = 600 nm (the magnitude of the critical current Ic at
zero magnetic field for a 40-nm-diameter Co nanowire is
about Ic ≈ 12 μA); (b) the Co wires did not contain any
magnetic inhomogeneities, and they were single crystal and
monodomain.

Immediately after the appearance of the work [29], Kon-
schelle et al. [30] had suggested an explanation of the observed
long-range proximity-induced singlet superconductivity based
on one-dimensional (1D) Eilenberger equations [31]. This
approach was proposed in well-known work [32].

The authors [30] have obtained that the standard singlet
proximity effect becomes long ranged if the ferromagnet in the
SFS structure is considered as a 1D ferromagnetic wire in the
ballistic transport regime. Their estimate for the single-channel
critical current was proportional Ic0 ∼ cos(L/af ). Note, this
current exhibits undamped strong oscillations on the spin
stiffness length of af = υF /2h ∼ 1–10 nm (υF is a Fermi
velocity). The total critical current Ic is the sum of all M

transverse channels (M ∼ 105 for a 40-nm-diameter nanowire
[30]). This total current is very sensitive to small fluctuations of
L, and Ic should disappear after averaging Ic ∼ M〈Ic0〉δL →
0. In reality, the contributions from different channels are not
strictly coherent due to 〈δL〉 = 0, 〈(δL)2〉 ∼ a2

f .
Another model has been proposed afterwards in works

[33,34] where the long-range triplet superconducting corre-
lations were associated with the spin-orbit interaction in F
nanowires. In this case, the effective exchange field depends on
the quasiparticle momentum, and it strongly affects the phase
gain along the trajectories. The long-range contributions to
the supercurrent are due to the modulation of the momentum-
dependent exchange field along the quasiparticle trajectories.
It is important that the lengths of paths between successive
reflections should coincide, then the corresponding phases
compensate each other. For an explanation of the experimental
data [29], the authors [33,34] used a two-dimensional model
of a ferromagnet nanowire with multiple ideal reflections from
the boundaries. Furthermore, in works [35,36] Bergeret and
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Tokatli showed analogy between the spin-diffusion process in
normal metals and the generation of the triplet correlations
in a diffusive superconducting structure in the presence of a
spin-orbit coupling. From this analogy it turns out that the
spin-orbit coupling is an additional source for the long-range
triplet components besides the magnetic inhomogeneities.

At last, in the work [37] Mel’nikov and Buzdin have
demonstrated that giant mesoscopic fluctuations arising in dirty
ferromagnetic wires can also result in a long-order Josephson
current, but the value of the effect drastically changes from
sample to sample.

Our approach is based on the known physical fact that
the effective masses of the conduction electrons for spin
bands (1/mα)ij = ∂2εα(k)/∂ki∂kj are generally different in
real ferromagnets [38–40]. Here α = ↑(↓) labels spins in the
majority (minority) spin subband, respectively. Indeed, this
feature can lead to a compensation of the total momentum of
the Cooper pair in a ferromagnet. It is easy to understand within
the simple picture of the FFLO pairing mechanism [13,14]
with total momentum q of the pair (q is much less than the
Fermi momentum kF ). In ferromagnet the momentum q is
obtained from the condition (kF + q/2)2/2m↑ − h = (−kF +
q/2)2/2m↓ + h. It follows immediately that q kF /2M ≈
h − ηk2

F /2M , where M = 2m↑m↓/(m↓ + m↑) and mismatch
parameter η = (m↓ − m↑)/(m↓ + m↑). Thus the total mo-
mentum of the FFLO-like pair completely vanishes at η ≈
h/EF � 1, where EF is the Fermi energy. It leads to a
long-range spatial extent of the induced superconductivity in
a ferromagnetic nanowire.

In contrast to previous theoretical works [30,33], we focus
on a case of three-dimensional (3D) nanowires. We would
like to stress that the Co nanowires with diameters d of 40
and 80 nm were investigated in experiment [29], and these
values are considerably larger than the bare spin stiffness length
d � af . As a consequence, the model of a 3D nanowire is the
most relevant one to the experimental setup [29]. However, our
approach can be applied for arbitrary dimension.

In this Rapid Communication we propose a theory of the
singlet long-range proximity effect in single-crystal ferromag-
netic nanowires based on the following key points: (a) The
conduction electrons have different effective masses in the ma-
jority and minority spin subbands; (b) the Josephson transport
in single-crystal nanowires takes place in the ballistic regime
(the clean case); (c) the Fermi surface in the ferromagnet is
anisotropic.

The anisotropic dispersion relation supposed for a hexago-
nal close-packed single-crystal cobalt nanowire is

εα(k) = k2
x

2mα
⊥

+ k2
y

2mα
⊥

+ k2
z

2mα
‖

− h(σ3)αα,

where σ̂3 is the third Pauli matrix. The Matsubara-Green’s
function Ĝ satisfies the equations,

Ĝ−1(k + q/2,ω)Ĝ(k,q,ω) = δ(q), (1)

Ĝ(k,q,ω)Ĝ−1(k − q/2,ω) = δ(q), (2)

where ω = πT (2n + 1) is the Matsubara frequency and Ĝ−1

in a ferromagnet nanowire has the form

Ĝ−1(k) =
(

iω − ε↑(k) + μ 0
0 −iω − ε↓(−k) + μ

)
= [iω + heff (k)]σ̂3 − [E(k) − μ]σ̂0, (3)

where μ is the chemical potential, σ̂0 is the unit matrix, and
the superconducting order parameter � is assumed to be zero
in the ferromagnet. It is important to note that the mismatch
between m↓ and m↑ leads to an appearance of effective ex-
change interaction heff (k) = [ε↓(−k) − ε↑(k)]/2 and effective
paramagnetic dispersion E(k) = [ε↑(k) + ε↓(−k)]/2 in (3),
and they become dependent on the momentum as follows:

heff (k) = h − η⊥

(
k2
x

2M⊥
+ k2

y

2M⊥

)
− η‖

k2
z

2M‖
,

E(k) = k2
x

2M⊥
+ k2

y

2M⊥
+ k2

z

2M‖
, (4)

where the mismatch parameters η‖,η⊥ and reduced masses
M‖,M⊥ are defined as

η‖ = m
↓
‖ − m

↑
‖

m
↓
‖ + m

↑
‖
, η⊥ = m

↓
⊥ − m

↑
⊥

m
↓
⊥ + m

↑
⊥

,

M‖ = 2m
↑
‖m

↓
‖

m
↑
‖ + m

↓
‖
, M⊥ = 2m

↑
⊥m

↓
⊥

m
↑
⊥ + m

↓
⊥

. (5)

It is easy to see that in the isotropic case when E(k) = k2/2m,
then η‖ = η⊥ = η. In the limit case of η = 0 the effective
exchange field coincides with the bare one heff (k) ≡ h.

Furthermore, subtracting Eq. (2) from Eq. (1) and passing
into the coordinate representation (q → −i∇R) in the usual
manner, we obtain a quasiclassical Eilenberger-like equation
[31] in a ferromagnetic nanowire,

iυ0(k0)∇RĜ + {[iω + heff (k0)]σ̂3,Ĝ} = 0,

Ĝ(R,k0,ω) =
∫

dξ

2π
Ĝ(R,ξ,k0,ω)

= 1

2

(−ig f

−f † ig

)
, (6)

where the momentum k0 is defined as EF = E(k0), the cor-
responding velocity is υ0(k0) = ∇E(k0) = (υF↑ + υF↓)/2,
and ξ = E(k) − μ. The current density in the quasiclassical
approach can be expressed as

j = −ieT
∑

ω

∮
EF

υ0(k0)gω(k0,R)
ds

|∇E(k0)|(2π )2
, (7)

where the integration is performed over the Fermi surface.
Let us now consider the Josephson transport through a single-
crystal ferromagnet nanowire according to the experimental
setup [29]. Thus, a wire of length L and cross-sectional
S is placed between the left and the right superconducting
electrodes (SL(R)) located at z = ±L/2 as shown in Fig. 1. We
introduce the angle θ between the momentum k0 and the z axis
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FIG. 1. Schematic of the Josephson junction with a ferromagnetic
single-crystal nanowire of length L sandwiched between supercon-
ducting electrodes.

so that

EF = k2
0

(
cos2 θ

2M‖
+ sin2 θ

2M⊥

)
,

heff (θ ) = h − k2
0

(
η‖

cos2 θ

2M‖
+ η⊥

sin2 θ

2M⊥

)
,

υ0z(θ ) = k0z

M‖
=

√
2EF

M‖

cos θ√
cos2 θ + M‖

M⊥
sin2 θ

. (8)

Thus, the Josephson supercurrent flowing across the nanowire
is given by

I = −ieST
∑

ω

∮
EF

τz(θ )g(z,θ,ω)
ds

(2π )2
,

τz(θ ) = υ0z/|υ0| = cos θ√
cos2 θ + (M‖/M⊥)2 sin2 θ

,

ds = k2
0d� = 2M‖EF

cos2 θ + (M‖/M⊥) sin2 θ
d�, (9)

where d� is a solid angle element. The anomalous Green’s
functions f,f † in the ferromagnet satisfy the following equa-
tions,

υ0z(θ )
∂

∂z
f + 2f [ω − iheff (θ )] = 0,

−υ0z(θ )
∂

∂z
f † + 2f †[ω − iheff (θ )] = 0, (10)

with the rigid boundary conditions (cos θ > 0)

f (−L/2) = �L

|ω| e
−iφ/2, f †(L/2) = �R

|ω| e
−iφ/2, (11)

which are valid when the superconducting electrodes are
much thicker than the nanowire’s cross section. Using the
normalization condition g2 + f †f = 1, we obtain

g ≈ sgn(ω)
(
1 − 1

2f †f
)
,

and the Josephson supercurrent (9) is transformed to the form

I = Ic sin φ, Ic = 2S
eM‖EF �L�R

π3T
Ĩc(L), (12)

where the reduced critical current Ĩc defines the spatial extent
of the induced superconductivity in nanowire as follows:

Ĩc(L) =
∫ 1

0

cos θd(cos θ )√
cos2 θ + (M‖/M⊥)2 sin2 θ

× 1

cos2 θ + (M‖/M⊥) sin2 θ

× exp

(
−2πT L

υ0z(θ )

)
cos

(
2heff (θ )L

υ0z(θ )

)
. (13)

Note that the critical current for a 1D case can
be written in our theory framework as Ic ∼
exp[−2πT L/υ0z(0)] cos[2heff (0)L/υ0z(0)] which agrees
with the results of previous studies [30] in the limiting case
when the band masses are equal (i.e., when η‖ = η⊥ = 0
and hence heff = h). If η‖ = η⊥ = h/EF , then heff (0) = 0,
and we obtain a new important limiting case of a normal
nonferromagnetic nanowire.

For numeric estimations we assume that both mismatch
parameters are small η‖,η⊥ � 1 and ratio M‖/M⊥ ≈ 1. We
also set the bare spin stiffness length of af z = υ0z(0)/2h =
5 nm, coherence length of ξf z = υ0z(0)/2πT = 600 nm, and
ratio h/EF = 0.1 for the Co nanowire. The map of the reduced
critical current Ĩc as a function of both mismatch parameters
η‖ and η⊥ for the fixed nanowire length of L = 600 nm is
shown in Fig. 2(a). Point I (η‖ = η⊥ = h/EF ), as mentioned

FIG. 2. (a) The map of the reduced critical current Ĩc as a function of the mismatch parameters η‖ and η⊥ for a fixed nanowire length of
L = 600 nm. The nonmagnetic case corresponds to point (I) at η‖ = η⊥ = h/EF = 0.1. (b) The Ĩc oscillations along the path passing through
peaks I–V at L = 600 nm. (c) The dependence of the peak period λ versus nanowire length. (d) The reduced critical current Ĩc as a function of
nanowire length. Lines I–V are consistent with points I–V in panel (a), i.e., corresponding parameters are optimal for length L = 600 nm.
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above, corresponds to the nonmagnetic case where the effec-
tive exchange field is completely compensated [heff = 0, see
Eq. (10)] for all trajectories.

It is clearly seen that Ĩc has multiple peaks with a periodic
sign-change behavior. The points where Ĩc > 0 (I, III, V, etc.)
and Ĩc < 0 (II, IV, etc.) correspond to the so-called 0 and π

states of the Josephson junction, respectively. The appearance
of multiple peaks is a consequence of the fact that the wave
functions of the Cooper pairs in the ferromagnet have an effec-
tive momentum qz(θ ) ≈ heff (θ )/υ0z(θ ) and oscillate along the
trajectory. As a result, the contribution from all quasiclassical
trajectories between the superconducting electrodes leads to
an unusual interference pattern. Figure 2(b) shows the slice Ĩc

along the I–V line. The distance λ between neighboring peaks
of the same sign is depicted as a function of the nanowire
length L in Fig. 2(c). The function λ(L) shows a sufficiently
slow monotonic behavior as λ ∼ 1/L [the fit of the red solid
line in Fig. 2(c)]. If the mismatch parameters η‖,η⊥ take the
values close to the line along peaks [the white dashed line in
Fig. 2(a)], then we observe slow detectable oscillations of the
critical current Ic with a change in the nanowire length. For a
clear visualization the five spatial curves Ic(L) are presented
in Fig. 2(d) at set points (η‖,η⊥) that correspond to I–V peaks
at L = 600 nm [see Fig. 2(a)]. Note that the function Ĩc(L)
monotonically decays for the nonmagnetic regime (curve I with
η‖ = η⊥ = h/EF ) on a scale about of the coherence length ξf z,
that is in agreement with the physical picture of the proximity
effect for the SNS Josephson junction.

The oscillating behavior Ĩc(L) arises even at a small devia-
tion of mismatch parameters η‖,η⊥ from point I. For example,
in the range of 0–600 nm, curves II and III exhibit 0-π and
0-π -0 crossovers, respectively, and the period of oscillations
decreases with each subsequent curve (IV, V, etc.). For com-

parison, the solid green curve in Fig. 2(d) reproduces the
limiting case of η⊥ = η‖ = 0 when the majority and minority
band masses are equal m↑ = m↓. This equality is common for
standard models of the proximity effect in SF structures [2–4].
As is clearly seen in Fig. 2(d) the singlet long-range Josephson
current does not arise in this limiting case. We note that within
our theory the inequality m

↓
‖(⊥) > m

↑
‖(⊥) (and hence η⊥,η‖ > 0)

gives rise to a singlet long-range proximity effect. We also see
that Ĩc has noticeable stability and the critical current varies
weakly with a relatively large change in the nanowire length
of δL ∼ 100 nm in contrast to the case when m↑ = m↓ [the
solid green line in Fig. 2(d)].

To summarize, we propose a singlet mechanism of the
long-range proximity effect in superconductor-ferromagnet
structures. Our approach is based on a simple physical picture
where the spin-subband electron masses are different. The
energy dispersion anisotropy leads to the appearance of a set
of points (η‖,η⊥) for which a long-range Josephson effect is
possible. Note that, in the isotropic case, only a sole mismatch
parameter is possible. In our case, the region of parameters
where the long-range effect is noticeable is sufficiently broad.
The proposed mechanism gives a possible explanation of the
experiment by Wang et al. [29]. As a final note, the considered
approach is not applicable for polycrystalline samples.
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