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A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous
Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana
edge modes (CMEMs). A recent experiment [Science 357, 294 (2017)] claimed to have observed such CMEMs
in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a
quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect
generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this
Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs,
can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much
above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary
to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which
is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the
transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature
of the TSC.

DOI: 10.1103/PhysRevB.97.100501

Recent years have seen a burgeoning interest in realizing
topological superconductors (TSCs) which host zero-energy
Majorana modes. These Majorana zero modes hold potential
applications for a fault-tolerant topological quantum compu-
tation [1] owing to their non-Abelian braiding statistics [2,3].
They can be found in the vortex core of a two-dimensional (2D)
chiral TSC with an odd integer Chern number. Recent theoret-
ical studies [4–6] proposed to realize this chiral TSC using a
quantum anomalous Hall insulator (QAHI) in proximity to an
s-wave superconductor (SC).

The quantum anomalous Hall (QAH) state is a quantum
Hall (QH) state without an external magnetic field which
can be realized in a 2D thin film of a magnetic topolog-
ical insulator (TI) with ferromagnetic ordering [7–11]. For
the regime where the ferromagnetic-induced exchange field
strength |λ| is greater than the hybridization gap |m0| induced
by the coupling between the top and the bottom surfaces, the
system has a Chern number of C = λ/|λ| and in the opposite
limit where |λ| < |m0|, C = 0 [6,12]. By changing the applied
magnetic field over a relatively small range, a topological phase
transition can be induced between the QAHI with C = 1 and
the trivial insulator state with C = 0 [13]. When the QAH is
proximitized by an s-wave SC, the C = 1 and C = 0 phases are
driven into N = 2 and N = 0 phases [4], respectively, where
N denotes the number of chiral Majorana edge mode (CMEM).
At the transition between these two phases, there exists anN =
1 gapped TSC [4,5]. Since a single CMEM carries one-half of
the incoming charges, it manifests as a half-integer quantized
e2/2h plateau in the conductance between two normal leads
and an integer quantized e2/h peak in the conductance between

a normal lead and the SC measured at the coercive field [5,6]. A
recent experiment [14] observed these two transport signatures
in a doped magnetic QAHI thin film proximitized by an s-wave
SC. Although these transport signatures are consistent with
the existence of an N = 1 TSC with a single CMEM in a
clean system, the disorder in the experimental system might
significantly reduce the topological gap and phase space of the
N = 1 TSC.

In this Rapid Communication, we show that the two pro-
posed transport signatures for theN = 1 phase can generically
occur in a disordered QAHI-SC-QAHI junction even in phases
where the CMEM is absent, such as in the C = 1 (N = 2)
phase or in the N = 1 TSC but at temperatures above the gap.
We consider the disordered QAH system to be inhomogeneous
with smoothly varying magnetization [15] which leads to
a network of domain walls between phases with different
Chern numbers. Such domain walls have been invoked in
Ref. [16] to understand the Hall conductance in this system.
Here, we consider the disorder strength to be stronger than the
superconducting pairing potential such that there are noN = 1
domains in the system.

Figure 1 shows the evolution of the domain-wall structure
of the phases in the QAH system as the magnetic field is varied.
In the limit of strong magnetic field, the system is in a single-
domainC = 1 phase [as shown in Fig. 1(a)] with a large average
magnetization. In this regime, the edge states are perfectly
transmitted across the junction. During the magnetization
reversal, the proportion p of the C = 0 domain (domain with
small average magnetization) increases [Fig. 1(b)]. Since the
chiral edge states live at the boundary between the C = 0 and

2469-9950/2018/97(10)/100501(5) 100501-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.100501&domain=pdf&date_stamp=2018-03-09
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1103/PhysRevB.97.100501


YINGYI HUANG, F. SETIAWAN, AND JAY D. SAU PHYSICAL REVIEW B 97, 100501(R) (2018)

(a) p pc (b) p = pc−
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FIG. 1. Schematics of the magnetic-field-induced percolation in
a disordered QAHI-SC-QAHI junction. The middle QAHI region is
proximitized by an s-wave SC (the yellow rectangle). Four different
percolation stages of trivial insulator phases (the orange region) with
C = 0 (corresponding to N = 0) and QAHI phases (the light-blue
region) with C = 1 (corresponding toN = 2). We consider a strongly
disordered system whereN = 1 domains do not form. The four stages
are characterized by p, the proportion of the C = 0 phase, which
changes with the magnetic field. (a) In the strong magnetic-field
regime where p is far below the percolation threshold (p � pc), the
system is in the C = 1 phase. The edge states (shown by the arrowed
lines) are perfectly transmitted across the junction. (b) During the
magnetization reversal, the C = 0 phase domains grow. The edge
states wind around the domains in the SC region and leak into
adjacent chiral loops (shown by the dashed lines). (c) When p is
slightly above the percolation threshold (p = pc+), the domains are
connected across the junction width, and the edge states can no longer
be transmitted across the junction. (d) When p � pc, the edge states
are normally reflected by the C = 0 phase outside the SC region.

the C = 1 domains, the edge state has to wind around the C = 0
domains which increases the electron trajectory length L and
hence the number of Andreev scatterings in the SC region. As
p approaches the percolation threshold pc (where the C = 0
domains become connected into a cluster spanning across the
junction width), L → ∞. In addition, quasiparticles on the
chiral edge can leak by quantum tunneling into adjacent chiral
loops associated with the domains as shown in Fig. 1. These
chiral loops can be assumed to be in equilibrium. As a result, at
p ≈ pc, as we will show, the leakage of quasiparticles leads to
eventual absorption of the initial quasiparticle for large lengths
L, giving rise to a nearly flat e2/2h two-terminal conductance
plateau. As p increases above pc, the edge states can no longer
be transmitted across the junction. For p � pc, the electrons
undergo perfect normal reflections outside the SC region by
the C = 0 domain as shown in Fig. 1(d).

We describe the low-energy edge modes of the QAHI-SC
structure by a one-dimensional Hamiltonian,

H = 1

2

∫
dx C†(x)HBdG(x)C(x), (1)

where

HBdG(x) = −ivτ0∂x − μ(x)τz + 1
2 {−i∂x,�(x)τx} (2)

FIG. 2. Schematic of the setup used to measure the conductance
in a QAHI-SC-QAHI junction. To measure G12, we consider the SC
to be floating (i.e., I3 = 0) and the voltages V1 and V2 to be applied to
leads 1 and 2, respectively. For the case where G13 is measured, the
SC is grounded (i.e., I3 �= 0), lead 2 is removed, and the voltages V1

and V3 are applied to lead 1 and the SC, respectively.

is the Bogoliubov–de Gennes (BdG) Hamiltonian and C(x) =
[c(x),c†(x)]T is the Nambu spinor with c(x) and c†(x) being
the electron annihilation and creation operators, respectively.
Here, v is the edge mode velocity, μ is the chemical potential,
� is the effective p-wave pairing potential of the proximity-
induced superconductivity, and τx,y,z are the Pauli matrices in
the particle-hole space. For the QAHI region, we set � = 0,
whereas for the SC region, we set μ(x) and �(x) to be
spatially varying along the electron trajectory length L. For
simplicity, we work in the units where the Planck constant
h̄, the Boltzmann constant kB , and edge velocity v are all
set to 1. We note that the term ∂x in the Hamiltonian comes
with the anticommutation relation {,} to ensure the Hermiticity
of the Hamiltonian. The p-wave pairing amplitude �(x) is
induced from the proximity effect of an s-wave SC with
a pairing potential �s(x). This cannot occur in a strictly
spin-polarized edge state. However, since the QAH system
arises from a TI, which is a strongly spin-orbit-coupled system,
we expect the spin polarization of the chiral edge state to
vary with momentum (similar to the spin texture in a TI [17]
on a scale of the spin-orbit length k−1

so where kso is related
to the exchange field λ by kso ∼ λ/v). Within this model,
�(x) ∼ v�s(x)/λ (see the Supplemental Material [18] for the
derivation).

The conductance of the three-terminal junction shown in
Fig. 2 where terminal 3 is connected to the SC can be computed
from Bogoliubov quasiparticle transmission and reflection
probabilities using a generalized Landauer-Büttiker formalism
[19–21]. Using this formalism the currents I1,2 shown in Fig. 2
are found to be

I1 = e2

h
[(1 − g11)(V1 − V3) − g12(V2 − V3)], (3a)

I2 = e2

h
[−g21(V1 − V3) + (1 − g22)(V2 − V3)], (3b)

where V1 and V2 are the voltages of leads 1 and 2, respectively,
V3 is the voltage of the SC, and gij are effective dimensionless
conductances from lead i to lead j due to the chiral edges.
Experimentally, the conductance is measured using a two-
terminal setup, i.e., the setup in Fig. 2 with either the current
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I2 = 0 (grounding) or I3 = 0 (floating SC case) depending on
the measured transport properties. For the case of floating SC,
we obtain the conductance between leads 1 and 2 from Eq. (3)
and the current conservation equation (I1 + I2 = 0) as

G12 ≡ I1

V1 − V2
= e2

h

[
g21g12 − (1 − g11)(1 − g22)

g12 + g21 + g11 + g22 − 2

]
. (4)

For the case where the SC is grounded, lead 2 is removed
(I2 = 0), and the conductance between lead 1 and the SC can
be obtained from Eq. (3) to be

G13 ≡ I1

V1 − V3
= e2

h

[
(1 − g11)(1 − g22) − g12g21

1 − g22

]
. (5)

To compute the parameters gij that determine the measured
conductances [Eqs. (4) and (5)], we need to consider a mi-
croscopic model of the chiral edges in the vicinity of the SC.
For p < pc, we assume that g11 = g22 = 0 as the chiral edge
state emanating from I1 can only be transmitted to I2, whereas
for p > pc, g12 = g21 = 0 as the edge states can only undergo
reflection. The above condition holds in the typical case where
the width of the system is larger than the correlation length at
some finite distance away from the critical point such that the
edge states (as shown in Fig. 1) do not couple to each other.
For computational simplicity, we assume that the conductances
are the same for the left- and right-incoming modes, i.e.,
g12 = g21 and g11 = g22 which is true for a symmetric junction.
Our results, however, hold in general and do not qualitatively
depend on this assumption.

The microscopic values of the parameter g11 or g12

(whichever is nonvanishing) are determined by a combination
of superconductivity and dephasing. Without superconductiv-
ity, g11 = 1, which results in a QH transition seen between
the two quantized values of G12 = 1 to G12 = 0 with no
intervening plateau. The introduction of superconductivity on
a disordered chiral edge allows for Andreev scattering which
gives rise to an intervening plateau. However, to obtain an
intervening plateau that is stable at low temperatures one
must account for dephasing through tunneling from the chiral
edge into the disjointed chiral loops Ln (seen in Fig. 1). The
nonvanishing conductance g11 or g12 (depending on whether
p > pc or not) is determined by the transconductance gtrans

across the incoherent chiral edge (coupled to an SC) that
results from the tunneling into the loops Ln. To determine
gtrans sufficiently close to the percolation point, where the loops
Ln are expected to be larger than the finite-temperature and
interaction-induced dephasing length vτϕ (where v is the chiral
edge velocity and τϕ is the dephasing time), we assume the loop
Ln to be a reservoir in equilibrium at voltage vn (relative to the
SC). Furthermore, we assume that the coupling between the
loop Ln and the SC is weak enough to allow incoherent transfer
of Cooper pairs through a resistance Rn ∼ v{Lτϕ[�s(xn)]2}−1

between them. To understand the origin of the resistanceRn, we
consider tunneling between the chiral loop and the SC which
leads to a conductance GS ∼ nchG

2
N [22] where nch is the num

ber of low-energy states (energy range of ∼τ−1
ϕ ) in the

chiral loop. The proximity gap �s ∝ GN is proportional to
the normal-state conductance GN per channel. Given the
voltages vn and the voltage difference Vin − V3 between the
incoming edge and the SC, the transconductance is given

by [23]

gtrans = �in,out +
∑

n

�n,out
vn

Vin − V3
, (6)

where �in,out and �n,out are conductances obtained from the
multiterminal Landauer-Büttiker formalism [24]. Specifically,
the incoherent chiral edge may be thought of as a multiterminal
system with leads at the in and out ends as well as each of the
loops Ln. We can then define the response of the current in
lead n to the voltage in lead m by

�mn =
∫ ∞

−∞
dE

(
−∂fT (E)

∂E

)[∣∣tNmn(E)
∣∣2 − ∣∣tAmn(E)

∣∣2]
, (7)

where fT (E) = 1/(eE/T + 1) is the Fermi distribution, tNmn(E)
and tAmn(E) are the normal and Andreev scattering amplitudes
at energy E, respectively, from the lead m into the lead n. Given
�mn, the voltages vn, that appear in Eq. (6), can be determined
recursively as one follows the loops down the chiral edge which
are given by

vn

Vin − V3
= �in,n + ∑

m<n �mn
vm

Vin−V3

R−1
n + �n,out + ∑

m>n �nm

. (8)

These relations as well as Eq. (6) can be derived from the
current conservation equation at each loop as detailed in the
Supplemental Material [23].

The scattering amplitudes tN,A
mn are the components of 2 ×

2 transmission (along the chiral edge) matrices acting in the
particle-hole basis which is given by

Tmn(E) =
(

tNmn(E) tA∗
mn(−E)

tAmn(E) tN∗
mn (−E)

)
. (9)

The inhomogeneity of the chemical potential and pairing
potential along the loop is accounted by matching the incoming
and outgoing edge modes in the SC region with spatially
varying μ(x) and �(x), where (see the Supplemental Material
[25] for the derivation)

Tmn(E) = ζmn

∏
m<j<n

eiṽ
−1/2
j (μj τz+Eτ0)ṽ−1/2

j 	, (10)

with ṽj = vτ0 + �jτx being the effective edge mode velocity
at lattice site j and 	 being the lattice constant. Here ζmn =

m
n

∏
m<j<n(1 − 
2

j )1/2 is a numerical factor that is related
to the couplings |
j | < 1 of the chiral edge to the lead j (
in =

out ≡ 1).

From Eq. (10), we calculate the zero-bias net scattering
probability �mn [Eq. (7)] which is then used to compute the
transconductance gtrans of a chiral edge [Eq. (6)], which is ulti-
mately used to compute the two-terminal conductance [Eqs. (4)
and (5)]. Figure 3 shows the calculated gtrans as a function of the
electron trajectory length L/η where η = vkso/�s is the mean
value of the dimensionless p-wave superconducting coherence
length with kso ∼ (50 nm)−1. From Fig. 3, we can see that gtrans

decays exponentially with L. The electron trajectory length
L increases as the proportion p → pc where the percolation
threshold pc corresponds to the magnetic field near the
coercive field. Near pc, L obeys the scaling relation [26],

L = L0|p − pc|−νdh = L0|p − pc|−(1+ν), (11)
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FIG. 3. Semilogarithmic plot of zero-energy effective transcon-
ductance gtrans vs electron trajectory length L/η where η = v/�

is the average dimensionless p-wave superconducting coherence
length. We consider spatially varying �(x) and μ(x) where the
values of �(x) ∈ [0,0.1] and μ(x) ∈ [−0.01,0.01] are drawn from
uniform distributions. Note that gtrans exponentially decays with
L. For p < pc, gtrans = g12 = g21 and g11 = g22 = 0, whereas for
p > pc, gtrans = g11 = g22 and g12 = g21 = 0. Parameters used are
edge mode velocity v = 1, temperature T = 0.01, resistance R(x) =
0.1/{L[�(x)]2}, and coupling between the edge state and loop
(x) =
0.3 for all x’s.

where for the 2D case considered here, the correlation length
exponent ν is 4

3 [27] and the fractal dimension of the hull dh

is (1 + ν)/ν [28]. Using Eqs. (6)–(11), we have gtrans → 0 as
p → pc.

Next, we computed G12 and G13 using Eqs. (4) and (5),
respectively, for a specific disorder realization. Figure 4 shows
the numerically calculated G12 and G13 as functions of p − pc

near the percolation threshold pc. As seen from the plot, the
conductance G12 
 e2/h for p < pc and G12 
 0 for p > pc

with an exponentially flat e2/2h plateau at pc whereas the
conductance G13 
 0 for p < pc and p > pc with an e2/h

peak at pc. Close to pc, we can write G12 and G13 by using
Eqs. (4)–(11) as

G12 ≈
{

e2

2h
(1 + e−2α|p−pc |−(1+ν)

) for p = pc−
e2

2h
(1 − e−2α|p−pc |−(1+ν)

) for p = pc+,
(12)

and

G13 ≈
{

e2

h
(1 − e−4α|p−pc |−(1+ν)

) for p = pc−,

e2

h
(1 − e−2α|p−pc |−(1+ν)

) for p = pc+,
(13)

where α is the inverse length scale for the exponential decay of
gtrans. At p = pc, G12 and G13 are perfectly quantized at e2/2h

and e2/h, respectively, with exponentially flat plateaus. These
plateaus, which originate from the disorder effect, resemble
the experimental data [14] claimed to be the signatures of
CMEMs. The width of the disorder-induced plateau decreases
with decreasing pairing amplitude � as discussed in the
Supplemental Material [29].

Our results, based on a classical percolation model for
the QH transition, are valid at high temperatures where the
chiral edge becomes effectively long enough to produce the
plateaus in Fig. 4. This classical percolation picture is a

FIG. 4. Conductances (a) G12 and (b) G13 as a function of p near
the percolation threshold pc. G12 exhibits a half-integer quantized
plateau at p = pc, whereas G13 shows an integer quantized peak at
p = pc. The red dashed lines denote (a) G = e2/2h and (b) G =
e2/h. We set L0 in Eq. (11) to be η/2000 so that the conductance
plateaus have a short width near pc. The parameters used here are the
same as those used in Fig. 3. The plateau width is stable at relatively
low temperatures where the plateau width does not change in the
low-temperature regime.

reasonable description of the QH transition away from the
critical point, at a relatively high temperature [15], or in the
presence of dephasing arising from the interplay of interaction,
disorder, and temperature [30]. Such dephasing requires the
equilibration rate of quasiparticles in the loop being fast
compared to tunneling as in our simple model of dephasing.
The equilibration rate goes to zero as T → 0. However, for
appropriate interaction strengths and pairing potentials, the
condition of strong dephasing can be satisfied to arbitrarily
low temperatures leading to a weakly temperature-dependent
plateau at low temperatures [31]. On the other hand, the plateau
that arises from thermal fluctuations (without quasiparticle
leakage between the chiral edge and the adjacent chiral loops)
is strongly temperature dependent [31].

The e2/2h plateau shown in Fig. 4 would describe results
not only in phases other than the N = 1 TSC, but also in
the N = 1 phase for temperatures above the topological gap.
At such high temperatures, gtrans would vanish because the
edge quasiparticles could escape into the bulk by thermal
excitations which makes it difficult to ascribe the conductance
plateau to the topological properties of the TSC. Additionally,
it has been proposed that, in the limit of strong disorder, the
gapped N = 1 TSC may be replaced by a gapless Majorana
metal phase even at zero temperature [32], which may also
produce an e2/2h plateau.
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Although our results do not contradict the theoretical
existence of the N = 1 TSC phase (which is likely although
not inevitable) in the vicinity of the QAH transition, the nearly
quantized e2/2h conductance plateau observed in the recent
experiment [14] cannot serve as an experimental evidence for
the N = 1 TSC as it is likely to arise outside the TSC phase
as well. In principle, observing the stabilization of the plateau
to a more perfectly quantized plateau as the temperature is
lowered together with either a hard superconducting gap from
the electrical conductance measurement (which is unlikely for
a disordered system) or a thermal transport gap would be the
signatures of an N = 1 TSC. Another smoking-gun signature
is the half-quantized thermal conductivity KH = (πkB)2T/6h

[33] which would rule out the classical percolation-based
model and the Majorana metal phase as they would have a
large nonuniversal longitudinal thermal conductance.

Note added. Upon completion of our Rapid Communica-
tion, we became aware of a recent paper [34] related to our
work.
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