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Quasi-one-dimensional Bose-Einstein condensation in the spin-1/2 ferromagnetic-leg ladder 3-I-V
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Quantum criticality of the spin-1/2 ferromagnetic-leg ladder 3-I-V [=3-(3-iodophenyl)-1,5-diphenylverdazyl]
has been examined with respect to the antiferromagnetic to paramagnetic phase transition near the saturation
field Hc. The phase boundary Tc(H ) follows the power-law Tc(H ) ∝ Hc − H for a wide temperature range. This
characteristic behavior is discussed as a quasi-one-dimensional (quasi-1D) Bose-Einstein condensation, which
is predicted theoretically for weakly coupled quasi-1D ferromagnets. Thus, 3-I-V provides the first promising
candidate for this attractive prediction.
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Low dimensionality—one or two dimensions (1D or 2D)—
plays an essential role in various exotic quantum phenomena,
such as a Tomonaga–Luttinger liquid (TLL), which is related
to 1D spinon excitations [1], and a Haldane state [2] and
Kosterlitz-Thouless transition [3], which are related to topo-
logical phases. However, in real quantum magnets, the effects
of three-dimensional (3D) interactions are inevitable so that
they are always “quasi”low dimensional.

Since the universality of a quantum phase transition reflects
the space dimensionality of the system [4,5], the critical
behavior near the quantum critical point (QCP) in a quasi-
low-dimensional magnet should belong to the 3D universality
class. A notion of Bose-Einstein condensation (BEC) has
often been applied to describe a certain universality class
of magnetic-field-induced QCP; 3D XY antiferromagnetic
(AFM) ordering can be mapped onto the condensate of lattice-
gas bosons [6,7]. Realization of the 3D BEC QCP has been
intensively studied in spin dimer systems, such as TlCuCl3

[8] and BaCuSi2O6 [9]. As quasi-low-dimensional magnets,
the spin-1/2 triangular-lattice antiferromagnet Cs2CuCl4 [10],
the spin-1/2 AFM two-leg ladders (Cu7H10N)2CuBr2 [11]
and (Cu5H12N)2CuBr4 [12], and the spin-1/2 alternating
AFM spin chain Cu(NO3)2 · 2.5H2O (copper nitrate) [13] are
representative.

Moving away from the QCP, the weaker 3D interactions
are effectively masked, and low-dimensional characteristics
can arise. One of the attractive issues of this type of di-
mensional crossover is the theoretical proposal for a BEC in
quasi-low-dimensional magnets including ferromagnetic (FM)
chains (quasi-1D) or planes (quasi-2D); the power law of
the critical temperature near the saturation field Hc, Tc(H ) ∼
|Hc − H |1/φ , can exhibit crossovers from φ = 3/2 with the
3D BEC universality class to φ � 1 with quasi-1D or quasi-2D
ones as it moves away from the QCP [14]. Although the 3D
BEC exponent has widely been investigated as mentioned
above, there exist few experimental tests for such dimensional
crossovers. The quasi-2D BEC case has been reported for the

*k-yohei@issp.u-tokyo.ac.jp

spin-1/2 2D XXZ ferromagnet K2CuF4 [15], which is referred
to as one of the candidates in Ref. [14]. On the other hand,
candidates for the quasi-1D BEC case remain to be explored.

Recently, a new type of quasi-1D quantum magnet has been
synthesized using verdazyl radical-based molecules, each of
which carries an S = 1

2 spin|spin-1/2 FM-leg ladder [16–19].
The Hamiltonian of a typical two-leg spin ladder in a magnetic
field can be described as

H = J‖
∑
i,α

Si,α · Si+1,α + J⊥
∑

i

Si,1 · Si,2

− gμBH
∑
i,α

Sz
i,α, (1)

where J‖ is the interaction along each leg (α = 1,2), J⊥
is the rung interaction between the legs, g is the g fac-
tor, and μB is the Bohr magneton (see Fig. 1). The FM-
leg case corresponds to J‖ < 0 and J⊥ > 0. Previously,
we reported that the 3D BEC exponent was observed on
one of the FM-leg ladders 3-Br-4-F-V [=3-(3-bromo-4-
fluorophenyl)-1,5-diphenylverdazyl] near the lower critical
and saturation fields [20,21]. 3-Br-4-F-V is a strong-rung
ladder (|J‖/J⊥| < 1), whereas the other two 3-Cl-4-F-V [3-(3-
chloro-4-fluorophenyl)-1,5-diphenylverdazyl] [18] and 3-I-V
[=3-(3-iodophenyl)-1,5-diphenylverdazyl] [16] are strong-leg
ladders (|J‖/J⊥| > 1). Thus, the effect of the difference in the
intraladder interactions for the critical phenomena near the
critical field is of great interest.

In this Rapid Communication, we show that the
spin-1/2 FM-leg ladder 3-I-V [=3-(3-iodophenyl)-1,5-
diphenylverdazyl] is a promising candidate for quasi-1D BEC.
The phase boundary of the 3D ordering Tc(H ) near the
saturation field Hc was precisely determined by several experi-
mental methods. The obtained Tc(H ) is in accordance with the
power-law Tc(H ) ∝ (Hc − H ) over a wide temperature range.
The possibility of quasi-1D BEC is discussed based on the
dominant spin interactions of 3-I-V.

Predominant intermolecular interactions of 3-I-V have
been predicted as a FM-leg spin ladder along the a axis by
ab initio molecular-orbital (MO) calculations [16,17], and
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FIG. 1. Schematic of a part of the dominant intermolecular inter-
actions of 3-I-V as represented in Ref. [16]. Each sphere corresponds
to an S = 1

2 spin (see the text).

the intraladder interactions were estimated at J‖/kB = −11.6
and J⊥/kB = 5.8 K by comparison of the experiments with
quantum Monte Carlo simulations [17]. Although the isotropic
FM-leg spin ladder has a spin gap as long asJ⊥ �= 0 [22], 3-I-V
exhibits 3D ordering at zero field, and the 3D ordering phase
reaches the saturation field near 5.5 T [16]. The 3D ordering
has been attributed to the frustrated intra- and interladder
couplings predicted by the MO calculations; the diagonal
interactions Jdiag < 0 and the interactions J1 > 0, J2 < 0, and
J3 < 0, which form triangles, as illustrated in Fig. 1. These
interactions were estimated at approximately 0.1J⊥ [16]. Note
that MO calculations have been proven effective to evaluate
predominant intermolecular interactions of verdazyl radical
compounds [17,23–25].

To extract the critical exponentφ of 3-I-V near the saturation
field Hc, we performed a precise determination of the 3D
ordering phase boundary using three methods: magnetiza-
tion, specific-heat, and magnetocaloric-effect (MCE) measure-
ments. Single-crystal samples of 3-I-V were synthesized as
described in Ref. [17]. dc magnetization measurements were
performed by a force magnetometer [26] on 2.52-mg randomly
oriented samples. Specific-heat measurements were carried
out by the standard quasiadiabatic heat-pulse method on the
same samples. The MCE was measured by up and down
magnetic-field sweepings at 50–80 mT/min with fixed bath
temperatures using a 0.42-mg crystal from the same samples.
For all measurements, magnetic fields up to 6 T were applied
perpendicular to the a axis (perpendicular to the leg direction).

Figure 2 shows the temperature dependence of the magnetic
susceptibility χ = M/H in several magnetic fields from 0.5
to 5.2 T. There exists a cusplike minimum or maximum in
each curve as reported in Ref. [16]. This cusplike anomaly is
typically observed in model materials discussed in the context
of BEC [8,15,27] and is predicted by theoretical calculations
[28,29]. In the case of two-leg spin ladder systems, extrema
associated with a crossover to the TLL regime have often been

FIG. 2. Temperature dependence of the magnetic susceptibility
χ = M/H in several magnetic fields (a) from 0.5 to 3.4 T and
(b) from 3.5 to 5.2 T with 0.1-T steps. Each curve is shifted by
+0.002 emu/mol for clarity. The arrows indicate the 3D ordering
temperature Tc at which χ has a cusplike minimum or maximum.

observed above 3D ordering temperatures [13,30–33], but 3-I-
V has no such anomalies, which is attributed to the interladder
interactions. Thus, the cusplike anomaly indicates the position
of the 3D ordering temperature Tc.

In Fig. 3(a), the temperature dependence of the specific-
heat C in several magnetic fields from 4.0 to 5.1 T exhibits
a peak anomaly. The upturn behavior at low temperatures is
attributed to nuclear Schottky contributions from 1H, 127I, and
14N. Although the peak anomaly itself was defined as Tc in
a previous report [16], an inflection point beyond the peak
anomaly of C is a more plausible way to define Tc because it

FIG. 3. (a) Temperature dependence of the heat-capacity C and
(b) its temperature derivative dC/dT in several magnetic fields
from 4.0 to 5.4 T with 0.1-T steps. Each curve in (a) is shifted by
+0.25 J mol−1 K−1 for clarity. The arrows indicate the 3D ordering
temperature Tc at which C shows an inflection just beyond the peak.
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FIG. 4. (a), (c), and (e) show magnetocaloric-effect curves at
several fixed bath temperatures. (b), (d), and (f) show dT /d(μ0H )
obtained from (a), (c), and (e), respectively. The red or lighter
gray (blue or darker gray) curves denote the up- (down-)sweep
measurements.

shows excellent agreement with Tc as determined from χ (T )
and the MCE measurements. Therefore, we assign the sharp
trough in dC/dT to Tc as shown in Fig. 3(b).

Figures 4(a), 4(c) and 4(e) show the MCE curves at
fixed bath temperatures of ∼286.5, ∼601, and ∼918 mK,
respectively. The up-sweep and down-sweep curves on each
panel appear to be almost vertically symmetric with each
other. Such behavior indicates that the MCE measurements
were performed under equilibrium conditions [6,34]. Under
these conditions, the first derivative of T (H ) exhibits a sharp
peak (trough) in the up- (down-) sweep curves as shown in
Figs. 4(b), 4(d) and 4(f). The phase boundary Tc(H ) can be
determined from the positions of the peak (trough) anomalies
in a similar manner to that used in the MCE measurements
of other systems under similar conditions [34–36]. Note that
the temperature difference between the sample and the bath
temperature �T (H ) at the equilibrium conditions behaves like

�T (H ) = −T

κ
Ḣ

(
∂M

∂T

)
H

, (2)

where κ is the thermal conductivity between the sample and the
bath and Ḣ is the sweep rate [6]. This implies that the extrema
in χ (T )[= M(T )/H ] should be associated with the inflection
points of the MCE curves. This fact supports the agreement of
the definitions of Tc in the χ (T ) and MCE results.

The 3D ordering temperatures Tc(H ), determined from
the present measurements are summarized in Fig. 5. All the
definitions of Tc are in excellent agreement with each other so

FIG. 5. Phase boundary of the 3D ordering Tc(H ), determined
from the present measurements. The open circles and squares show
Tc obtained from χ (T ) and C(T ), respectively. Up and down triangles
show Tc obtained from dT /d(μ0H ) of the up- and down-sweep MCE
data, respectively. The inset: magnetic-field dependence of C near the
saturation field in the present (the closed diamonds) and previous (the
open diamonds, Ref. [16]) measurements.

that they give the exact phase boundary of 3-I-V. We can also
refer to the additional phase discussed in the previous report
[16]. In the inset of Fig. 5, the magnetic-field dependence of the
specific heat for the present sample is compared with previous
measurements. The present measurements show only a single
sharp peak, different from the broad peak shown in the previous
measurements. This implies that the broad peak in the previous
data may arise from a collapse of the sharp peak rather than an
overlap of two phase transitions. Such a collapse of a peak in
specific-heat measurements indicates an effect of disorder [37]
so that the sharper peak in the present results is attributed to
the improvement of the sample quality. Moreover, there exist
no additional anomalies in χ (T ) and C(T ) near the additional
phase boundary defined previously. Thus, in fact, we conclude
that the additional phase does not exist.

The quantum criticality of the phase boundary near the
saturation field is represented in Fig. 6. As indicated in
Fig. 6(a), Tc(H ) from the χ (T ) data below 1 K is well
reproduced by the linear fitting of the data, yielding the critical
field μ0Hc = 5.536(4) T. Figure 6(b) is a log-log plot of Tc(H )
vs μ0(Hc − H ) for all the data of Tc(H ). It demonstrates that
all the definitions of Tc below 1 K are consistent with the
line corresponding to the critical exponent φ = 1 (the solid
lines), clearly distinguished from φ = 3

2 of the 3D BEC case
(the dotted line). The quasi-1D or quasi-2D BEC predicted in
Ref. [14] is hence expected to be realized in 3-I-V.

The quasi-1D case is compatible with the spin interactions
of 3-I-V predicted by the MO calculations. As discussed in
Ref. [14], the quasi-1D BEC exponent φ = 1 can be found if
effective interactions between magnons are sufficiently small
near QCP. In 3-I-V, quasiparticle (magnon) excitation near the
QCP (Hc) could be principally derived from the transition from
the triplet to singlet state on each rung because the rung interac-
tions J⊥ are antiferromagnetic. The magnons on each two-leg
ladder interact through the frustrated J1-J2-J3 interactions as
described above. Such frustration with the opposite signs of
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FIG. 6. (a) Enlarged plot of the main panel of Fig. 5 near the
saturation field Hc. The solid line is the linear-fitting line of Tc(H )
from the χ (T ) data below 1 K. Extrapolating the linear-fitting line to
zero temperature yields Hc = 5.536(4) T. (b) Log-log plot of Tc(H )
vs μ0(Hc − H ). The solid lines correspond to Tc(H ) ∝ Hc − H . The
dotted line corresponds to Tc(H ) ∝ (Hc − H )2/3 for comparison.

interactions could suppress the effective interactions between
those magnons so that the predominant FM-leg interactions
are relatively enhanced to cause the quasi-1D BEC exponent
φ = 1. One can suspect that the ladder-type interactions cause
the 2D characteristics, but it is required for the quasi-2D
BEC that a 2D plane consists of ferromagnetic interactions

as described in Ref. [14]. Thus, the quasi-2D BEC case is
not suitable for the present conditions. Crossover to the 3D
BEC exponent is not observed in the temperature range of this
Rapid Communication, although the interladder interactions
are on the order of 0.1J⊥. This is also attributed to the effect of
the frustration such that the crossover would be found below
0.1 K. Since these arguments are only on the basis of the MO
calculations, inelastic neutron-scattering measurements would
be needed to estimate more accurate exchange parameters.

To summarize, we have examined the quantum critical
phenomena near the saturation field (Hc) on the spin-1/2
FM-leg ladder 3-I-V. The phase boundary of the 3D ordering
state near Hc was precisely determined by magnetization,
specific-heat, and MCE measurements. All definitions of the
3D ordering temperatures Tc are in excellent agreement with
each other. The obtained phase boundary shows the linearity
of the power-law Tc(H ) ∝ Hc − H below 1 K. The charac-
teristic behavior would be caused by quasi-1D BEC with the
predominant ferromagnetic interactions proposed by Ref. [14],
which could be enhanced by the interladder frustration. Thus,
spin-1/2 FM-leg ladders are promising for investigating the
relationship between low dimensionality and BEC physics in
quantum magnets.

This work was supported in part by KAKENHI Grants No.
16J01784, No. 15K05158, No. 17H04850, No. 15H03695,
and No. 15H03682 from JSPS. The sample preparation of
3-I-V was performed at Osaka Prefecture University. The
magnetization, specific-heat, and MCE measurements were
conducted at the Institute for Solid State Physics, the University
of Tokyo.

[1] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, 2004).

[2] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[3] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys.

6, 1181 (1973).
[4] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge

University Press, Cambridge, UK, 2011).
[5] M. Vojta, Rep. Prog. Phys. 66, 2069 (2003).
[6] V. Zapf, M. Jaime, and C. D. Batista, Rev. Mod. Phys. 86, 563

(2014).
[7] T. Giamarchi, C. Rüegg, and O. Tchernyshyov, Nat. Phys. 4, 198

(2008).
[8] F. Yamada, T. Ono, H. Tanaka, G. Misguich, M. Oshikawa, and

T. Sakakibara, J. Phys. Soc. Jpn. 77, 013701 (2008).
[9] S. E. Sebastian, P. A. Sharma, M. Jaime, N. Harrison, V. Correa,

L. Balicas, N. Kawashima, C. D. Batista, and I. R. Fisher, Phys.
Rev. B 72, 100404 (2005); S. E. Sebastian, N. Harrison, C. D.
Batista, L. Balicas, M. Jaime, P. A. Sharma, N. Kawashima, and
I. R. Fisher, Nature (London) 441, 617 (2006).

[10] T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. Coldea,
Z. Tylczynski, T. Lühmann, and F. Steglich, Phys. Rev. Lett. 95,
127202 (2005); 96, 189704 (2006).

[11] M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zheludev,
and M. Horvatić, Phys. Rev. Lett. 111, 106404 (2013).

[12] B. Thielemann, C. Rüegg, K. Kiefer, H. M. Rønnow, B.
Normand, P. Bouillot, C. Kollath, E. Orignac, R. Citro, T.

Giamarchi, A. M. Läuchli, D. Biner, K. W. Krämer, F. Wolff-
Fabris, V. S. Zapf, M. Jaime, J. Stahn, N. B. Christensen, B.
Grenier, D. F. McMorrow, and J. Mesot, Phys. Rev. B 79, 020408
(2009).

[13] B. Willenberg, H. Ryll, K. Kiefer, D. A. Tennant, F. Groitl, K.
Rolfs, P. Manuel, D. Khalyavin, K. C. Rule, A. U. B. Wolter,
and S. Süllow, Phys. Rev. B 91, 060407 (2015).

[14] A. V. Syromyatnikov, Phys. Rev. B 75, 134421 (2007).
[15] S. Hirata, N. Kurita, M. Yamada, and H. Tanaka, Phys. Rev. B

95, 174406 (2017).
[16] H. Yamaguchi, H. Miyagai, Y. Kono, S. Kittaka, T. Sakakibara,

K. Iwase, T. Ono, T. Shimokawa, and Y. Hosokoshi, Phys. Rev. B
91, 125104 (2015).

[17] H. Yamaguchi, H. Miyagai, T. Shimokawa, K. Iwase, T. Ono,
Y. Kono, N. Kase, K. Araki, S. Kittaka, T. Sakakibara, T.
Kawakami, K. Okunishi, and Y. Hosokoshi, J. Phys. Soc. Jpn.
83, 033707 (2014).

[18] H. Yamaguchi, K. Iwase, T. Ono, T. Shimokawa, H. Nakano, Y.
Shimura, N. Kase, S. Kittaka, T. Sakakibara, T. Kawakami, and
Y. Hosokoshi, Phys. Rev. Lett. 110, 157205 (2013).

[19] H. Yamaguchi, H. Miyagai, M. Yoshida, M. Takigawa, K.
Iwase, T. Ono, N. Kase, K. Araki, S. Kittaka, T. Sakakibara,
T. Shimokawa, T. Okubo, K. Okunishi, A. Matsuo, and Y.
Hosokoshi, Phys. Rev. B 89, 220402 (2014).

[20] Y. Kono, H. Yamaguchi, Y. Hosokoshi, and T. Sakakibara, Phys.
Rev. B 96, 104439 (2017).

100406-4

https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1088/0034-4885/66/12/R01
https://doi.org/10.1103/RevModPhys.86.563
https://doi.org/10.1103/RevModPhys.86.563
https://doi.org/10.1103/RevModPhys.86.563
https://doi.org/10.1103/RevModPhys.86.563
https://doi.org/10.1038/nphys893
https://doi.org/10.1038/nphys893
https://doi.org/10.1038/nphys893
https://doi.org/10.1038/nphys893
https://doi.org/10.1143/JPSJ.77.013701
https://doi.org/10.1143/JPSJ.77.013701
https://doi.org/10.1143/JPSJ.77.013701
https://doi.org/10.1143/JPSJ.77.013701
https://doi.org/10.1103/PhysRevB.72.100404
https://doi.org/10.1103/PhysRevB.72.100404
https://doi.org/10.1103/PhysRevB.72.100404
https://doi.org/10.1103/PhysRevB.72.100404
https://doi.org/10.1038/nature04732
https://doi.org/10.1038/nature04732
https://doi.org/10.1038/nature04732
https://doi.org/10.1038/nature04732
https://doi.org/10.1103/PhysRevLett.95.127202
https://doi.org/10.1103/PhysRevLett.95.127202
https://doi.org/10.1103/PhysRevLett.95.127202
https://doi.org/10.1103/PhysRevLett.95.127202
https://doi.org/10.1103/PhysRevLett.96.189704
https://doi.org/10.1103/PhysRevLett.96.189704
https://doi.org/10.1103/PhysRevLett.96.189704
https://doi.org/10.1103/PhysRevLett.111.106404
https://doi.org/10.1103/PhysRevLett.111.106404
https://doi.org/10.1103/PhysRevLett.111.106404
https://doi.org/10.1103/PhysRevLett.111.106404
https://doi.org/10.1103/PhysRevB.79.020408
https://doi.org/10.1103/PhysRevB.79.020408
https://doi.org/10.1103/PhysRevB.79.020408
https://doi.org/10.1103/PhysRevB.79.020408
https://doi.org/10.1103/PhysRevB.91.060407
https://doi.org/10.1103/PhysRevB.91.060407
https://doi.org/10.1103/PhysRevB.91.060407
https://doi.org/10.1103/PhysRevB.91.060407
https://doi.org/10.1103/PhysRevB.75.134421
https://doi.org/10.1103/PhysRevB.75.134421
https://doi.org/10.1103/PhysRevB.75.134421
https://doi.org/10.1103/PhysRevB.75.134421
https://doi.org/10.1103/PhysRevB.95.174406
https://doi.org/10.1103/PhysRevB.95.174406
https://doi.org/10.1103/PhysRevB.95.174406
https://doi.org/10.1103/PhysRevB.95.174406
https://doi.org/10.1103/PhysRevB.91.125104
https://doi.org/10.1103/PhysRevB.91.125104
https://doi.org/10.1103/PhysRevB.91.125104
https://doi.org/10.1103/PhysRevB.91.125104
https://doi.org/10.7566/JPSJ.83.033707
https://doi.org/10.7566/JPSJ.83.033707
https://doi.org/10.7566/JPSJ.83.033707
https://doi.org/10.7566/JPSJ.83.033707
https://doi.org/10.1103/PhysRevLett.110.157205
https://doi.org/10.1103/PhysRevLett.110.157205
https://doi.org/10.1103/PhysRevLett.110.157205
https://doi.org/10.1103/PhysRevLett.110.157205
https://doi.org/10.1103/PhysRevB.89.220402
https://doi.org/10.1103/PhysRevB.89.220402
https://doi.org/10.1103/PhysRevB.89.220402
https://doi.org/10.1103/PhysRevB.89.220402
https://doi.org/10.1103/PhysRevB.96.104439
https://doi.org/10.1103/PhysRevB.96.104439
https://doi.org/10.1103/PhysRevB.96.104439
https://doi.org/10.1103/PhysRevB.96.104439


QUASI-ONE-DIMENSIONAL BOSE-EINSTEIN … PHYSICAL REVIEW B 97, 100406(R) (2018)

[21] Note that the critical exponent in Ref. [20] is defined as ν = 1/φ.
[22] T. Vekua, G. I. Japaridze, and H.-J. Mikeska, Phys. Rev. B 67,

064419 (2003); 70, 014425 (2004).
[23] H. Yamaguchi, A. Toho, K. Iwase, T. Ono, T. Kawakami, T.

Shimokawa, A. Matsuo, and Y. Hosokoshi, J. Phys. Soc. Jpn.
82, 043713 (2013).

[24] H. Yamaguchi, T. Okubo, K. Iwase, T. Ono, Y. Kono, S. Kittaka,
T. Sakakibara, A. Matsuo, K. Kindo, and Y. Hosokoshi, Phys.
Rev. B 88, 174410 (2013).

[25] K. Iwase, H. Yamaguchi, T. Ono, Y. Hosokoshi, T. Shimokawa,
Y. Kono, S. Kittaka, T. Sakakibara, A. Matsuo, and K. Kindo,
Phys. Rev. B 88, 184431 (2013).

[26] T. Sakakibara, H. Mitamura, T. Tayama, and H. Amitsuka, Jpn.
J. Appl. Phys. 33, 5067 (1994).

[27] A. Paduan-Filho, X. Gratens, and N. F. Oliveira, Phys. Rev. B
69, 020405 (2004).

[28] T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka, Phys. Rev.
Lett. 84, 5868 (2000).

[29] K.-K. Ng and T.-K. Lee, Phys. Rev. B 73, 014433 (2006).

[30] K. Ninios, T. Hong, T. Manabe, C. Hotta, S. N. Herringer, M. M.
Turnbull, C. P. Landee, Y. Takano, and H. B. Chan, Phys. Rev.
Lett. 108, 097201 (2012).

[31] P. Bouillot, C. Kollath, A. M. Läuchli, M. Zvonarev, B. Thiele-
mann, C. Rüegg, E. Orignac, R. Citro, M. Klanjšek, C. Berthier,
M. Horvatić, and T. Giamarchi, Phys. Rev. B 83, 054407 (2011).

[32] X. Wang and L. Yu, Phys. Rev. Lett. 84, 5399 (2000).
[33] S. Wessel, M. Olshanii, and S. Haas, Phys. Rev. Lett. 87, 206407

(2001).
[34] V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison, C. D.

Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, and A.
Paduan-Filho, Phys. Rev. Lett. 96, 077204 (2006).

[35] E. C. Samulon, Y.-J. Jo, P. Sengupta, C. D. Batista, M. Jaime, L.
Balicas, and I. R. Fisher, Phys. Rev. B 77, 214441 (2008).

[36] A. A. Aczel, Y. Kohama, M. Jaime, K. Ninios, H. B. Chan, L.
Balicas, H. A. Dabkowska, and G. M. Luke, Phys. Rev. B 79,
100409 (2009).

[37] E. Wulf, S. Mühlbauer, T. Yankova, and A. Zheludev, Phys.
Rev. B 84, 174414 (2011).

100406-5

https://doi.org/10.1103/PhysRevB.67.064419
https://doi.org/10.1103/PhysRevB.67.064419
https://doi.org/10.1103/PhysRevB.67.064419
https://doi.org/10.1103/PhysRevB.67.064419
https://doi.org/10.1103/PhysRevB.70.014425
https://doi.org/10.1103/PhysRevB.70.014425
https://doi.org/10.1103/PhysRevB.70.014425
https://doi.org/10.7566/JPSJ.82.043713
https://doi.org/10.7566/JPSJ.82.043713
https://doi.org/10.7566/JPSJ.82.043713
https://doi.org/10.7566/JPSJ.82.043713
https://doi.org/10.1103/PhysRevB.88.174410
https://doi.org/10.1103/PhysRevB.88.174410
https://doi.org/10.1103/PhysRevB.88.174410
https://doi.org/10.1103/PhysRevB.88.174410
https://doi.org/10.1103/PhysRevB.88.184431
https://doi.org/10.1103/PhysRevB.88.184431
https://doi.org/10.1103/PhysRevB.88.184431
https://doi.org/10.1103/PhysRevB.88.184431
https://doi.org/10.1143/JJAP.33.5067
https://doi.org/10.1143/JJAP.33.5067
https://doi.org/10.1143/JJAP.33.5067
https://doi.org/10.1143/JJAP.33.5067
https://doi.org/10.1103/PhysRevB.69.020405
https://doi.org/10.1103/PhysRevB.69.020405
https://doi.org/10.1103/PhysRevB.69.020405
https://doi.org/10.1103/PhysRevB.69.020405
https://doi.org/10.1103/PhysRevLett.84.5868
https://doi.org/10.1103/PhysRevLett.84.5868
https://doi.org/10.1103/PhysRevLett.84.5868
https://doi.org/10.1103/PhysRevLett.84.5868
https://doi.org/10.1103/PhysRevB.73.014433
https://doi.org/10.1103/PhysRevB.73.014433
https://doi.org/10.1103/PhysRevB.73.014433
https://doi.org/10.1103/PhysRevB.73.014433
https://doi.org/10.1103/PhysRevLett.108.097201
https://doi.org/10.1103/PhysRevLett.108.097201
https://doi.org/10.1103/PhysRevLett.108.097201
https://doi.org/10.1103/PhysRevLett.108.097201
https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevLett.84.5399
https://doi.org/10.1103/PhysRevLett.84.5399
https://doi.org/10.1103/PhysRevLett.84.5399
https://doi.org/10.1103/PhysRevLett.84.5399
https://doi.org/10.1103/PhysRevLett.87.206407
https://doi.org/10.1103/PhysRevLett.87.206407
https://doi.org/10.1103/PhysRevLett.87.206407
https://doi.org/10.1103/PhysRevLett.87.206407
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.1103/PhysRevB.77.214441
https://doi.org/10.1103/PhysRevB.77.214441
https://doi.org/10.1103/PhysRevB.77.214441
https://doi.org/10.1103/PhysRevB.77.214441
https://doi.org/10.1103/PhysRevB.79.100409
https://doi.org/10.1103/PhysRevB.79.100409
https://doi.org/10.1103/PhysRevB.79.100409
https://doi.org/10.1103/PhysRevB.79.100409
https://doi.org/10.1103/PhysRevB.84.174414
https://doi.org/10.1103/PhysRevB.84.174414
https://doi.org/10.1103/PhysRevB.84.174414
https://doi.org/10.1103/PhysRevB.84.174414



