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Roles of chiral renormalization on magnetization dynamics in chiral magnets
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In metallic ferromagnets, the interaction between local magnetic moments and conduction electrons renor-
malizes parameters of the Landau-Lifshitz-Gilbert equation, such as the gyromagnetic ratio and the Gilbert
damping, and makes them dependent on the magnetic configurations. Although the effects of the renormalization
for nonchiral ferromagnets are usually minor and hardly detectable, we show that the renormalization does play
a crucial role for chiral magnets. Here the renormalization is chiral, and as such we predict experimentally
identifiable effects on the phenomenology of magnetization dynamics. In particular, our theory for the
self-consistent magnetization dynamics of chiral magnets allows for a concise interpretation of domain-wall
creep motion. We also argue that the conventional creep theory of the domain-wall motion, which assumes
Markovian dynamics, needs critical reexamination since the gyromagnetic ratio makes the motion non-Markovian.
The non-Markovian nature of the domain-wall dynamics is experimentally checkable by the chirality of the
renormalization.
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Renormalization is a useful concept to understand interac-
tion effects between a physical system and its environment.
In metallic ferromagnets, magnetic moments experience such
renormalization due to their coupling to conduction electrons
through exchange interactions. Spin magnetohydrodynamic
theory [1–3] examines the renormalization of dynamical pa-
rameters in the Landau-Lifshitz-Gilbert (LLG) equation as
follows. Magnetization dynamics exerts a spin motive force
(SMF) [4,5] on conduction electrons, and the resulting spin
current generates spin-transfer torque (STT) [6–8] that affects
the magnetization dynamics itself. This self-feedback of mag-
netization dynamics [9] renormalizes the Gilbert damping and
the gyromagnetic ratio. However, its consequences rarely go
beyond quantitative corrections in nonchiral systems [10–14]
and thus are commonly ignored.

Chiral magnets are ferromagnets that prefer a particu-
lar chirality of magnetic texture due to spin-orbit coupling
(SOC) and broken inversion symmetry. Examples include
ferromagnets in contact with heavy metals, such as Pt [15] and
those with noncentrosymmetric crystal structures [16]. Mag-
netization dynamics in chiral magnets are usually described
by generalizing the conventional LLG equation to include
the chiral counterpart of the exchange interaction called the
Dzyaloshinskii-Moriya interaction (DMI) [17–19] and that of
STT called spin-orbit torque (SOT) [20–23]. This description
is incomplete, however, since it ignores the renormalization
by the self-feedback of magnetization dynamics. Although
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the renormalization in chiral magnets has been demonstrated
theoretically for a few specific models [24–27], most experi-
mental analyses of chiral magnets do not take into account the
renormalization effect.

In this Rapid Communication, we demonstrate that the
renormalization in chiral magnets should be chiral regardless of
microscopic details and these effects should be non-negligible
in chiral magnets with large SOT observed in many experi-
ments [21–23,28–30]. Unlike in nonchiral systems, the chiral
renormalization generates experimentally identifiable effects
by altering the phenomenology of magnetization dynamics.
This provides a useful tool to experimentally access underlying
physics. We illustrate this with the field-driven magnetic
domain-wall (DW) motion with a controllable chirality by an
external magnetic field [31,32]. We find that not only is the
steady-state DW velocity chiral due to the chiral damping
[25], but also the effective mass of the DW [33] is chiral
due to the chiral gyromagnetic ratio. The chiral gyromagnetic
ratio also significantly affects the DW creep motion, which
is one of the techniques to measure the strength of the DMI
[32]. We argue that the chiral gyromagnetic ratio is the main
mechanism for the nonenergetic chiral DW creep velocity
[34], contrary to the previous attribution to the chiral damping
[25,34]. We also highlight the importance of the tilting angle
excitation and its delayed feedback to the DW motion. This
has been ignored in the traditional creep theory [35,36] for a
long time since its effects merely alter the velocity prefactor
which is indistinguishable from other contributions, such as the
impurity correlation length [37]. However, in chiral magnets, it
is distinguishable by measuring the DW velocity as a function
of chirality (not a single value).
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To get deep insight into the chiral renormalization, we
adopt the self-feedback mechanism of magnetization dynamics
through conduction electrons and develop a general, concise,
and unified theory for chiral magnets. There are several
previous reports on the anisotropic or chiral renormalization of
the magnetic damping [24–26,38] and the gyromagnetic ratio
[27,38,39] in the Rashba model [40]. To unify and generalize
the previous works, we start from the general Onsager reci-
procity relation and predict all the core results of the previous
reports. Our theory can be generalized to situations with any
phenomenological spin torque expression, which can even be
determined by symmetry analysis and experiments without
knowing its microscopic mechanism. We provide a tabular
picture (see Table I below) for physical understanding of each
contribution to the chiral renormalization. Furthermore, one
can utilize the generality of the Onsager relation to include
magnon excitations [26], thermal spin torques [41], and even
mechanical vibrations [42] in our theory.

To examine the consequences of the chiral renormalization,
we start from the following renormalized LLG equation, which
we derive in the later part of this Rapid Communication:

(ζγ )−1 · ∂tm = −m × Heff + γ −1m × G · ∂tm + γ −1Text,

(1)
where m is the unit vector along magnetization, γ is the un-
renormalized gyromagnetic ratio, Heff is the effective magnetic
field, and Text refers to spin torque induced by an external
current. ζ and G, which are generally tensors and functions of
m and its gradients, address, respectively, the renormalization
of the gyromagnetic ratio and the magnetic damping, depicted
in Fig. 1. If the renormalization is neglected, Eq. (1) reduces to
the conventional LLG equation with ζ = 1 and G = α, where
α is the unrenormalized Gilbert damping. Otherwise ζ and
G are dependent on the chirality of magnetic texture. At the
end of this Rapid Communication, we show that the chiral
renormalization is completely fixed once the expressions of
STT and SOT are given.

We first examine implications of the chiral renormalization
on a few exemplary types of field-driven DW dynamics
(Fig. 2). We start from Heff = H0 + Hext + Hth, where

Magnetization under

chiral self-feedback
 equation of

motion for magnetization

SOT

chiral

SMF

LLG
 ( γ
, α

)

ch
ira
l L

LG
 (ζ
γ, G

 )

(b)(a)

FIG. 1. (a) Magnetization dynamics described by the unrenor-
malized LLG equation. The dynamics of magnetization and that of
electrons are coupled to each other by the exchange interaction. (b)
After tracing out the electron degree of freedom, the gyromagnetic
ratio (ζγ ) and the magnetic damping (G) are chirally renormalized
[Eq. (1)].
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FIG. 2. Chiral dynamics of a DW between domains with m = ∓ẑ
(red and blue, respectively). The DW chirality is characterized by the
DW tilting angle φ [the positivity (negativity) of φ corresponds to
the left-handed (right-handed) chirality] and can be controlled by an
in-plane field (Hx). The DW motion is driven by an applied field
(Hz). Measuring the DW velocity as a function of φ (or Hx), the
difference between v(φ) and v(−φ) gives the information of the chiral
renormalization.

H0 is the energetic contribution (without an external
field), Hext = (Hx,0,Hz) is the external field, and
Hth is a thermal fluctuation field. We use the DW
profile m(x) = (sin φ sech[(x − X)/λ], cos φ sech[(x −
X)/λ], tanh[(x − X)/λ]) where X, φ, and λ are the position,
the tilting angle, and the width of the DW, respectively. Taking
X and φ as the collective coordinates, Eq. (1) gives

αX
eff

λ

dX

dt
+ 1

ζeff

dφ

dt
= FX + ξX, (2a)

− 1

ζeff

dX

dt
+ α

φ

effλ
dφ

dt
= Fφ + ξφ, (2b)

where FX/φ = (γ /2)
∫

(H0 + Hext) · (∂X/φm)dx refers to the
force on X and φ. ξX/φ = (γ /2)

∫
Hth · (∂X/φm)dx is the

thermal force on X and φ.
The effective damping α

X/φ

eff and the gyromagnetic ratio ζeff

are given by

αX
eff = λ

2

∫
(∂Xm · G · ∂Xm)dx, (3a)

α
φ

eff = 1

2λ

∫
(∂φm · G · ∂φm)dx, (3b)

ζ−1
eff = 1

2

∫
[(m × ∂φm) · ζ−1 · ∂Xm]dx. (3c)

Note that, without the chiral renormalization, Eq. (2) reduces
to the Thiele equations [43] with α

X/φ

eff = α and ζeff = 1. We
emphasize that α

X/φ

eff and ζeff depend on the tilting angle φ

and thus on the chirality of the DW. Figure 3 shows the φ

dependencies of these parameters. The asymmetric depen-
dences on φ confirm their chiral dependences. Note that, even
for purely field-driven DW motion, the chiral dependences of
the parameters are determined by the expression of current-
induced spin torque.

We first consider the steady-state dynamics of DW in
the flow regime where the effects of the pinning and the
thermal forces are negligible. Then, translational symmetry
along X guarantees the absence of contribution from H0 to
FX, thus only the external field contribution survives on the
right-hand side of Eq. (2a)FX + ξX ≈ −γHz. In a steady state
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FIG. 3. The effective dynamical parameters αX
eff (the red, solid

curve), αφ

eff (the red, dashed curve), and ζ−1
eff (the blue curve) as a func-

tion of the DW tilting angle φ. We take the phenomenological expres-
sion of spin torque in magnetic bilayers [21–23,30], which is a typical
example with large SOT: T = (γ h̄/2eMs){(js · ∇)m − β1m × (js ·
∇)m + kSO(ẑ × js) × m − β2kSOm × [(ẑ × js) × m]} where each
term refers to the adiabatic STT [44], nonadiabatic STT [45,46],
fieldlike SOT [47,48], and dampinglike SOT [30,49–51], induced
by the spin current js . Here, Ms = 1000 emu/cm3 is the saturation
magnetization, e > 0 is the (negative) electron charge, ẑ is the inter-
face normal direction, kSO = 1.3 (nm)−1 characterizes the strength of
the SOT. We take β1 = 0.05, β2 = 5, λ = 8 nm, and the electrical
conductivity σ−1

0 = 6 μ� cm. The parameters are on the order of the
typical values for Pt/Co systems [28,45,52].

(dφ/dt = 0), Eq. (2a) gives the DW velocity as

vflow = − γ λ

αX
eff

Hz, (4)

which is inversely proportional to the chiral damping αX
eff

evaluated at the steady-state tilting angle φeq for which
dφ/dt = 0. As φeq can be modulated by Hx , the measurement
of vflow as a function of Hx provides a direct test of the chiral
dependence on αX

eff .
As an experimental method to probe the chiral dependence

of ζeff , we propose the measurement of the DW mass, called
the Döring mass [33]. It can be performed by examining the
response of DW under a potential trap to an oscillating field
Hz [53]. Unlike vflow, φ is not stationary for this case, and
dynamics of it is coupled to that of X. Such coupled dynamics
of φ and X makes ζeff relevant. In the Supplemental Material
[54], we integrate out the coupled equations [Eq. (2)] to obtain
the effective Döring mass,

mDW = 1

ζ 2
eff

2MsS

γ |F ′
φ(φeq)| , (5)

where S is the cross-sectional area of the DW. Here, ζeff

represents a measurement of its value for φ = φeq, which
can be varied by Hx. mDW provides an experimental way to
measure the chiral dependence of ζeff .

In the creep regime of the DW where the driving field is
much weaker than the DW pinning effects, the implication of
the chiral renormalization go beyond merely chiral corrections
to the DW velocity. The recent controversies on the chiral DW

creep speed vcreep measured from various experiments
[32,34,55,56] require more theoretical examinations.
Typically, vcreep is believed to follow the Arrhenius-like law
vcreep = v0 exp(−κH

−μ
z /kBT ) [35,36], where v0 is a prefactor,

μ is the creep exponent typically chosen to be 1/4 [57], and κ

is a parameter proportional to the DW energy density. Based
on the observation that the DMI affects κ , an experiment [32]
attributed the chiral dependence of vcreep to the DMI. However
later experiments [34,55,56] found features that cannot be
explained by the DMI. In particular, Ref. [34] claimed that
the chiral dependence of vcreep is an indication of the chiral
damping [25], based on the observation v0 ∝ (αX

eff )
−1. On

the other hand, our analysis shows that the explanation
of the chirality dependence may demand more fundamental
change to the creep law, which assumes the dynamics of φ

to be essentially decoupled from that of X and thus irrelevant
for vcreep. As a previous experiment on the DW creep motion
in a diluted semiconductor [58] argued the coupled dynamics
of φ and X to be important, it is not a priori clear whether the
assumption of decoupling X and φ holds in the creep regime.

We consider the coupling between the dynamics of X and
φ as follows. After the dynamics of X excites φ, the dynamics
of φ results in a feedback to X with a delay time τ . Since the
dynamics at a time t is affected by its velocity at past t − τ ,
it is non-Markovian. The traditional creep theory takes the
Markovian limit (τ → 0), thus φ = φeq at any instantaneous
time, decoupled from the dynamics of X. To show the crucial
role of a finite feedback time τ , we calculate the escape rate of
the DW over a barrier, which is known to be proportional to v0

[37] and apply the Kramer’s theory [59] for barrier escape and
its variations for non-Markovian systems [60,61]. After some
algebra in the Supplemental Material [54], Eq. (2) gives

v0 ∝
{(

αX
eff

)−1
, τν0 � ζ 2

effα
X
effα

φ

eff (Markovian),

ζeff , τν0 � ζ 2
effα

X
effα

φ

eff (non-Markovian),
(6)

where ν0 is called the reactive frequency [61] and is on the
order of 2π times the attempt frequency (≈1 GHz [37]). We
emphasize that the two regimes show very different behavior in
the sense of underlying physics as well as phenomenology. The
validity of the Markovian assumption depends on the time scale
of τ compared to ζ 2

effα
X
effα

φ

eff . Since the damping is small, it is
not guaranteed for our situation to be in the Markovian regime.
Indeed, we demonstrate in the Supplemental Material [54] that
the second regime (non-Markovian) in Eq. (6) is more relevant
with realistic values, thus the chirality of v0 mainly originates
from the gyromagnetic ratio not the damping [34]. One can
measure the chiral dependence of αX

eff and ζeff from the flow
regime [Eqs. (4) and (5)] and compare their chiral dependences
to the creep regime to observe the non-Markovian nature of the
DW dynamics. This advantage originates from the possibility
that one can measure the DW velocity as a function of chirality,
in contrast to nonchiral magnets where one measures the DW
velocity as a single value.

So far, we present the role of the chiral renormaliza-
tion for given renormalized tensors G and ζ . To provide
underlying physical insight into it, we present an analytic
derivation of Eq. (1) in general situations. We start from
the LLG equation γ −1∂tm = −m × Heff + γ −1αm × ∂tm +
γ −1T and refer to the scenario illustrated in Fig. 1. Note that
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T here includes a contribution from an internally generated
SMF (Tint) as well as that from an external current [Text in
Eq. (1)]. We write down the spin torque in a general current-
linear form T = −(γ h̄/2eMs)m × ∑

u Au(m)js,u, where u

runs over x,y,z. Here the spin current js is split into an
internally generated SMF [4,5] js,int and the external cur-
rent js,ext. The former is proportional to ∂tm, thus it renor-
malizes the gyromagnetic ratio and the damping. The lat-
ter generates Text in Eq. (1). The expression of js,int is
given by the Onsager reciprocity of STT and SMF [62]:
js,int,u = −(σ0h̄/2e)Au(−m) · ∂tm, where σ0 is the charge
conductivity [63]. Substituting this to Tint = (γ h̄/2eMs)m ×∑

u Au(m)js,int,u gives the effective LLG equation γ −1∂tm =
−m × Heff + γ −1m × A · ∂tm + γ −1Text, where A = α +
η

∑
u Au(m) ⊗ Au(−m), η = γ h̄2σ0/4e2Ms and ⊗ is the di-

rect tensor product. As a result, Tint is taken care of by
renormalizing α into A in the LLG equation.

The renormalized damping and gyromagnetic ratio
are given by separating different contributions of A
with different time-reversal properties. A damping
contribution is required to be dissipative (odd in time
reversal), whereas a gyromagnetic term should be reactive
(even in time reversal). Separating these gives Eq. (1)
where G = (A + AT )/2 and ζ−1 = 1 − m × (A − AT )/2.
The particular choice for the adiabatic STT and the
nonadiabatic STT Au(m) = m × ∂um + β ∂um reproduces
the renormalized LLG equation for nonchiral systems [1–3].
When one uses Au(m) for a particular chiral system, Eq. (1)
produces the effective LLG equation for it as reported by a
numerical study for a one-dimensional Rashba model [27].

In chiral magnets, it is known that spin torque includes
two more contributions called fieldlike SOT [47,48] and
dampinglike SOT [30,49–51]. The characterization of fieldlike
and dampinglike SOTs is regardless of the choice of SOC
since it is determined by the time-reversal characteristic. Since
Au(m) consists of 4 contributions, there are 16 contributions in
the feedback tensor�A = η

∑
u Au(m) ⊗ Au(−m) for eachu.

We tabulate all terms of �A in Table I. The contributions with
the white background are zeroth order in SOC but second order
in gradient and thus are the conventional nonlocal contributions
[3,65]. Those with the lighter gray background are first order
in gradient and thus chiral [27]. Those with the darker gray
color are zeroth order in gradient and thus anisotropic [66]. In

TABLE I. Example characterization of contributions in Ax(m) ⊗
Ax(−m). Counting orders of gradients and m gives the conventional
(white), chiral (lighter gray), or anisotropic (darker gray) contribu-
tions to the gyromagnetic ratio (ζ−1) or the damping (G). The form of
the fieldlike SOT (FLT) and dampinglike SOT (DLT) are taken from
magnetic bilayers [30,47–51] for illustration, but the characterization
procedure works generally.

this way, our theory provides a unified picture on the previous
works. Whether a term contributes to ζ−1 orG is determined by
the order in m. After a direct product of STT and SMF, a term
even (odd) in m gives G (ζ−1) since it gives a time-irreversible
(-reversible) contribution appearing in the LLG equation as
m × A · ∂tm. The same analysis with simple order countings
works for any Au(m). It holds even if our theory is generalized
to other physics, such as magnons [26], thermal effects [41],
and mechanical effects [42].

As an example of applications of Table I, we adopt the spin-
Hall-effect-driven SOT [21,67,68] where a large dampinglike
SOT arises. From Table I, one can immediately figure out that
the combination of the dampinglike SOT and the conventional
SMF (the most top right cell) gives a chiral gyromagnetic ratio
contribution. As another example, one notes that the combina-
tion of the dampinglike SOT and its Onsager counterpart (the
fourth term in the SMF) gives an anisotropic damping con-
tribution. Note that the Onsager counterpart of the spin-Hall-
effect-driven SOT is the inverse spin-Hall effect driven by spin
pumping current generated by the magnetization dynamics. In
this way, Table I provides useful insight for each contribution.

Table I also allows for making the general conclusion that
the magnitude of the chiral gyromagnetic ratio is determined
by the size of the dampinglike SOT (β2) and that of the
nonadiabatic STT (β1). This is an important observation
since many experiments on magnetic bilayers and topological
insulators [21–23,30] show a large dampinglike SOT. This
conclusion is regardless of the microscopic details of the SOT
because a dampinglike contribution is solely determined by its
time-reversal property.

To summarize, we demonstrate that the chiralities of the
gyromagnetic ratio and Gilbert damping have significant
implications which go further beyond merely the change in
magnetization dynamics. The chirality plays an important
role in investigating underlying physics because physical
quantities, which were formerly treated as constants, can now
be controlled through their chiral dependence. An example
is the non-Markovian character of the DW creep motion,
which is difficult to be verified in nonchiral systems. From the
non-Markovian nature of the DW creep motion, we conclude
that the nonenergetic origin of chiral DW creep originates from
the chiral gyromagnetic ratio rather than the chiral damping.
We also provide a general, concise, and unified theory of their
chiralities, which provide useful insight on the self-feedback
of magnetization.
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