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Superfluid drag in the two-component Bose-Hubbard model
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In multicomponent superfluids and superconductors, co- and counterflows of components have, in general,
different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context
of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be
understood as a superflow of one component induced by phase gradients of the other component. Importantly, the
drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance
for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational
responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors.
Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes
are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic
parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of
two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations
of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson
interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where
the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.
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I. INTRODUCTION

Superfluids are, in general, multicomponent systems and as
such are characterized by a matrix of superfluid stiffnesses.
The matrix describes superflows of individual components as
well as their coflow and relative motion. Since the particles
comprising superfluids in general have interspecies interaction,
their superflows will interact as well. As a result, the coflow
of components is different from the counterflow. This effect
was first discussed by Andreev and Bashkin in the context of
superfluid mixtures of He3 and He4 isotopes, namely, that there
will be a dissipationless drag between superflows of two com-
ponents [1]. The intercomponent entrainment (dissipationless
drag) is often referred to as the Andreev-Bashkin effect. Later,
it was realized that the effect has many important consequences
in a wide variety of systems. In nuclear Fermi liquids there is
an entrainment effect between the neutronic superfluid and the
protonic superconductor, which is a crucial part of the current
models of observed dynamics of neutron stars [2–11]. The
entrainment effect has also been argued to be rather generically
present and important for the physical properties of triplet
superconducting and superfluid states [12]. In particular it was
suggested to lead to a stabilization of half-quantum vortices
and skyrmions in superconducting systems [13–15].

Recently, it was realized that the drag effect is especially
important in strongly correlated superfluid mixtures in optical
lattices. Even a weak drag interaction substantially affects
the vortex states in such systems [16–18]. A sufficiently
strong interaction leads to the appearance of new phases;
namely, it is possible to have phase transitions to states where
only coflows exist (paired superfluids) or only counterflows
exist (supercounterfluids) [16–24]. These phase transitions
and phases have, in turn, connections to the coflow-only and

counterflow-only phases in multicomponent superconductors,
where they can be caused by intercomponent electromagnetic
coupling [24–28]. Also, the fact that the drag interaction results
in an interaction between topological excitations in different
sectors of the model connects this problem to the more general
problem of phase transitions in multicomponent gauge theories
[24,29–33].

Although the Andreev-Bashkin drag effect is widely ex-
pected to be a quite generic and important phenomenon in
multispecies systems, the magnitude of the drag interaction and
its relation to microscopic parameters has been studied only in
some special cases. Apart from the rather extensive studies in
the context of Fermi liquids in dense nuclear matter [3–6], most
of the previous studies include analytic treatment for weakly
interacting systems where the effect is inherently weak [34,35],
as well as Monte Carlo simulation of a zero-temperature
J -current analog of a two-species Bose-Hubbard model [19],
mean-field treatment [35], plane-wave expansion [36], and
diffusion quantum Monte Carlo [37]. In this paper we calculate
the drag strength dependence on microscopic parameters in the
two-species Bose-Hubbard model by means of quantum Monte
Carlo.

We now outline how superfluid-superfluid interactions are
characterized on an effective-field-theory level. Superfluidity
can be understood in terms of a complex field ψ = √

neiθ .
The kinetic free-energy density of the superflow is f = ρv2/2,
where v = γ∇θ , with γ = h̄/m, is the superfluid velocity and
ρ = n/γ is the superfluid density [22,38]. It was suggested by
Andreev and Bashkin [1] that for an interacting binary system
(such as superfluid currents in He3/He4 mixtures), a cross term
va · vb is necessarily included in the free energy, where a and
b are labels for the two components, with va = γa∇θa and
vb = γb∇θb. The free-energy density for a two-component
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superfluid can be written [1,39]

f = 1
2ρav

2
a + 1

2ρbv
2
b + ρabva · vb, (1)

where the last term is the drag interaction. The parameter ρab,
the main focus of this paper, can be positive or negative. Since
ρa and ρb are positive, it follows that ρ2

ab < ρaρb in order for
(1) to be bounded from below. The mass flow currents j are
obtained by differentiation of (1) with respect to the velocities
v, which gives

ja = ρava + ρabvb, (2a)

jb = ρbvb + ρabva. (2b)

Here the effect of the drag interaction term ρab can be
seen explicitly: part of the superflow ja is due to a drag from
component b and vice versa.

Key properties of superfluids depend on the physics of
quantum vortices [40,41], i.e., points in space around which
the phase θ winds by 2π so that around a contour C enclosing
the vortex it holds that

∮
C

d r · ∇θ = 2π . Since there are
multiple phase fields θ in multicomponent superfluids, there
are multiple types of vortices. The drag effect has important
consequences for the interaction of such vortices since inter-
component vortex interactions are mediated by the drag effect.
This is most easily seen by rewriting the free energy (1) in
terms of a sum and a difference of the phase gradients [17],
which gives

f = 1

2

(
ρa

m2
a

+ ρb

m2
b

− 2ρab

mamb

)−1

×
{[(

ρa

m2
a

− ρab

mamb

)
∇θa −

(
ρb

m2
b

− ρab

mamb

)
∇θb

]2

+ ρaρb − ρ2
ab

m2
am

2
b

(∇θa + ∇θb)2

}
, (3)

and for the special case with ma = mb = 1 and ρa = ρb = ρ,
Eq. (3) simplifies to

f = ρ − ρab

4
[∇(θa − θb)]2 + ρ + ρab

4
[∇(θa + θb)]2. (4)

The forms of Eqs. (3) and (4) are particularly illuminating
since it is clear how vortices from different components are
coupled through their phase windings. It is possible to derive
vortex interaction potentials from (4). Denoting for a pair of
individual vortex lines with cores separated by a distance r and
with phase windings (M1,M2) = (

∮
Ca

d r · ∇θa/2π,
∮
Cb

d r ·
∇θb/2π ), we have, for example, for (1,0) and (0,1) vortices
the interaction energies

Eint
(1,0)+(1,0) = −πρ ln(r), (5a)

Eint
(1,0)+(0,1) = −πρab ln(r), (5b)

where r is the distance between the vortices. Vortices from the
same component repel logarithmically, but since ρab can be
either positive or negative, vortices from different components
can either repel or attract logarithmically. Since the vortex
excitations determine the basic properties of superfluids such
as rotational response, phase transitions, etc., it is thus clear

that the sign and magnitude of ρab have crucial effects on the
physics of multicomponent systems.

II. MODEL AND BACKGROUND

In this paper we consider a two-species Bose-Hubbard (BH)
model with intraspecies Hamiltonians Ha and Hb containing
the on-site intraspecies interactions Ua and Ub, hopping terms
ta and tb, and chemical potentials μa and μb. The interspecies
coupling is through an on-site interaction Uab (which is tunable
in experiments [42,43]), so the Hamiltonian is given by

H = Ha + Hb + Uab

∑
i

n
(a)
i n

(b)
i , (6)

with the intraspecies Hamiltonians given by

Ha = − ta
∑
〈ij〉

a
†(a)
i a

(a)
j + Ua

2

∑
i

n
(a)
i

(
n

(a)
i − 1

)

− μa

∑
i

n
(a)
i , (7)

where n
(a)
i = a

†(a)
i a

(a)
i is the number of particles of type a on

site i.
We consider here a two-dimensional square lattice with

periodic boundary conditions. Equation (7) can be obtained
as a space-discretized version of the second quantized field
description of bosons with truncated interactions [44], al-
though, as previously mentioned, the Hamiltonian was realized
in an optical lattice where the energy scales are experimentally
tunable [45–47]. The phase diagram of the one-species Bose-
Hubbard model has been studied using various techniques
[48–55]. The double-species case has been studied experi-
mentally [43,56] and with quantum Monte Carlo simulations
[57–60].

III. NUMERICAL METHODS

The BH Hamiltonian can be simulated using Monte Carlo
sampling of configurations in the imaginary-time path-integral
picture [61–63] with worm [22,53,54] updates. For details,
refer to Appendix B. In the path-integral picture the system is
mapped onto a (d + 1)-dimensional system, where the extra
dimension is imaginary time, and the configuration space
becomes a set of stringlike structures called world lines, which
are periodic as the imaginary time goes from zero to β. If
the system is also periodic in the spatial dimensions, some
of these “strings” may, when varying the time from zero to
β, wind across a periodic boundary in space. This is the
cause of superfluidity, which is measurable with the celebrated
Pollock-Ceperley formula [64], which gives the superfluid
density ρ for an isotropic system of particles with inverse mass
γ = h̄/m, volume Ld , and inverse temperature β as

ρ = L2−d

dβ

〈W 2〉
γ 2

, (8)

where 〈W 2〉 is the average of the squared winding number
vector W 2 = ∑

i W
2
i . The winding number Wi = [W ]i is the

net number of times the particles cross a periodic boundary
in the direction i [65]. Formula (8) shows that the more the
world lines are disordered, the more the superfluid is ordered.
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We are concerned with how quantities like (8) compare with
each other, so the prefactor L2−d/dβ is unimportant for
our purposes. The winding number Wi = n→,i − n←,i can
be straightforwardly calculated in a quantum Monte Carlo
simulation by counting the number of times n→,i (n←,i) a
particle crosses a plane perpendicular to the i direction along
the positive (negative) direction.

We measure the Andreev-Bashkin interaction by keeping
track of the winding numbers for two species, a and b, and
calculate the corresponding densities ρa/b from 〈W 2

a/b〉 and
ρab from 〈W a · W b〉. A derivation in Appendix A shows that
the free-energy density for the two-species case is given by

f = L2−d

βd

(
1

2

〈
W 2

a

〉
γ 2

a

v2
a + 1

2

〈
W 2

b

〉
γ 2

b

v2
b + 〈W a · W b〉

γaγb

va · vb

)
,

(9)

which should be compared with (1). We can thus represent ρab

in terms of the other prefactors ρa and ρb in (1) with

�ab ≡ ρab√
ρaρb

= 〈W a · W b〉√〈
W 2

a

〉〈
W 2

b

〉 . (10)

Clearly, �ab can be either positive or negative and cannot
exceed unity in this model.

IV. RESULTS

We now present our results. First, we consider the sym-
metric case with Ua = Ub = U = 1, μa = μb = μ, and ta =
tb = t . In Fig. 1 we show the drag interaction versus μ and
t for a strong interspecies interaction Uab = 0.9. We note in
Fig. 1 two separate phases in terms of the drag interaction:
a double-superfluid phase and a supercounterfluid phase. In
the double-superfluid phase of Fig. 1, the drag interaction is
typically a few percent and can be large and negative close
to the supercounterfluid phase. In the supercounterfluid phase
[21] the drag interaction is saturated at �ab = −100%. The
supercounterfluid state is characterized by 〈(Wa − Wb)2〉 �= 0
and 〈(Wa + Wb)2〉 → 0 in the thermodynamic limit [58,59].
For the parts of the double-superfluid phase where the filling
factor is low and interactions are strong, the system tends
to avoid paying interspecies interaction energy by having
codirected paths, as shown in Fig. 1(d), giving a positive drag
interaction. A strong negative drag is found for the part of the
phase diagram where the system would be in a Mott insulating
state for the one-species case; however, for the two-species
case supercounterfluidity occurs via counterdirected paths, as
illustrated in Fig. 1(e), giving a negative drag interaction.
It is seen in Fig. 1(a) that decreasing t destroys the super-
counterflow; this is to be expected because when the system
becomes more strongly correlated, a Mott insulating state
should be favored over the supercounterfluid. The results of
Fig. 1 are for a finite-size system with L = 10, and finite-size
effects of the double-superfluid phase and at the transition to
the supercounterfluid phase will be discussed later in Figs. 5
and 9.

FIG. 1. (a) The value of the drag interaction �ab for a system
with Uab = 0.9, L = 10, and β = L/t versus chemical potential μ

and hopping parameter t . Note that the color map is logarithmic in
(a). For comparison against the one-species phase diagram case we
include the one-species critical line (separating the Mott insulating
and superfluid phases) which is adapted from Fig. 1 of Ref. [55]. For
reference we show the corresponding values of (b) the total filling
factor 〈na+b〉 and (c) the squared winding number difference. In (d)
and (e) we give cartoon illustrations of world line configurations (in
imaginary time τ and in one spatial dimension x) that give a positive
and negative drag, respectively. In (d) the system can avoid paying
interspecies interaction energy by having codirected paths, and this
effect is strongest in the strongly correlated regime (small t) with a
small filling factor, and in (e) a particle-particle counterflow (or a
particle-hole coflow) can be seen.

A. Effect of varying interspecies with low filling factor and
t = 0.1

We now study how the drag interaction depends on Uab

when the mean particle number is fixed. We determine the
values μ needed to fix 〈na+b〉 = 0.5, where na+b = na + nb

is the total number of particles per site. We perform grand-
canonical simulations allowing particle number fluctuations,
but μ fixes the mean particle number within a few percent using
μ = −0.297 + 0.248Uab − 0.108U 2

ab, which is obtained by
running several simulations for different μ, making a linear
interpolation fit, and solving for 〈na+b〉 = 0.5. In Fig. 2 we
plot the drag interaction �ab = ρab/

√
ρaρb versus Uab. In

Fig. 2, estimated errors are on the order of or less than the
marker size. Figure 2 shows clearly that there is a drag that
is induced by the interspecies interaction Uab, and for the
systems considered here its magnitude ranges around a few
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FIG. 2. The drag interaction can be induced by a negative or
positive intercomponent interaction Uab, shown here for the regime
where t = 0.1, β = 100, and L = 10 and μ is tuned to give an average
total number of particles 〈na+b〉 ≈ 0.5.

percent of the one-species superfluid densities. Note how an
attractive interaction and a repulsive interaction both result in
a positive drag coefficient in the case of Fig. 2. This is natural
when thinking in terms of the winding of the particle paths in
imaginary time [Fig. 1(a)]. In the repulsive case the paths will
tend to not cross, and in the attractive case the paths will tend
to superimpose; either case leads to codirected paths.

B. Varying filling factor and t

We now turn to the dependence of the drag interaction
on the lattice filling. In Fig. 3 we fix Uab = 0.8 and t = 0.1
and vary μ, thereby varying the total filling factor 〈na+b〉.
As can be seen, the drag interaction has a maximum around
〈na+b〉 = 0.5. For low densities the world-line paths can avoid
each other to minimize the interaction energy stemming from
Uab, leading to correlations between the winding numbers and
thus an effective interaction. For larger densities, this way of
minimizing the interaction energy is not effective; the only
way would be to phase separate the system. Note that for other
values of t these results may look quite different, as the system
enters a supercounterfluid phase for lower t (see Fig. 1). Next,

FIG. 3. For the case of a positive drag interaction with parameters
Uab = 0.8, t = 0.1, L = 10, and β = 100.0, we find that it is largest
for low filling factors. In the top plot we show the superfluid drag
interaction versus average filling factor, showing a maximum at
around 〈na+b〉 = 0.5. In the bottom plot the values of μ used to set
〈na+b〉 are shown.

FIG. 4. For Uab = 0.9 and β = L/t we find that the drag inter-
action is relatively large in the strongly correlated regime with small
t and low filling factor. In the top plot we show the drag interaction
versus t , and the bottom plot shows the value of 〈na+b〉 (left axis) and
values of μ used in the simulation (right axis). For the two system
sizes simulated we find no substantial finite-size effects.

let’s consider effects of varying t ; Fig. 4 shows that the drag
interaction drops in the weak-coupling regime of large t .

C. Finite-size scaling in the double-superfluid phase

Since the physics considered so far are away from criticality
we do not expect them to be altered much by finite-size scaling
beyond a saturation point. We perform a finite-size scaling
analysis in Fig. 5, where we plot �ab for various system sizes
for parameters corresponding to the system in Fig. 2 in the
double-superfluid phase. In Fig. 5 a finite-size scaling analysis
of the drag interaction is shown, where a quick saturation when
scaling up the system size can be seen, suggesting that the
drag interaction becomes independent of system size for large
enough systems in the double-superfluid phase.

D. Temperature dependence of drag and emergence of drag
interaction in systems with a phase-separated ground state

Next, we consider the effects of changing temperature.
In Fig. 6 we display the dependence of ρab on the inverse
temperature β (for small β data points where ρab/

√
ρaρb =

0/0 are obtained, these data points have been represented as
zero in Fig. 6). The drag interaction is seen in Fig. 6 to decrease
with temperature. The same trend is seen in analytical studies
of weakly coupled systems (Fig. 1 of [34]).

However, the drag effect can, indeed, have a more com-
plicated temperature dependence. For a sufficiently strong

FIG. 5. Finite-size scaling analysis of the drag interaction in the
double-superfluid phase shows a saturation at around L = 8 for a
system with t = 0.1, β = 100.0, Uab = 0.9, and μ = −0.158.
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FIG. 6. The drag interaction becomes larger and shows a tendency
to saturate with increasing inverse temperature β and a system with
L = 10 and Uab = 0.9. In the top plot we show the drag interaction
versus inverse temperature β and various t , showing a maximum of
�ab = 15%. In the bottom plot we show the chemical potentials used
to set 〈na+b〉 = 0.5 for low temperatures.

intercomponent interaction Uab, the system can phase separate
in the ground state. In a phase-separated system there is clearly
no drag interaction. However, with increasing temperature
thermal fluctuations in the form of a remixing with the dec-
imated particle type should occur, inducing a drag interaction,
which should then disappear as superfluidity is destroyed
by further increasing temperature. In Fig. 7 we can observe
precisely this effect, where the drag interaction emerges at

FIG. 7. For several systems with values of Uab which give rise to
phase separation in the ground state, we find that the drag interaction
has a nonmonotonic dependence on temperature. In the top plot we
show the drag interaction versus inverse temperature β for several
values of Uab. For Uab � 1, the system is phase separated for small
temperatures. Increasing the temperature leads to thermal mixing, and
the system thus goes to the double-superfluid regime and acquires an
intercomponent drag. Here L = 6, and t = 0.1. In the bottom plot
we show the values of μ used to give 〈na+b〉 = 0.5 for the lowest
temperatures.

FIG. 8. For a system where ta = 0.01 is fixed and tb varies, Uab =
0.9, β = 1000, L = 10, and μ = μa = μb is tuned to set 〈na+b〉 =
0.5, we find that the system phase separates. The drag is largest near
the phase-separation phase transition and then disappears in the phase-
separated regime.

elevated temperatures. Overall, it depends nonmonotonically
on temperature for systems which are phase separated in the
ground state. The drag should, in fact, have broader relevance
for phase-separated systems because the system can have
rotation-induced remixing even at low temperatures, which
follows from Gross-Pitaevskii-model-based studies [66].

E. Effects of density imbalance

Until now we have considered cases with symmetric system
parameters Ua = Ub = 1, ta = tb, and μa = μb. We now also
consider the effects of model parameter asymmetries, such as
for a 87Rb/41K mixture [43]. We let Ua = Ub = 1.0, Uab =
0.9, ta = 0.01, and β = 1000 and vary tb. To fix 〈na+b〉 we
also vary μa = μb = μ. The results are shown in Fig. 8, and in
this case the drag interaction effect diminishes with increasing
model parameter asymmetry. Note that the mean numbers of
particles of species a and b are not necessarily equal anymore.

F. Drag near phase transitions to supercounterfluid and
paired states

As seen in Fig. 1, the drag interactions change drastically
when going from the double-superfluid phase with an unsat-
urated drag to the supercounterfluid phase with a saturated
drag of −100%. For t = 0.05 and at unity filling 〈na+b〉 = 1,
this transition was found in a finite-size scaling analysis [59]
to occur at Uab/t = 14.9 ± 0.1 (corresponding to Uab/U =
0.74–0.75). To see more specifically how the drag interaction
behaves at the transition we take t = 0.05 and vary the filling
factor for several intercomponent interactions Uab. In Fig. 9 we
show values of �ab versus 〈na+b〉 (set by μ) for various Uab. As
we can see, Uab induces an effective drag interaction for den-
sities 〈na+b〉 < 1, where the system is in the double-superfluid
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FIG. 9. The drag interaction changes drastically when crossing
the border between a double-superfluid phase with an unsaturated
drag and a supercounterfluid phase in which the drag is saturated
at −100%. Here we display for various Uab, one in each panel in
the top six panels, the dependence of the drag interaction (blue solid
lines, left y axes) versus the filling factor 〈na+b〉 for t = 0.05 and
L = 16. The corresponding values for the chemical potentials are
given on the right y axes (green dots). It is seen that for low filling
factors with 〈na+b〉 < 1, there is a positive drag interaction which
becomes larger with increasing intercomponent interaction Uab. If
the system approaches criticality, for large enough Uab the drag
first goes down to zero and then changes its signs to negative (i.e.,
coflow drag crosses over to counterflow); then the absolute value of
negative drag starts growing rapidly when approaching 〈na+b〉 = 1.
When the system enters the supercounterfluid phase, the drag saturates
to the lower extreme value of �ab = −100%. In the bottom panel,
we show the value of the drag at 〈na+b〉 = 1 for three system sizes,
showing that finite-size effects are important in the supercounterfluid
regime.

phase. For large Uab there is an onset of a saturated nega-
tive drag regime around 〈na+b〉 = 1 which signals the phase
transition into the supercounterfluid phase. We point out that
there are many values of μ that cause 〈na+b〉 = 1, so the super-
counterfluid would be a plateau rather than a point if μ is the
horizontal axis (compare with Fig. 1). For the systems in Fig. 9,
we considered three system sizes, L = 6,10, and 16, and found
that finite-size effects are within or close to being within statis-
tical error in the double-superfluid phase, whereas they are siz-
able in the supercounterfluid phase. For a more careful finite-
size scaling study of the supercounterfluid phase, see [59].

Until now, we have mentioned the double-superfluid phase
with an unsaturated drag interaction and the supercounterfluid

FIG. 10. For negative Uab, it is possible to have a positive drag that
saturates to the upper extreme value of �ab = +100% in a so-called
paired-superfluid phase, as demonstrated here for a system with t =
0.05, L = 10, β = 200, and various negative Uab.

phase with a drag saturated to −100%. The drag can also
be saturated to +100%; the corresponding state is called the
paired-superfluid phase [20,21,24,28,67], which appears for a
different sign of the interspecies interaction (compare with an
analogous phase that appears for related reasons in multicom-
ponent and pair-density-wave superconductors [25,26,68,69]).
To check for the presence of that phase in our model, we
performed simulations similar to those in Fig. 9, but with a
negative interspecies interaction Uab. In Fig. 10 we show the
dependence of the drag interaction on the chemical potential for
several systems with attractive interspecies interaction. Note
that in Fig. 10 the filling factor behaves more abruptly with
chemical potential than in Fig. 9, so it is more convenient to
have μ as the horizontal axis. The drag interaction can, indeed,
take the value+100% for filling factors 0 < 〈na+b〉 < 2 (which
can be compared with the result of Fig. 3) for the systems
considered in Fig. 10. This gives an example of a phase with
a drag saturated to +100%. Importantly, the positive drag can
also be expected to be very large in the vicinity of the phase
transition to that phase.

G. Statistical nature of the drag interaction

Finally, we comment on the statistical nature of the drag
interaction in the double-superfluid phase. In Fig. 11 we plot
histograms for W a · W b, obtained from simulations for zero
and nonzero Uab. The values of ρab/

√
ρaρb in Fig. 2 are

calculated using Eq. (10) from data sets like the ones depicted
in Fig. 11. For Uab = 0 [Fig. 11(a)], positive and negative
values of W a · W b are, of course, equally probable since the
two species represent two identical and decoupled systems.
For a sufficiently large nonzero Uab, however [Fig. 11(b)], the
distribution is instead asymmetric with a higher probability
of positive values of W a · W b. Although the asymmetry
between positive and negative values of W a · W b in the double-
superfluid phase is not necessarily striking, it can, as we have
seen, nevertheless be sufficient to lead to a significant effective
interaction. If picking out a particular configuration from a

094517-6



SUPERFLUID DRAG IN THE TWO-COMPONENT BOSE- … PHYSICAL REVIEW B 97, 094517 (2018)

FIG. 11. Histograms of the winding number mixing W a · W b for
simulations where the interspecies interaction Uab is (a) zero and
(b) nonzero. The histograms show an asymmetry for nonzero Uab,
which means that codirected paths are slightly more common than
counterdirected paths, leading to an effective positive drag interaction.
Other parameters are U = 1, t = 0.1, and varying μ to have the same
〈na+b〉 in (a) and (b).

simulation in the double-superfluid phase, it is thus not at
all certain that one will observe codirected paths; it is only
on a statistical level that the drag interaction emerges [70].
This illustrates that the paired and supercounterfluid phases
considered in this paper and in Refs [25,26,68,69] can not in
general be interpreted as a formation of locally bound pairs.
For example, individual components can still support ordinary
dissipative flows.

V. CONCLUSIONS

In conclusion, the intercomponent drag interaction is a
rather generic phenomenon in multicomponent superfluid and
superconducting mixtures. This interaction is very important
for phase diagrams, the nature of phase transitions, rotational
and magnetic responses, and properties of topological defects.
Here we have considered the origin of the drag in a two-
component boson system on a lattice that has only on-site
boson-boson interactions. We obtained the strength of the
intercomponent drag interaction as a function of microscopic
parameters of the system. The drag gradually saturates to
±100% close to the phase transitions to paired superfluid
and supercounterfluid states, with +100% drag leading to a
complete entrainment of superfluid mass flow (2) and −100%
leading to a complete counterflow. We find that the drag can
be substantial even away from these transitions and even in the
case of on-site intercomponent boson-boson interactions. The
most straightforward experimental visualization of the drag
can be through observation of the structure of vortex lattices,
for which symmetry and ordering are very sensitive to drag
strength [17,18].
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APPENDIX A: DERIVATION OF A POLLOCK-CEPERLEY
FORMULA FOR THE TWO-SPECIES CASE

We follow the one-species derivation of Pollock and Ceper-
ley [64] (see also [22]) but introduce two phase twists ϕα =
Lvα/γα , with α = a,b, and associated winding numbers Wα .
As detailed in [64], a Galilean transformation (putting the
superfluid component in motion) will, due to periodic boundary
conditions, multiply the partition function with the factors
exp(±iϕ · μ̂), one for each particle that crosses the periodic
boundary in the direction ±μ̂ (where μ̂ = x̂, ŷ, ẑ). Defining the
winding number W as the net number of times the particles
wind across the boundaries, a phase twist then gives, in total,
the factor exp(iϕ · W ) multiplying the partition function. We
now proceed by decomposing the partition function in terms
of fixed-winding-number partition functions,

Zϕa ,ϕb �=0 =
∑

Wa ,W b

ei(ϕa ·Wa+ϕb ·W b)ZWa ,W b
, (A1)

and by writing the corresponding phase-twist-free partition
function as

Zϕa=ϕb=0 =
∑

Wa ,W b

ZWa ,Wb
. (A2)

Denoting the free-energy difference associated with introduc-
ing the phase twists by F = Fϕa ,ϕb �=0 − Fϕa=ϕb=0, we can write

e−βF = e−βFϕa ,ϕb �=0

e−βFϕa=ϕb=0
= Zϕa ,ϕb �=0

Zϕa=ϕb=0
(A3)

=
∑

Wa ,W b
ei(ϕa ·Wa+ϕb ·Wb)ZWa ,W b∑

Wa ,Wb
ZW a ,Wb

(A4)

= 〈ei(ϕa ·Wa+ϕb ·Wb)〉. (A5)

Expanding the right-hand side for small phase twists, using
the fact that 〈W〉 = 0, and assuming a d-dimensional system
which is isotropic so that winding numbers in different dimen-
sions are uncorrelated leave second-order terms of the form

〈(ϕa · W a)(ϕb · W b)〉 = 〈ϕaiWaiϕbjWbj 〉 (A6)

= 〈WaiWbj 〉ϕaiϕbj (A7)

= δij 〈W a · W b〉
d

ϕaiϕbj (A8)

= 〈W a · W b〉
d

ϕa · ϕb, (A9)

and, correspondingly, 〈(ϕa · W a)2〉 = 〈W 2
a 〉ϕ2

a/d and
〈(ϕb · W b)2〉 = 〈W 2

b 〉ϕ2
b/d. Expanding also e−βF gives the
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free-energy density

f = L2−d

βd

(
1

2

〈
W 2

a

〉
γ 2

a

v2
a + 1

2

〈
W 2

b

〉
γ 2

b

v2
b + 〈W a · W b〉

γaγb

va · vb

)
.

(A10)

A generalization to N species follows straightforwardly; as
(A10) is a binary quadratic form, the general case is a
corresponding N -ary quadratic form.

APPENDIX B: DETAILS OF THE NUMERICS

The equilibrium statistics of (6) can be obtained from
quantum Monte Carlo simulations by sampling imaginary-
time path integrals. Since we are interested in simulating the
superfluid phase, efficient sampling of winding numbers is
needed. The winding number is a global topological quantity,
and consequently, local Monte Carlo updates will lead to
slow convergence of the winding number [64]. Here we use
the “worm” algorithm [22,53,54] which efficiently generates
configurations with different winding numbers. In short, the
worm algorithm is a Metropolis [71] sampling algorithm which
efficiently generates path integrals by taking shortcuts through
an extended configuration space where the particle number is
not conserved at two points in space-time. The points where a
particle is created (destroyed) are referred to as the tail (head)
of a worm. The insertion of such discontinuities is referred to as
the creation of a worm which is one of the Monte Carlo updates
in a worm Monte Carlo simulation. After worm creation, either
one or both of the discontinuities can then sample the extended
configuration space by propagating through space-time by a set
of local Monte Carlo updates.

The Monte Carlo updates include the aforementioned worm
creation update, as well as a time-shift update which dis-
places a discontinuity in time, a jump update which shifts a
discontinuity to a neighboring site, thereby inserting a kink,
a corresponding antijump update which undoes the jump

update, a reconnection update which inserts a hole next to the
discontinuity, a corresponding antireconnection update, and,
finally, a worm destruction update. Whenever the head and
tail of the worm are lined up, meaning that they are in the
same point in space and have no events occurring in between
them in time, a worm destruction move may be carried out
which removes the worm and the particle discontinuities from
the system. The resulting state then belongs to the ordinary
configuration space where the particle number is conserved,
which contributes to the Monte Carlo statistics of the simula-
tion. For a didactic summary of worm updates, see, e.g., [72].
Since the extended configuration space Monte Carlo moves are
all balanced, the effective Monte Carlo moves which update
between the ordinary configuration space states sampled are
also balanced. The advantages of the worm algorithm are listed
in [54]; for our purposes the most important ones are the fact
that the simulations may sample any winding number and
suffer less from critical slowing down and that it can work
in the grand-canonical ensemble.

To simulate a double-species system, we insert worms that
operate on particle numbers of one species type one at a time
and may use the same updates as those used for a single-species
case. The exception is the time-shift update, which for a single-
species simulation normally, for simplicity, updates the time
of a world-line discontinuity with the restriction of the nearest-
lying kinks. To preserve ergodicity in a multispecies simulation
the discontinuity must be able to cross kinks that belong to
other species. We have performed a simulation with 108–1010

worm updates per site and species, after an equilibration
warm-up of typically 108 updates, and have calculated averages
of 105–106 data points from each simulation. The initial
configurations are ordered states, typically, a checkerboard
state with n

(a)
i + n

(b)
i = 1. To estimate errors we have used the

bootstrap method [73]. The displayed errors for the quantity
�ab = ρab/

√
ρaρb are the estimated errors of ρab divided by√

ρaρb.
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