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Polarization dependence of the third-harmonic generation in multiband superconductors
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In a superconductor the third-harmonic generation (THG) of a strong THz pulse is enhanced below Tc by
the resonant excitation of lattice-modulated charge fluctuations, which modulate the response according to
the polarization of the field. Here we compute the THG within a multiband model for the prototype NbN
superconductor. We show that the nonresonant contribution coming from the instantaneous electronic response
and the finite width of the pulse significantly suppress the polarization dependence of the signal, challenging its
observation in real systems.
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I. INTRODUCTION

The use of intense THz field has recently opened the
avenue to an alternative way to detect and excite low-energy
excitations in solids [1,2]. In particular, THz spectroscopy at
high fields is an excellent tool to address the physics of super-
conducting (SC) systems, where the relevant single-particle
and collective degrees of freedom can be resonantly excited
exactly in this frequency range [3,4]. While the understand-
ing of pump-probe protocols could involve nonequilibrium
processes, transmission experiments can be understood by
equilibrium response. In this respect, the observation [5,6]
of an enhanced third harmonic of the incident field when
the pump frequency matches the gap value �0 has triggered
the theoretical investigation of nonlinear optical effects in
superconductors [7–12].

Despite the initial suggestion [5,7] that third-harmonic
generation (THG) in a superconductor can be attributed to the
resonant excitation of collective amplitude (Higgs) fluctuations
of the SC order parameter, it has been recently shown [8,10]
that the THG signal is dominated by lattice-modulated charge
fluctuations (LCFs). The basic argument is actually very
simple. On general grounds [13], the average current J of
a system of electrons in the presence of the electromagnetic
(e.m.) gauge field A is composed by two contributions

Jα = 〈jα〉 − 〈ραβ〉e2Aβ, ραβ ∼
∑

k

(
∂2
αβεk

)
ρk, (1)

where j is the paramagnetic current and ραβ is the diamagnetic
tensor, which corresponds to the density operator ρk times
derivatives ∂2

αβ ≡ ∂kα
∂kβ

of the band dispersion εk [14,15].
In linear-response theory [13] one retains only terms linear
in A, JL

α ∼ KL
αβAβ . The paramagnetic contribution is then

proportional to the current-current response function 〈jα〉 ∼
〈jαjβ〉Aβ , while in the diamagnetic term, which is already
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linear in A, one just replaces the density with its average
value, so that 〈ραβ〉 scales with n/m∗, m∗ being the effective
electronic mass. If one is interested in the nonlinear optical
response the averages in Eq. (1) should be computed to next
order in A, so one is left with the correlation function measuring
density fluctuations modulated by the derivative of the band
dispersion, i.e., LCF:

JNL
α = KNL

αβ,γ δAβAγ Aδ, KNL
αβ;γ δ ∼ 〈ραβργ δ〉, (2)

where Eq. (2) has to be considered a convolution in time and
space. Apart from the modulation factors due to the derivative
of the band dispersion, the nonlinear response KNL(ω) of
Eq. (2) probes densitylike fluctuations, which in the SC state di-
verge for a frequency ω equal to the threshold 2�0 above which
Cooper pairs (CP) proliferate. In a typical nonresonant Raman
experiment such a divergence is seen when the difference
ω ≡ ωin − ωout between the incident (ωin) and scattered (ωout)
light matches the 2�0 value [16]. In transmission experiments
an incident monochromatic field oscillating at frequency ω

generates a nonlinear current (2) oscillating at 3ω, with an
amplitude KNL(2ω) that is resonantly enhanced when the
frequency 2ω of the incoming A2 field coincides with the 2�0

value where LCFs are peaked.
In addition to this effect, there can be a subleading con-

tribution coming from the amplitude (Higgs) fluctuations of
the SC order parameter. From the technical point of view, this
contribution appears as a vertex correction of the LCF response
function in the pairing channel [7,8]. It then corresponds to
accounting for all the intermediate virtual processes, which
convert the particle-hole excitation created by the incoming
field in a pair fluctuation. However, this contribution is orders
of magnitude smaller than the one due to the LCF alone [8],
since in a BCS superconductor the densitylike fluctuations
are decoupled from the Higgs mode [17–19]. In the strong-
coupling limit the Higgs corrections become more relevant
[9], due, however, to broadening effects that wash out also the
sharp resonance at 2� found in the BCS limit and observed
experimentally [5].
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As it is evident from Eq. (2), the nonlinear response admits
in general a nontrivial dependence on the polarization of the
incoming e.m. field. In the two-dimensional one-band model
considered in Ref. [8] it has been predicted that the THG
can vary by orders of magnitude by changing the relative
direction between the e.m field and the axes of the lattice.
However, in this paper we show that the strength of this
effect strongly depends on the band structure and on the form
of the pairing interaction. By computing the THG within
a multiband model for the prototype NbN superconductor
we show that the polarization dependence of the signal is
strongly suppressed, challenging its experimental observation.
As far as the LCF contribution is concerned we show that to
correctly compute the polarization dependence of the THG
one must include the effect of the instantaneous nonlinear
electronic response. This term, neglected in the recent analysis
of Ref. [6], does not influence the singular behavior of the
nonlinear response functions at ω = �0, but it suppresses the
polarization dependence of the THG, which is further smeared
out by a realistic simulation of the finite width of the pulse.
For what concerns the Higgs signal we show that it remains
subleading and its polarization dependence depends in general
on the form of the pairing interaction. These results suggest
that the isotropy of the THG signal recently reported in Ref. [6]
could be completely recovered once realistic smearing effects
on the LCF response due to disorder are included.

II. DERIVATION OF THE NONLINEAR RESPONSE

The starting model is a multiband generalization of Ref. [8]:

H =
∑
k,σ,a

ξ a
k c

†
kσ,ackσ,a − 1

Ns

∑
q,ab

Uab

†
�,a(q)
�,b(q)

+ 1

2

∑
q

V (q)
†
ρ(q)
ρ(q), (3)

where ξa
k = εa

k − μ is the band dispersion in each a band
with respect to the chemical potential μ, Uab is the matrix
of the SC couplings, 
�,a(q) = ∑

k c−k+q/2↓,ack+q/2↑,a is the
pairing operator for each band, V (q) is the Coulomb potential
and 
ρ(q) = ∑

k,a c
†
k+qσ,ackσ,a is the total density operator.

The band dispersion for NbN follows from a tight-binding fit
within the manifold of xy,xz,yz d orbitals on the fcc lattice, as
suggested in Ref. [6]. By assuming only intraorbital hopping
one has:

εxy(kx,ky,kz) = 4t cos
kx

2

ky

2
+ 2t ′(cos kx + cos ky)

+ 4t ′′
(

cos
kx

2
cos

kz

2
+ cos

ky

2
cos

kz

2

)
,

(4)

εxz(kx,ky,kz) = εxy(kx,kz,ky), (5)

εyz(kx,ky,kz) = εxy(ky,kz,kx), (6)

which are obtained by cyclic permutations of the wave-vector
indexes between the bands. To make the derivation simpler we
will first discuss the case where pairing has only intraband

character, so that Uab = Uδab, and we will discuss later the
consequences of a more general pairing interaction.

The general strategy to compute the nonlinear response
has been outlined in Ref. [8]: by means of the Hubbard-
Stratonovich transformation one decouples the interaction
terms of the model (3) and derives an effective action written
in terms of the collective charge (ρ), SC phase (θa), and
SC amplitude (�a) collective fluctuations. By adding also
the gauge field A by means of the minimal-coupling Peierls
substitution, one can obtain the effective action S[A] for the
gauge field A up to the fourth order, by retaining the coupling
between A and the collective degrees of freedom.

As detailed in Appendix A, S[A] can then be obtained in
the q → 0 long-wavelength limit as straightforward extension
of the result of Ref. [8]:

S[A] = 1

2

∑
a

e4AαAβχa
αβ,γ δAγ Aδ + 2e2A2

αχa
A2

α�
�a

+ 2ie2A2
αχa

A2
αρ

[ρ + (i�nθ
a/2)]

+ S[ρ,θa,�a], (7)

where the explicit dependence of each term on the i�n bosonic
Matsubara frequency has been omitted for simplicity. The last
term of Eq. (7) describes the collective fluctuations of the total
density and of the SC amplitude and phase in each band. In
the presence of Coulomb interactions and for intraband pairing
only they have a very simple form in the long-wavelength limit
[8,10]:

S[ρ,θa,�a] = 1

2

∑
a

−χa
ρρ |ρ + (i�nθ

a/2)|2 + Xa
���2

a,

(8)

where Xa
�� = (4�2

0 − (i�n)2)
∑

k Fa
k (i�n) denotes the in-

verse amplitude-mode propagator, and we defined the response
functions

χa
αβ;γ δ = 〈

ρa
αβρa

γ δ

〉 + nel
αβγ δ (9a)〈

ρa
αβρa

γ δ

〉 = �2
0

∑
k

∂2
αβεa

k∂2
γ δε

a
kFa

k (i�n) (9b)

nel
αβγ δ =

∑
k

∂4
αβγ δε

a
k

12Ns

[
1 − ξa

k tanh
(
Ea

k/2T
)

Ea
k

]
(9c)

χa
A2

αρ
= 〈

ρa
ααρa

〉 = �2
0

∑
k

(
∂2
ααεa

k

)
Fa

k (i�n) (10)

χa
ρρ = 〈ρaρa〉 = �2

0

∑
k

Fa
k (i�n) (11)

χa
A2

α�
= 〈

ρa
αα�a

〉 = �0

∑
k

(
∂2
ααεa

k

)
ξa

k Fa
k (i�n), (12)

where Fa
k (i�n) = 1

Ns

tanh(Ea
k/2T )

Ea
k [(i�n)2−4(Ea

k )2] and Ea
k =

√
(ξa

k )2 + �2
0.

The second term of Eq. (9a), defined by Eq. (9c), is constant
in frequency and it gives rise to a contribution local in time
in the action (7), accounting for the instantaneous electronic
response in the current: J el

α (t) ∼ nel
αβγ δAβ(t)Aγ (t)Aδ(t). This

term originates from the fact that in a lattice model the minimal
coupling to a constant gauge field A amounts to replacing
the wave vector k with k + A in the band dispersion εk.
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As a consequence, the bare current obtained as a derivative
of the Hamiltonian with respect to A contains all orders in
A, leading to this additional instantaneous contribution (see
Appendix A for further details). This term has been neglected
in previous work [6,8] since it does not contribute to singular
behavior of the nonlinear response function [8], responsible for
the enhancement of the THG at the resonance condition ω =
�0. However, it contributes to the polarization dependence,
so it cannot be ignored once a quantitative estimate of this
effect is required. On the other hand, whenever the system
is in the low-density limit, where the band dispersion can
be approximated by a parabola, this contribution becomes
progressively irrelevant, being proportional to a fourth-order
derivative of the band dispersion. The χa

αβ,γ δ represents the
bare LCF response, which is dressed by the fluctuations in
the phase/density and amplitude sectors, due to the couplings
to these fields in the second line of Eq. (7). We notice that
additional diagrams entering in the bare response χa

αβγ δ and
not proportional to density fluctuations vanish in the SC state
at long wavelengths (see Appendix A). The full response can be
derived from Eq. (7) by Gaussian integration of the collective
electronic excitations, which is equivalent to adding vertex
corrections in the particle-hole and particle-particle channels.

III. COMPUTATION OF THE THIRD-HARMONIC
INTENSITY

For the band dispersion (4)–(6) and a field applied in the
xy plane, as in the geometrical configuration of Ref. [6], only
the terms χa

xx;xx = χa
yy;yy and χa

xy;xy survive in the A4 term
of Eq. (7). Let us first compute the vertex corrections in the
phase/density channel. By gauging away the total density, as
explained for the multiband case in Ref. [10], and performing
the Gaussian integration over the θa fields, one easily finds:

S = e4

2

∫
dtdt ′

{
A2

x(t)Cxx(t − t ′)A2
x(t ′)

+A2
y(t)Cyy(t − t ′)A2

y(t ′)

+ [
A2

x(t)A2
y(t ′) + A2

x(t)A2
y(t ′)

]
Cxy(t − t ′)

+ 4[Ax(t)Ay(t)Ax(t ′)Ay(t ′)]Dxy(t − t ′)
}
, (13)

where we defined

Cxx =
∑

a

χa
xx;xx −

(
χa

A2
xρ

)2

χa
ρρ

(14)

Cxy =
∑

a

χa
xx;yy −

χa
A2

xρ
χa

A2
yρ

χa
ρρ

(15)

Dxy =
∑

a

χa
xy;xy (16)

and analogous expression for Cyy . The exact form of the vertex
corrections in the particle-hole channel, i.e., the second terms
in Eq. (14) and (15), depend on the pairing interaction Uab.
When also interband interactions are present the phase sector
admits massive Leggett modes, making the computation more
involved. The result, derived explicitly in the two-band case
in Ref. [10], show that also in this case vertex corrections
retain a polarization dependence. The only case where the

phase/density corrections are polarization independent is the
unrealistic situation where Uab = U , i.e., intraband pairing
interactions equal the interband ones. Indeed in this case,
considered in Ref. [6], one can define a single collective
phase/density field, removing the polarization dependence of
the vertex corrections.

The nonlinear current JNL
α is easily found by functional

derivative with respect to Aα(t) in the action (13). For a
monochromatic incident field A = Ā cos(�t) there is a com-
ponent of the current oscillating at three times the incident
frequency, with an amplitude controlled by the nonlinear kernel
evaluated at 2�. The THG is a measure of the transmitted
electric field Etr , which is proportional to the current, so
that I T HG

α (�) ∝ | ∫ dtJNL
α (t)e3i�t |2. For a field Ā applied

at a generic angle θ in the xy plane, as in the configuration
of Ref. [6], the current can be decomposed in a component
parallel J T HG

‖ (�,θ ) and perpendicular J T HG
⊥ (�,θ ) to Ā. With

straightforward algebra one derives from Eq. (13) that [6]

J T HG
‖ (�,θ ) = A(2�) + 2B(2�) sin2 2θ, (17)

J T HG
⊥ (�,θ ) = B(2�) sin 4θ, (18)

where

A(ω) = Cxx(ω) (19)

B(ω) = 1
4 (Cxy + 2Dxy − Cxx), (20)

where we used the fact that Cxx = Cyy after summation over
momenta and band indexes in Eq. (14).

The same arguments hold also for the vertex corrections in
the amplitude channel, i.e., for the Higgs contribution. It can be
derived with the same procedure, i.e., by Gaussian elimination
of the �a fields in Eq. (7), so that Eqs. (14) and (15) acquire
two new terms:

CH
xx = −

∑
a

(
χa

A2
x�

)2

Xa
��

(21)

CH
xy = −

∑
a

χa
A2

x�
χa

A2
y�

Xa
��

. (22)

As a consequence also the Higgs contribution to the nonlinear
current admits the decomposition (17)–(18), with

AH = CH
xx(ω) (23)

BH = 1
4

(
CH

xy − CH
xx

)
. (24)

Once more, BH for a generic pairing interaction is not zero.
The vanishing of BH in Ref. [6] is due to the specific choice
of an interband pairing identical to the intraband one, which
is the only case where the amplitude fluctuations collapse in a
single effective Higgs field.

The relative magnitude of the various A,B,AH ,BH terms
is shown in Fig. (1). The Higgs terms AH,BH are largely
subdominant with respect to the A,B ones, due to the particle-
hole symmetry of the SC ground state, which suppresses
the χa

A2
x�

susceptibilities [17–19]. It is worth noting that in
the present case of almost half-filled bands also the vertex
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FIG. 1. Frequency dependence of the various contributions
(19)–(20) and (23)–(24) to the nonlinear current. The calculations
have been done with the band structure of Eq. (4)–(6), with the same
parameter values used in Ref. [6], i.e., t = −0.72 eV, t ′ = −0.15 eV,
t ′′ = 0.12 eV, μ = −0.6 eV. The coupling U = 0.27 eV is chosen to
match the experimental T = 0 value �0 = 0.65 THz. Inset: expanded
view of the Higgs contributions only.

corrections in the particle-hole channel, i.e., the second terms
in Eqs. (14)–(15), are quantitatively irrelevant. Thus the present
computation of the LCF response is quantitatively robust with
respect to variations in the form of the pairing interactions.

The strong resonance of LCF contribution at twice the gap
value in Fig. 1 explains the enhancement of the nonlinear
current (17)–(18) at � = �0. A first estimate of the angular
dependence of the THG intensity at resonance in the direction
of the applied field, as measured in Ref. [6], can then be
obtained as

I (� = �0,θ ) ∝ |J T HG
‖ (� = �0,θ )|2. (25)

The relative angular variation of the LCF contribution for the
model (3) is shown in Fig. 2(a) (continuous black curve).
As one can see, with respect to the two-dimensional toy
model considered in Ref. [8], the angular variations are
strongly suppressed for the three-dimensional band structure
of NbN. For the sake of completeness, we also show the
largely subdominant Higgs contribution alone (red curve), that

FIG. 2. (a) Relative angular variation of the THG intensity for
the model (3). LCF contribution (solid black curve) and Higgs
contribution [normalized to IH (�0,θ = 0)] alone (red curve). The
dotted black line is the result of Ref. [6]. (b) Angular variation of
the LCF contribution for an incident electric field simulating the
experimental situation of Ref. [6], as shown in the inset.

displays an even stronger angular dependence. The softening
of the angular variation of the LFC part with respect to the
result of Ref. [6], represented by the dotted blue line in
Fig. 2(a), is due to the constant term nel

αβγ δ in Eq. (9a). Indeed
this term, neglected in Ref. [6], reduces the ratio B/A at
resonance, and even more away from it, see Fig. (1). This effect
further reduces the observable polarization dependence when
one considers the more realistic case of an incident electric
field with a finite spectral width. Simulating the experimen-
tal pump used in Ref. [6] as A(t) = ĀF (t), where F (t) =
e−[tσ/(4

√
ln 2)]

2

cos (�t), we can compute the time-dependent
nonlinear current as J‖(t,θ ) = −F (t)

∫
dt ′K‖(θ,t − t ′)F 2(t ′)

where K‖(θ,t − t ′) is the nonlinear kernel corresponding to
Eq. (17). In the experimental configuration of Ref. [6] the
wave packet has a central frequency � = 0.5 THz and width
σ � 0.15 THz, so that the experimental signal is integrated in
a range 1.3 THz–1.7 THz centered around the third-harmonic
frequency 3� = 1.5 THz. By performing the same procedure
for our model we obtain the result shown in Fig. 2(b), where the
angular dependence of the THG is further smeared out, with a
relative enhancement of the intensity of I (45◦)/I (0◦) ∼ 1.3.

IV. DISCUSSION AND CONCLUSIONS

The softening of the relative enhancement of the THG
intensity shown in Fig. 2(b) is a direct consequence of the
broadening of the 2�0 resonance of the nonlinear response
when one accounts for the experimental configuration. This
example suggests the ratio B/A may be also suppressed by
disorder effects, which has been shown to smear out consid-
erably the SC Higgs resonance within realistic microscopic
models for disorder [19]. As a consequence, to fully capture
the isotropy of the experimental THG signal reported in Ref. [6]
the scattering by defects could play a relevant role.

In general, our results demonstrate that while the pre-
dominance of charge fluctuations over the Higgs contribution
is a generic feature also in multiband systems, since it is
based on the weak coupling of the Higgs mode to the density
in BCS superconductors [8,10,17–19], an exact quantitative
estimate of the polarization dependence of the THG is strongly
model dependent. As a consequence, any modification to
the description of the band structure can lead to quantitative
change on the THG polarization dependence, even though the
basic underlying mechanism is the enhancement of charge
fluctuations in the SC state, as proposed in the present work.
For example, in the specific case of NbN considered here
an estimate of the Slater-Koster matrix elements shows that
a priori a tight-binding model based on the d orbitals on
the fcc lattice should include also interorbital hopping terms,
neglected in the model (3). This fact can have direct con-
sequences on the definition of nonlinear response function
after the minimal-coupling Peierls substitution, and then on
the polarization dependence of the THG signal due to charge
fluctuations. For the same reason, it is hard to predict how the
Higgs contribution will change in the strong-coupling limit of
the Hubbard-Holstein model recently considered in Ref. [7]
within the context of single-band superconductors. Indeed, as
discussed in more details in Appendix A, the processes making
the Higgs visible in this limit have a full tensorial structure,
so one does not expect them to be polarization independent.
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Thus a precise quantification of the relevant processes at strong
disorder and/or interaction remains an interesting problem for
future work.

In summary, we computed the THG in a multiband model
appropriate for NbN. We have shown that the Higgs con-
tribution to the THG signal remains negligible, and it is in
general polarization dependent. The isotropy of the Higgs
contribution recently claimed in Ref. [6] is a peculiarity of
the case where interband pairing interactions coincide with the
intraband ones, which is far from being a general feature of SC
multiband systems. As far as the dominant charge fluctuations
are concerned, we have shown that the instantaneous electronic
response and the finite spectral width of the pump contribute
to suppresses the polarization dependence of the THG, chal-
lenging its experimental detection in realistic experimental
situations in disordered films.
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APPENDIX: DERIVATION OF THE EFFECTIVE ACTION

The derivation of the effective action (7) follows the same
steps outlined in Ref. [8] for the single-band case and extended
in Ref. [10] to the two-band case. The starting point is the
introduction of a set of bosonic complex fields ψa

�(τ ), which
decouple the pairing term in Eq. (3). At T < Tc one can choose
to represent the SC fluctuations in polar (amplitude and phase)
coordinates, by decomposing ψa

�(τ ) = [�a
0 + �a(τ )]eiθa (τ ),

where �a(τ ) represents the amplitude fluctuations of ψa
�

around the mean-field value �a
0 of the SC order parameter

in the band a and θa its phase fluctuations. By making a

gauge transformation ci,a → ci,ae
iθa/2 the dependence on the

phase degrees of freedom is made explicit in the action.
Analogously, the last line of Eq. (3) is decoupled by introducing
a HS field ψρ = ρ0 + ρ, which couples to the total electronic
density 
ρ and represents the density fluctuations ρ of the
system around the mean-field value ρ0. Finally, the gauge
field A can be introduced by means of the Peierls substitution
c
†
i+x̂,aci,a → c

†
i+x̂,aci,ae

ieA·x̂ , which modifies only the kinetic
part of the Hamiltonian, leading to the shift εk → εk+A in the
band dispersion.

After the Hubbard-Stratonovich decoupling the action is
quadratic in the fermionic fields, so that one can integrate them
out leading to the effective action for the collective bosonic
fields only. The equilibrium values of the HS field appear in
the mean-field action SMF ,

SMF = N

T

∑
ab

�a
0U

−1
ab �b

0 − Tr
∑

a

ln
( − G−1

0,a

)
, (A1)

where G−1
0,a = iωnσ̂0 − ξa

k σ̂3 + �a
0 σ̂1 is the inverse BCS

Green’s function for the electrons in the a band and σ̂i are
Pauli matrices. The minimization of SMF with respect to �a

0
gives the usual self-consistent mean-field equations for the SC
gap. In the case of diagonal pairing matrix Uab = Uδab the
BCS order parameter �a

0 ≡ �0 is the same in all the bands.
By adding SC and density fluctuations one obtains the effective
action of collective modes as an expansion in powers of the HS
fields:

Seff [�a,θa,ρ,A] = SMF + SFL[�,θ,ρ,A], (A2)

where

SFL =
∑

n�1,a

Tr
(
Ga

0�
a
)n

n
(A3)

is the fluctuating action, with the trace acting both in spin and
momentum space. Here �a

kk′ denotes the self-energy for the
fluctuating fields, which reads explicitly:

�a
kk′ = −

√
T

N
�a(k − k′)σ1 −

√
T

N
ρ(k − k′)σ3 −

√
T

N

i

2
θa(k − k′)

[
(k − k′)0σ3 − (

ξa
k − ξa

k′
)
σ0

]
− T

2N

∑
qα,α

θa(q1)θa(q2)
∂2ξa

k

∂k2
α

sin
q1,α

2
sin

q2,α

2
σ3δ(q1 + q2 − k + k′)

+Aα(ω − ω′)
∂ξa

k

∂kα

σ0 + 1

2
[AαAβ](ω − ω′)

∂2ξa
k

∂kα∂kβ

σ3 + 1

3!
[AαAβAδ](ω − ω)

∂3ξa
k

∂kα∂kβ∂kγ

σ0

+ 1

4!
[AαAβAγ Aδ](ω − ω′)

∂4ξk

∂kα∂kβ∂kγ ∂kδ

σ3 (A4)

with k = (i�n,k) and �n = 2πT n bosonic Matsubara fre-
quencies, and α = x,y,z denoting spatial indexes. In Eq. (A4)
the symbol [Aα · · ·Aδ](ω)] denotes the Fourier transform of the
product of various field components taken at the same time, e.g.
[AαAβ](ω) ≡ ∫

dω′Aα(ω − ω′)Aβ(ω′) is the Fourier trans-
form of Aα(t)Aβ(t).

The second line of Eq. (A4) represents the transcription
on the lattice of the usual (∇θ )2 term for a continuum

model, and analogously the [AαAβ](ω) term that represents
the transcription of the usual diamagnetic term A2n/m in the
continuum. In addition, in contrast to the continuum model,
the lattice self-energy (A4) depends in principle [20,21] on all
higher-order powers of the θ and A fields. In particular, the last
term of Eq. (A4) is responsible for the new instantaneous term
nel

αβγ δ of Eq. (9c). Indeed, since Tr(Ga
0σ3) ≡ na

k is simply the
electron density in the a band, one immediately recovers the
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3

FIG. 3. Diagrammatic representation of the instantaneous term
(9c). Wavy lines denote the gauge field and solid line denote the
Nambu Green’s function. The number on the vertex denotes the
insertion of the corresponding Pauli matrix.

instantaneous term defined in Eq. (9c), see also Fig. 3. Finally
we observe that, in contrast the square two-dimensional lattice
considered in Ref. [8], on the fcc lattice also a mixing of the
various spatial components of the gauge fields A is allowed at
O(A2) and beyond.

Computing the trace in Eq. (A3) is equivalent to get an
expansion in powers of the bosonic fields whose coefficients
are fermionic susceptibilities obtained by mixing several σ̂i

Pauli matrices, establishing then a precise correspondence
with the different types of electronic excitations. More specif-
ically, σ̂0 insertion correspond to currentlike fluctuations, σ̂1

to Higgs-like fluctuations and σ̂3 to densitylike fluctuations,
eventually modulated by derivatives of the band dispersion.
This identification justifies the subscripts in Eq. (9a)–(12).
The quadratic terms in �a,θa and ρ define the spectrum of
the collective modes, see Eq. (8) above. As usual [8,19,21],
diagrams mixing two different Pauli matrices are subleading
in the BCS limit. This implies for example that the coupling
between the amplitude and phase/density modes, controlled
by the fermionic susceptibility χρ� ∼ Tr[Ga

0σ3G
a
0σ1], can be

neglected, as done in Eq. (8). With lengthy but straightforward
calculations one can derive the effective action including also
the gauge field, as given by Eq. (7) above. Here Xa

�� ≡
1/U + χa

�� is the inverse Higgs propagator, obtained by RPA
resummation of the amplitude susceptibility χa

�� and using the
self-consistence equation for the gap [8,10].

For the sake of simplicity we included only the leading
diagrams responsible for the polarization dependence and the
SC resonance. In particular Eq. (9a) defines the most relevant
term in the SC state, connected to lattice-modulated charge
fluctuations. Integrating out the Higgs or the density/phase
modes corresponds to add vertex corrections in the corre-
sponding channels, as exemplified for a given band in the
Higgs channel in Fig. 4. By denoting δ�a

αβ the variation of the
order parameter from its equilibrium value due to the external
perturbation, it can be obtained by dressing χa

A2
α�

with the
vertex correction in the amplitude channel [see Fig. 4(b)], so
that:

δ�a
αβ(ω) = e2

χa

A2
β�

(ω)

Xa
��(ω)

A2
β(ω), (A5)

which corresponds to Eqs. (21)–(22). Notice that when the
pairing matrix is assumed totally isotropic, Uab = U , one can
introduce a single Hubbard-Stratonovic field to decouple the
pairing interaction. This implies that a single Higgs propagator

FIG. 4. (a) Diagrammatic representation of the resonant terms
of S(4), including vertex corrections in the Higgs channel. Here
wavy lines denote the gauge field, solid lines the Nambu Green’s
function, and the dashed line the pairing interaction. The shaded circle
represents the variation of the order parameter due to the external
perturbation, as defined in Eq. (A5). (b) Vertex equation for δ�. Its
solution leads to the RPA resummation of the χ�� bubble, which
defines the Higgs propagatorXa

�� ≡ 1/U + χa
��. The labels 1, 3 refer

to the vertex insertions of the Pauli matrices σ̂1 and σ̂3, respectively.
Here we omitted for simplicity the spatial indexes of the various
fermionic susceptibilities.

X�� exists and the summation over band index in Eq. (21)–(22)
leads to a vanishing of the BH term in Eq. (24), as indeed found
in Ref. [6]. However, any other form of pairing interaction
requires the introduction of separate Higgs fluctuations in each
band, leading in general to an anisotropic contribution of the
Higgs mode as well. Analogously for the particle-hole channel
one adds fluctuations are the RPA level and obtains the action
given by Eq. (13). We notice that the present derivation is
completely equivalent to the usual diagrammatic expansion.
This issue has been recently discussed for the multiband
case in Refs. [10] and [22], where the effective action and
diagrammatic expansion have been used, respectively, to derive
the Raman response, leading to the same final result.

In addition to the resonant diagrams and the instantaneous
response included in Eq. (7) one can have in principle several
other terms of order A4

α , coming from the insertion of various
An

α term of the self-energy (A4), as shown in Figs. 5(a)–5(c).
These terms can be defined as paramagnetic ones, since they
all carry out a currentlike insertion (identified by the σ̂0

matrix). They have been omitted in S(4) since those having
the σ0 insertions trivially vanish at T = 0 when computed
at zero external momenta. This is indeed a general result,
which follows from elementary algebra principles and holds
for the whole class of diagrams having an arbitrary number of

FIG. 5. (a)–(c) Additional diagrams contributing to S(4). They
vanish identically at q = 0 as T → 0 in the BCS limit.
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insertions of σ̂0 and only one insertion of σ̂i (with i = 0, . . . 3).
The vanishing of these paramagnetic contributions motivated
also the shorthand notation of Eq. (1)–(2), where we expressed
the kernel of the nonlinear current only in terms of the resonant
densitylike response.

In the presence of strong disorder and/or retarded inter-
actions the paramagnetic terms will not be exactly zero, and
they could also in principle contribute to the polarization de-
pendence of the THG signal. For example, a recent analysis of
Ref. [7] within the Hubbard-Holstein model has shown that the
diagrams of Fig. 5(b) become nonzero at strong coupling, with

a predominance of their vertex corrections in the amplitude
channel. While this could be a possible mechanism to trigger
the optical visibility of the Higgs mode, this class of diagrams
have a full tensorial structure, so one does not expect them to
be polarization independent. Since the dynamical mean-field
theory approximation used in Refs. [6,7] is unable to study
the lattice polarization dependence, no general conclusion
can be drawn on the existence of a polarization-independent
Higgs contribution at strong electron-phonon coupling. Thus
a precise quantification of these processes at strong disor-
der/interaction remains an interesting problem for future work.
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