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Winding numbers of nodal points in Fe-based superconductors
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We analyze the nodal points in multiorbital Fe-based superconductors from a topological perspective. We
consider the s+− gap structure with accidental nodes, and the d-wave gap with nodes along the symmetry
directions. In both cases, the nodal points can be moved by varying an external parameter, e.g., a degree of
interpocket pairing. Eventually, the nodes merge and annihilate via a Lifshitz-type transition. We discuss the
Lifshitz transition in Fe-based superconductors from a topological point of view. We show, both analytically and
numerically, that the merging nodal points have winding numbers of opposite sign. This is consistent with the
general reasoning that the total winding number is a conserved quantity in the Lifshitz transition.
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I. INTRODUCTION

The research on correlated electron systems over the last
decade have shown tremendous developments in two seem-
ingly different areas. One area, generally termed as “topology
in condensed matter,” focuses on topological descriptions of
quantum materials, with emphasis on specific invariants which
characterize a particular quantum state of matter, and change
only when a system undergoes a transition from one quantum
state to the other. The research in this field started in the early
1980s [1–3], but rapidly accelerated over the last decade and
led to a qualitative new understanding of the properties of
existing materials and to discoveries of numerous new materi-
als exhibiting fundamentally novel properties [4–7]. Another
area is high-temperature superconductivity. The research in
this field started after the discovery of superconductors in the
cuprates [8–10] and acquired a new dimension with the invent
of Fe-based superconductors (FeSCs) with multiple relevant
orbitals and, as a consequence, multiple Fermi pockets of hole
and electron type [11].

Some FeSCs exhibit superconducting properties consistent
with the full gap, while the others show behavior consistent
with gap zeros on some of the Fermi surfaces [12–14]. A
number of theories have been put forward about s-wave super-
conductivity in FeSCs with orbitally induced gap anisotropy.
When the anisotropy is strong enough, an s-wave gap can have
nodes on some of the pockets [15–19]. Because the gap nodes
are accidental, they can appear or disappear via a Lifshitz-type
transition [20] under the change of external parameters like
doping or pressure [13,21]. In special cases (which we discuss
below), the transition from a nodal state to a state with a full
gap is more involved, with additional nodal points appearing
near a transition and then annihilating the existing nodes [22].
Another set of theories for FeSCs analyzed possible d-wave
superconductivity, particularly in systems where only hole or
only electron pockets are present. In a one-band system, a
d-wave superconductor has symmetry-protected gap nodes
on the Fermi surface. In multiband materials, like FeSCs,
these nodes can also be manipulated by, e.g., varying the
strength of the interband pairing [19,23]. In the presence of

such terms, the nodal points of the fermionic dispersion in a
d-wave superconductor shift from the original Fermi surfaces
to the area between the pockets, come closer to each other,
and eventually annihilate and disappear, leaving a d-wave
superconductor with a full gap [19,23].

In this paper we discuss Lifshitz transitions in FeSCs from
a topological viewpoint. We argue that while the symmetry of
a superconducting state (d or s wave) does not change upon
the appearance/disappearance of the zeros in the fermionic
dispersion, the topological properties of a system do change
because each nodal point is characterized by a particular
winding number, which remains invariant as long as a nodal
point exists but vanishes once it disappears.

We study two models of FeSCs, one with an s-wave gap
symmetry and accidental gap nodes, and another with a d-wave
gap and nodes along particular symmetry directions. In both
models, the nodes can be manipulated by changing one or more
model parameters. As a result, a system may undergo a Lifshitz
transition in which the nodal points merge and disappear. We
show, both analytically and numerically, that the merging nodal
points have opposite sign winding numbers. We also show that
when a pair of nodal points is spontaneously generated by
changing an external parameter, the winding numbers of the
two emerging nodes are opposite. This is consistent with the
general reasoning that the total winding number is a conserved
quantity in the Lifshitz transition. Such a result may sound
intuitively obvious, but we emphasize that in each model the
total number of nodal points is equal to 8, and it is not a
priori guaranteed that the neighboring nodal points (the ones
which will eventually merge) have opposite winding numbers.
This has to be verified in explicit calculations. In essence, we
verify that the winding numbers of the 8 nodal points go in
checkerboard order (1, −1, 1, −1 …), i.e., the neighboring
nodal points always have opposite winding numbers.

The merging and annihilation of nodal points has been
studied in Dirac and Weyl semimetals, which undergo a
transition into an insulator under a variation of certain sys-
tem parameters [24]. Several authors have shown that in a
semimetal-to-insulator transition, the merging nodal points
have opposite winding numbers [25,26]. However, the analysis
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of the winding numbers of the nodal points in s-wave and d-
wave superconductors has not been presented in the literature,
as far as we know.

The structure of the paper is as follows: In Sec. II we intro-
duce the Berry curvature B�k and express the winding number
as a particular 2D integral of B�k . In Sec. III A we consider
a model of an s-wave superconductor, which undergoes a
Lifshitz transition upon varying one or more system parameters
[22], and compute the winding numbers of the nodal points near
the transition. In Sec. IV we consider a two-orbital/two-band
model of a d-wave superconductor, which also undergoes a
Lifshitz transition [19] when the pairs of nodal points along a
symmetry direction merge and annihilate. We again compute
winding numbers of these nodal points. Finally, we make
several concluding remarks in Sec. V.

II. THE BERRY PHASE AND THE WINDING NUMBER

The topological properties of a system of interacting elec-
trons in two dimensions (2D) are generally defined in terms
of the Berry phase [3,27–29]. This phase reflects a nontrivial
topological structure of the wave function in the Hilbert space
in the presence of topological defects, such as nodal points.
The Berry phase γ is the phase which a wave function |n( �R)〉
acquires when a system moves along a close path C around
a topological defect in the space specified by the set of
parameters �R [29,30]:

γ = −
∮
C
d �R · A �R = −

∫
S

d �S · B �R.

Here S represents a closed surface in the parameter space,
enclosed by the contour C, A �R = −Im〈n( �R)|∇ �R|n( �R)〉, and
B �R = ∇ �R × A �R . The quantities A �R and B �R are called the Berry
connection and the Berry curvature. In our case the parameter
set is specified by momentum k. The winding number Q is
defined as the “normalized” Berry phase [27–30]:

Q = − 1

2π

∮
C
d�k · A�k = − 1

2π

∫
dkxdky

(
∂Aky

∂kx

− ∂Akx

∂ky

)
.

(1)

In 2D systems this topological invariant represents an obstruc-
tion to the Stokes theorem and detects the presence of the nodal
points [29,31].

A standard recipe to obtain Q for systems with nodal points
is to expand the dispersion in the vicinity of the node. A generic
Hamiltonian near a nodal point can be cast into the form

H = −(
ki − k0

i

)
Aijσj , (2)

where k0
i indicates coordinates of the nodal point and σj are

the Pauli matrices. For the effective Hamiltonian describing
the low-energy band of a two-dimensional superconducting
system the matrix Aij is a 2×2 diagonal matrix which plays
a role of “metric tensor.” Then the sign of the determinant
of this matrix reflects orientation of the basis (i.e., is it
right-handed or left-handed), thus leading to the expression
for the winding number Q = −sgn[det(A)], that can also be
understood through the geometrical argument presented below.

Here we provide a simple geometrical argument to compare
the winding numbers for different nodal points. Namely,

suppose that there are two nodal points 1 and 2. One can
compute winding numbers Q(1) and Q(2) by integrating along
two different contours, each surrounding only one nodal point.
Both contours should have the same direction of bypass.
Alternatively, one can transform the coordinates, separately for
region 1 and region 2, and bring the nodes to the same point in
space. The integration contours then become the same, modulo
the direction of the bypass. The winding numbers Q(1) and
Q(2) then are equal if the bypass directions in the new basis
are the same, or have opposite signs if the bypass directions in
the new basis are opposite.

In the next two sections we compute Q for two models
of FeSCs. We first compute Q analytically and then verify the
results numerically, using the computational method which has
been proposed in Ref. [32].

III. AN s-WAVE SUPERCONDUCTOR
WITH ACCIDENTAL NODES

A. The model

We consider a 2D model of an FeSC with hole pockets
centered at � = (0,0) and electron pockets centered at (0,π )
and (π,0) in a 1Fe Brillouin zone (BZ). We assume that
the dominant interaction is in the s-wave (A1g) channel, and
the system develops an s+− superconductivity with π phase
difference between the gaps on hole and electron pockets.
The gaps on �-centered hole pockets are C4 symmetric, with
cos 4nθh variation along the hole pockets. The electron pockets
are centered at non-C4-symmetric points, and the gap variation
along the electron pockets has additional ± cos (4m + 2)θe

components (with θe counted from the same axis on both
electron pockets). We assume, following earlier works, that
the cos 2θe variation is the strongest one, and it gives rise to
accidental nodes on the electron pockets. The gap on hole
pockets has no nodes, and we will not include hole pockets
in our consideration.

The position of the accidental nodes can be manipulated by
including the hybridization between the two electron pockets
[18,22]. The hybridization is caused by pnictogen/chalcogen
atoms, which are located above and below an Fe plane, in
“up-down” order. As a result, the actual unit cell is bigger and
contains two Fe atoms. One can still work in a 1Fe unit cell, but
there the hybridization gives rise to terms in the Hamiltonian
in which incoming and outgoing momenta differ by (π,π ).
In a superconductor, there are two types of such terms—one
describes the hopping between the electron pockets, another
describes a creation or annihilation of Cooper pairs made of
fermions from different electron pockets. Both terms affect the
position of the gap nodes. For definiteness, here we consider
the effects due to additional pairing terms induced by the
hybridization.

The Hamiltonian of the model is

H = H0 + H� + Hβ, (3)

where

H0 =
∑

k

ξ c
k c

†
kαckα + ξd

k d
†
kαdkα (4)
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FIG. 1. The location of the nodal points on one of the FS of
hybridized circular electron pockets. Red line – the first quadrant
of the FS, black dots – the nodal points. The nodes move towards
BZ diagonals (in 1Fe zone) with increasing the strength of the
hybridization parameter β. The neighboring nodal points merge and
disappear at βcrit = �.

is the kinetic energy of fermions near the two electron pockets,

H� = 1

2

∑
k

[�cc
†
kαc

†
−kβ + �dd

†
k+Qαd

†
−k−Qβ]iσ y

αβ (5)

is the pairing term with angle-dependent gap functions �c =
�(1 − ye),�d = �(1 + ye), where ye = α cos2θe, and α is
a parameter which depends on the orbital composition of
electron pockets. When α > 1, �c and �d have accidental
nodes. Finally,

Hβ = 1

2

∑
k

β[c†kαd
†
−k−Qβ + d

†
k+Qαc

†
−kβ]iσ y

αβ (6)

is the additional pairing term, induced by the hybridization, in
which the total momentum of the pair equals (π,π ). Without
the loss of generality we set β to be positive. We will see that
by varying the strength of β one can move the positions of the
accidental nodes.

It is instructive to consider separately the special case when
the electron pockets can be approximated as circular, and
a generic case, when they are elliptical. For both cases we
assume that α > 1, i.e., in the absence of hybridization the gap
functions �c and �d have accidental nodes.

1. Circular pockets

For circular electron pockets ξc
k = ξd

k = ξk . The Hamilto-
nian (3) can be straightforwardly diagonalized by Bogoliubov

transformation to [22]

H = E0 +
∑
k,α

E+
k e

†
kαekα + E−

k f
†
kαfkα, (7)

where

(E±
k ) = [

ξ 2
k + (

� ±
√

�2y2
k + β2

)2]1/2
. (8)

The dispersion E+ is obviously nodeless, but E− has zeros at

cos(2θe) = ±
√

�2 − β2

α�
. (9)

At β < βcrit = � there are eight nodal points, two in each of
the four quadrants. At the critical value β = βcrit the pairs of
nodal points merge along the BZ diagonals. At β > βcrit , the
nodes disappear (see Fig. 1).

2. Elliptical pockets

For elliptical pockets the dispersions are

ξ c
k = k2

x

2m1
+ k2

y

2m2
− μ, ξd

k = k2
x

2m2
+ k2

y

2m1
− μ, (10)

and expanding near the Fermi surface we obtain [22,33]

ξ
c,d
k = ξk ± δ cos(2θk),

δ ≈ k2
F

m2 − m1

4m1m2
, ξk = k2/2m∗ − μ, (11)

m∗ = 2m1m2/(m1 + m2).

Diagonalizing the Hamiltonian we again obtain two bands with
the dispersion (E±) = (Ak ± √

Bk)
1/2

, where

Ak = 1
2

[(
ξ c
k

)2 + (
ξd
k

)2 + 2�2
(
1 + y2

k

) + 2β2
]
,

Bk = 1
4

[((
ξd
k

)2 − (
ξ c
k

)2 + 4�2yk

)2

+ 4|β|2((ξ c
k − ξd

k

)2 + 4�2
)]

. (12)

Using Eqs. (11) we can rewrite (E−) as

(E−) = [
ξ 2
k + �2 + β2 + cos2(2θ )(δ2 + �2α2) − 2

√
cos2(2θ )(�2α−ξδk)2 + |β|2[δ2cos2(2θ )+�2]

]1/2
. (13)

In distinction to circular pockets, nodal points are now located
not on the original Fermi surface, but at

ξ = δ2 − α2�2 ±
√

(α2�2 + δ2)2 − 4α2β2δ2

2|α|δ ,

cos2(2θ ) = δ2 − α2�2 ∓
√

(α2�2 + δ2)2 − 4α2β2δ2

2α2δ2
. (14)

A straightforward analysis shows [22] that the evolution of
the nodal points with increasing β depends on the interplay

between the ellipticity parameter δ and α�. When δ < α�,
pairs of nodes in each quadrant merge and disappear at β = �

on the diagonals of the BZ, like in the case of circular pockets.
When δ > α�, nodal points do not reach diagonals when β

reaches �. At this β, a new pair on nodes appears along each
diagonal (see Fig. 2). As β continues increasing, the new nodal
points move towards the existing nodes. The new and old nodes
merge and disappear at the critical

βcrit = α2�2 + δ2

2|α|δ > �. (15)
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B. The winding number

1. Circular pockets

To obtain the winding numbers for the nodal points we expand E−
k in Eq. (8) near each of 8 nodal points. Because of C4

symmetry, we only consider the first quadrant θ ∈ [0,π/2]. The dispersion (8) near a nodal point has the Dirac form

EDirac
k =

√√√√(
dξ

dk
(k − k′)

)2

+
(

2�2α2sin(2θ )cos(2θ )√
�2α2cos2(2θ ) + β2

(θ − θ ′)

)2

, (16)

where k′ = kF and θ ′ are the coordinates of E−
k = 0. The corresponding Dirac Hamiltonian can be obtained using the Pauli

matrices

H Dirac = dξ

dk
(k − k′) · σ3 + �2α2sin(4θ )√

�2α2cos2(2θ ) + β2
(θ − θ ′) · σ1, (17)

or, in the explicit matrix form,

H Dirac =
⎛
⎝ dξ

dk
(k − k′) �2α2sin(4θ)√

�2α2cos2(2θ)+β2
(θ − θ ′)

�2α2sin(4θ)√
�2α2cos2(2θ)+β2

(θ − θ ′) − dξ

dk
(k − k′)

⎞
⎠. (18)

We associate θ with the first nodal direction and k with the third
one, and rewrite the Dirac Hamiltonian H Dirac in the form of
Eq. (2) with Aij (i,j = 1,3):

A =
(

�2α2sin(4θ)√
�2α2cos2(2θ)+β2

0

0 dξ

dk

)
. (19)

The sign of the det A depends only on the sign of sin(4θ ),
which is positive at θ < π/4 and negative at θ > π/4. Nodal
points are located on the opposite sides of θ = π/4, hence their
winding numbers are opposite: −1 and +1.

We can obtain the same result by introducing the effective
pairing Hamiltonian for fermions with E−

k in the form

Heff =
(

ξ �̃

�̃ −ξ

)
, (20)

with �̃ = � −
√
�2y2

k + β2, and treating (ξ,�̃) as new effec-
tive coordinates. The transformation from (kx,ky) to (ξ,�̃) is
multivalued: all eight solutions for E−

k = 0 are now mapped
to the origin in the (ξ,�̃) plane. Then the contour C in Eq. (1)

FIG. 2. The location of the nodal points on one of the FS of
hybridized elliptical electron pockets, for large enough degree of
ellipticity. Thick red line – the first quadrant of the FS, thin red line
– the locus of location of the nodal points, black dots – the original
nodal points. As the hybridization parameter β increases, nodal points
move towards the BZ diagonal but do not reach it. Instead, at β = �,
a new pair of nodal points (brown dots) appears along BZ diagonal,
and at larger β move towards the existing nodes. The old and the new
nodal points merge and disappear at β = βcrit > �.

is the same for all nodal points, and the signs of the winding
numbers depend only on the bypass direction of C for a given
node (which is a topological invariant). Because �̃ depends on
cos 2θ , we have different directions of bypass for each pair of
nodal points in a given quadrant (see Fig. 3). Indeed, consider
the nodal point located between θ = 0 and π/2. Let us choose
the counterclockwise bypass along the closed contour in the
(kx,ky) plane. The bypass starts at ξ = 0, θ > θsol and goes to
the point ξ < 0, θ = θsol, where θsol is the solution for �̃ = 0.

FIG. 3. Winding around each of the two nodal points shown in the
right panel. Both points are mapped to the origin of the coordinates by
transforming to the new basis with variables (ξ,�̃) instead of (kx,ky)
(left panel). Different winding numbers for the two nodes on the right
panel and due to different directions of bypass on the left panel.
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One can easily verify that this corresponds to a clockwise
bypass direction in the (ξ,�̃) plane. Using the same strategy,
one can then verify that the same bypass in the (kx,ky) plane
for another nodal point (the one with larger θsol) corresponds to
counterclockwise direction in the (ξ,�̃) plane. This obviously
gives the opposite sign of the winding number.

2. Elliptical pockets

We now extend the analysis to elliptical pockets. We expand
the Hamiltonian of Eq. (3) in Taylor series in the vicinity of

each nodal point and obtain the Dirac Hamiltonian in the form

H =
(

dE−
dk2

dk2

dk
(k − k′) dE−

dθ
(θ − θ ′)

dE−
dθ

(θ − θ ′) − dE−
dk2

dk2

dk
(k − k′)

)
. (21)

Associating θ − θ ′ and k − k′ with the directions i = 1 and
i = 3, respectively, we obtain the matrix A in Eq. (2), as

A =
(

dE−
dθ

0

0 dE−
dk2

dk2

dk

)
, (22)

where

dE−

dk2
= X − Y cos2(2θ )√

D
,

dE−

dθ
= Zsin(4θ )√

D
, (23)

and

D = β2 + �2 + ξ 2
k + (δ2 + α2�2)cos2(2θ ) − 2

√
β2�2 + [β2δ2 + (α�2 − δξk)2]cos2(2θ ),

X = 2c1ξk + 2c2δcos2(2θ ),

Y = 2c2
[
2c2

1k
4δ + α�2μ − c1k

2(2α�2 + 3δμ) + δ(β2 + μ2)
]

√
β2�2 + [β2δ2 + (α�2 − δξk)2]cos2(2θ )

,

Z =
(

−δ2 − α2�2 + β2δ2 + (α�2 − βξk)2√
β2�2 + [β2δ2 + (α�2 − δξk)2]cos2(2θ )

)
. (24)

Here we introduced c1 = 1
4 ( 1

m1
+ 1

m2
) and c2 = 1

4 ( 1
m1

− 1
m2

).
For brevity, we focus on the case when ellipticity is strong

enough (δ > α�, see Sec. III A) and consider the winding
numbers for the two nodal points, which emerge at β = �

along the diagonals, and then merge with the existing nodal
points at β = βcrit > �.

Because of C4 rotational symmetry, we again focus on
the nodal points at 0 < θ < π/4. We computed the determi-
nant of (22) numerically for � = 1,β = 1.002,μ = 10,α =
−1.5,m2/m1 = 2, and verified that the winding numbers for
the new nodal point, which appears at β = �, and the “old”
nodal point, with which the new one eventually merges, have
opposite signs of the winding number.

We next discuss the computation of the winding numbers in
the “geometrical” approach, when we transform different nodal
points into the same location. For β � �, the two emerging
nodal points are still close to the diagonals, and we can expand
E−

k in powers of ξ and cos 2θ . The expansion yields

(E−
k )2 ≈ E2

lin = ξ 2 + F (θ ), (25)

where ξ is a function of β from Eq. (14) (one should choose
the solution for which ξ = 0 for β = �), and

F (θ ) = cos2(2θ )

[
δ2 + �2α2 − (�2α − ξδ)2 + |β|2δ2

|β|�
]

+ cos4(2θ )
[(�2α − ξδ)2 + |β|2δ2]2

4|β|3�3
+ (� − |β|)2.

(26)

We plot E2
lin as a function of θ in Fig. 4. The new nodal points

emerge at β = �, at ξ = F = 0. As β increases, the two nodal
points split and move towards already existing nodal points.

To calculate the winding numbers of these nodal points we
transform to the (ξ,F ) plane, where the two nodal points are
moved to the same ξ and F . In distinction to the case of circular
pockets, the nodal points are now located at finite ξ and F ,
given by Elin = 0. Still, the integration contour C is the same
for both nodal points, and one can extract the winding numbers

FIG. 4. Angular dependence of E2
lin, Eq. (25), for three values of

β, smaller, equal, and larger than �, which we set equal to one in
proper units. Inset: F (θ ) as a function of the angle θ for β = 1.025 >

�. The minima of F correspond to the locations of emerging nodal
points. We set μ = 10,α = −1.5,m2/m1 = 2.
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FIG. 5. The case of elliptical pockets. Bypass trajectories around
the emerging nodal points (black dots) at β > � for two sets of
coordinates: (kx,ky) in the right panel and (ξ,F ) in the left panel
(see the text for the definitions of ξ and F ). In the left panel, the two
nodal points are mapped into the same point in the new coordinates.
Opposite signs of the winding numbers for these two points are due
to different directions of bypass, as shown in the left panel.

from the bypass directions. Consider the nodal point in the
upper panel of Fig. 5. Let us choose the counterclockwise
bypass along the closed contour in the (kx,ky) plane. In the
(ξ,F ) plane, this bypass starts at ξ = 0, F (θ ) > 0, proceeds to
the point ξ < 0, F (θ ) = 0, and then reaches ξ = 0, F (θ ) < 0.
This is a clockwise bypass in the (ξ,F ) plane. For the nodal
point in the lower panel of Fig. 5, the same consideration
shows that the bypass direction in the (ξ,F ) plane changes
to counterclockwise. This implies that the winding numbers
for the two emerging nodal points are opposite.

The winding numbers of the original nodal points can be
obtained in the same way as was done for circular pockets be-
cause these nodal points survive when the ellipticity parameter
δ vanishes. Comparing the directions of bypass in Figs. 3 and
5, we see that the nodal points, which eventually merge and
disappear, always have the winding numbers of opposite sign.

C. Numerical analysis

1. The numerical procedure

We supplement our analytical calculations with the nu-
merical analysis. We use the computational procedure intro-
duced in Ref. [32]. It uses discrete grid functions for Berry
connection and Berry curvature. In order to calculate these
functions, one has to define the wave function of the system.
In Nambu notation, a field operator is  = (vc

kc
†
k + uc

kc−k +
vd

k d
†
k + ud

kd−k), where uc
k,v

c
k,u

d
k ,v

d
k are Bogoliubov transfor-

mation coefficients. The wave function of the system |n(k)〉

is then a four-component vector [34] made out of Bogoliubov
coefficients. We need the two wave functions which correspond
to eigenvalues ±E−(k), which, we remember, describe the
excitation branch with the nodes.

For the numerical computation of the Berry curvature, we
follow Ref. [32] and introduce the grid on the BZ, i.e., coarse-
grain momenta to �k = kij = (2πi/ax, 2πj/ay), where ax,ay

are grid spacings, each a fraction of the interatomic spacing.
It was argued that the value of B does not depend on grid
spacing as long as each elementary cell contains no more than
one nodal point. We next introduce a link variable Ã�δ(�k) on a
grid (a “discrete Berry connection”):

Ã�δ(�k) = 〈n(�k)|n(�k + �δ)〉/N, (27)

where N = |〈n(�k)|n(�k + �δ)〉| – is the normalization factor, and
δx = (2π/ax, 0), δy = (0, 2π/ay). This Ã�δ(�k) determines the
phase, which |n(�k)〉 acquires under the change from �k to �k + �δ.
The total phase change over an elementary closed loop adjacent
to a particular �k = kij (i.e., a particular combination of i,j ) is

K(�k) = Ã(�k)�δx
Ã(�k + �δx)�δy

Ã(�k + �δy)−1
�δx

Ã(�k)−1
�δy

. (28)

Taking the logarithm of K we obtain the phase change over a
loop:

B̃(�k) = 1

i
lnK(�k) = φ(�k). (29)

If there is no node inside a loop for a given �k = �k0, the overall
phase change is zero. If a given loop encircles a nodal point,
then, within the loop, one moves from the lower to the upper
branch of the Dirac spectrum (or vise versa), and the phase
changes by ±2π . Accordingly, B̃(�k0)/2π gives the winding
number of this nodal point. In the ideal situation, B̃(�k) will be
nonzero only for a discrete set of �k0, equal to the number of
nodal points. In numerical calculations, however, the logarithm
in Eq. (29) often strongly oscillates between 2π and −2π , if
a nodal point is near the trajectory along the loop. To avoid
this complication, we add to the Hamiltonian the term mσy

and compute B̃(�k) for all �k in the BZ. This term makes the
value of the logarithm well defined, but at the same time, it
couples lower and upper branches of the Dirac spectrum, and,
as a result, B̃(�k) becomes nonzero for all k in the BZ. Still, as
long as m is small, the numerics clearly show an enhancement
of the magnitude of B̃ near a node. Because our primary goal
is to check the signs of the winding numbers, it is sufficient to
compute B̃(�k) for a small but finite m and check the sign of
B̃(�k) near each nodal point.

2. Circular pockets

The results of our calculations of B̃(�k) for circular pockets
are shown in Fig. 6. We found that eight nodal points have
the winding numbers ±1. This is fully consistent with the
analytical result. We also see from Fig. 6 that there is a
checkerboard order of nodal points with positive and negative
values of the winding number. This is again consistent with the
analytical results.
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kx
0 π/4-π/4

ky
0

π/4

-π/4

FIG. 6. The grid Berry curvature B̃ for the case of circular electron
pockets. We used β = 0.5,μ = 1,� = 1,α = 1.5. The grid shows the
checkerboard order of positive and negative winding numbers for the
eight nodal points.

3. Elliptical pockets

For elliptical pockets, we used as the point of departure
the effective band Hamiltonian representing the low-energy
band E−, which has nodal points. We introduce a 2×2 matrix
Hamiltonian, which gives the dispersion in Eq. (13), and apply
the numerical procedure described above. We plot the Berry
curvature as a function of |�k| and θ in Fig. 7. As we can see
from this figure, in the region around the nodal points, the Berry
curvature saturates at a positive value near one point and at a
negative value near the other. This leads to opposite signs of
the winding numbers around these points. This is again fully
consistent with the analytical results.

kx+ky
2.5

π/4
θ

π/4-0.1

π/4+0.1

2 2

2.4
2.6

FIG. 7. The grid Berry curvature B̃ for the two emerging nodal
points in the case when the electron pockets are elliptical. The posi-
tions of the nodal points are shown by black dots. The unusual shape
of the plateaus around nodal points is caused by the choice of polar
coordinates. The arrows show where the grid Berry curvature is pos-
itive and where it is negative. We used μ = 10,α = −1.5,β = 1.01,

� = 1,m2/m1 = 2.

IV. A TWO-BAND d-WAVE SUPERCONDUCTOR

A. The model

We next consider the model of FeSC with the d-wave gap
structure [19,23]. The model is for a heavily hole doped FeSC
with two �-centered hole pockets and no electron pockets. The
hole pockets are made out of dxz and dyz orbitals, and orbital
content is rotated by 90o between the two pockets. Because the
orbital content varies along the Fermi surfaces, the interactions
in the band basis are angle dependent and have both s-wave
and d-wave components. We assume that d-wave interaction
is attractive and stronger than s-wave, such that the system
develops dx2−y2 superconductivity below a certain T .

The d-wave gap equation in the band basis has been
analyzed in [19,23]. The kinetic energy is

H0 =
∑
k,α

(ε1,kc
†
1,kc1,k + ε2,kc

†
2,kc2,k), (30)

where ε1,2,k = μ − k2/(2m1,2) and we consider m1 �= m2. By
symmetry, the pairing interaction couples intrapocket pairing
condensates 〈c†1,kαc

†
1,−kβ〉 and 〈c†2,kαc2,−kβ〉, and interpocket

pairing condensates 〈c†1,kαc
†
2,−kβ〉 and 〈c†2,kαc1,−kβ〉. For the case

when the interaction in the band basis is obtained from a local
Hubbard-Hund interaction in the orbital basis, the anomalous
part of the BCS Hamiltonian is

H� = �a

∑
k

iσ
y

αβ(c†1,kαc
†
1,−kβ − c

†
2,kαc2,−kβ )

+�b

∑
k

iσ
y

αβ (c†1,kαc
†
2,−kβ + c

†
2,kαc1,−kβ) + H.c., (31)

where �a = � cos2θ and �b = � sin2θ .
Diagonalizing this BCS Hamiltonian, we obtain two bands,

a and b, with the dispersion

Ea,b(k) =
√

�2cos2(2θ ) + ε2
a,b(k), (32)

where

εa,b(k) = sgn(ε1,k + ε2,k)

√(
ε1,k + ε2,k

2

)2

+ �2sin2(2θ )

±ε1,k − ε2,k

2
. (33)

When the two Fermi surfaces are far apart, εa ≈ ε1,k and
εb ≈ ε2,k . In this limit, we have a conventional d-wave gap
structure with nodal points on each Fermi surface, along the
diagonals. However, when � is comparable to the energy
difference between ε1 and ε2, when one of ε vanishes, the
nodal points move away from the two Fermi surfaces into the
region between them (see Fig. 8). At some critical �, the two
nodal points along each diagonal merge and disappear, leaving
a d-wave superconductor nodeless.

B. The winding number

Without loss of generality we set m2 > m1. Inside the
smaller Fermi surface ε1,k < 0 and ε2,k < 0. Upon crossing
the smaller Fermi surface ε1,k changes sign, but ε2,k remains
negative, i.e., sgn(ε1,k + ε2,k) = −1. Near the larger Fermi
surface ε2,k  0 and ε1,k > 0. Then sgn(ε1,k + ε2,k) = 1. As a
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FIG. 8. The nodal points (black dots) in a d-wave FeSC with FSs
made out of dxz and dyz orbitals. Red and green lines are the two
FSs from the normal state. When the magnitude of the d-wave gap �

increases, nodal points move along the BZ diagonal, and merge and
disappear at some �crit.

result, near each of the two nodal points εa = ξ = −εb. Using
this, we construct effective Dirac Hamiltonians Ha and Hb:

Ha,b =
( ±ξ 2�(θ − π/4)

2�(θ − π/4) ∓ξ

)
. (34)

The corresponding matrices A are

Aa,b =
(

2� 0
0 ± dξ

dk

)
. (35)

Then sgn[det(Aa)] = −sgn[det(Ab)], i.e., the two nodal points
along each diagonal have opposite winding numbers.

C. Numerical analysis

We computed the Berry curvature separately for the effec-
tive Hamiltonians Ha and Hb. The results are shown in Fig. 9.
We see that the Berry curvature has opposite signs for a pair of
nodal points along the same diagonal, and hence these points
have the winding numbers of opposite sign. This agrees with
the analytic result.

V. CONCLUSIONS

In this paper we analyzed the merging and disappearance
of the nodal points in FeSCs from a topological perspective.
We considered two models with different pairing symmetry—s
wave (s±) and d wave. For an s+−-wave superconductor we
considered the model with accidental nodes on the two electron
pockets. We manipulated the position of the nodes by varying

kx
0 π/4-π/4

ky0

π/4

-π/4

kx
0 π/4-π/4

ky 0

π/4

-π/4

FIG. 9. The grid Berry curvature B̃ computed for the two bands a

andb (each with nodal points) for a model of ad-wave superconductor,
Eq. (32). We set � = 0.3,μ = 1,α = 1. We see that the sign of the
Berry curvature changes between the two nodal points along the same
diagonal.

the degree of hybridization between the two electron pockets.
We considered first the special case when the electron pockets
are circular and then a generic case when they are elliptical. In
both cases, increasing the strength of hybridization gives rise to
the Lifshitz transition in which neighboring nodal points merge
and annihilate. For the case of circular pockets we showed
that of eight nodal points, four have positive winding number
Q = +1 and four have Q = −1. We showed that the nodal
points, which merge at the Lifshitz transition, have opposite
winding numbers. In the case of elliptical pockets, we focused
on the case when, upon the increase of hybridization, the first
eight new nodal points are created in pairs, and then new nodal
points merge with the existing ones. We showed that in each
pair the two emerging nodes have opposite signs of the winding
number. And the winding numbers of the newly created and
the existing nodal points, which merge and annihilate at larger
hybridization, are also opposite. As a result, the net topological
invariant is conserved in the Lifshitz transition, and from
this perspective the transition from a nodal to full-gap s+−
superconductor can be labeled as a nontopological one.

For d-wave gap symmetry we considered a model with two
hole pockets made out of dxz and dyz orbitals. The pairing
condensate in this model necessarily contains intrapocket and
interpocket components. The latter move the nodal points away
from the Fermi surfaces, into the area in between the pockets.
As the pairing gap increases (or the distance between the
pockets decreases), the two nodal points along each diagonal
come closer to each other and eventually merge and disappear
via Lifshitz transition. We showed that the winding numbers
of these nodal points are again Q = ±1. Then the net winding
number is zero, and the Lifshitz transition in a d-wave case
also can be labeled as nontopological.

The merging and annihilation of nodal points has been
well studied in Dirac and Weyl semimetals which undergo
a transition into an insulator under a variation of certain
system parameters [24]. Several authors have shown that in
a semimetal-to-insulator transition, the merging nodal points
have opposite winding numbers [25,26]. We demonstrated that
the same is true in nodal-to-full-gap transitions in s-wave and
d-wave FeSCs.
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APPENDIX: GAP OPENING

In Sec. III C 1 we make some remarks about the numerical
calculation of the winding numbers in a superconductor. As we
said in the main text, to regularize the numerical procedure, it
is convenient to add a small mass term mσy to the dispersion.
Such a term opens up the gap in the excitation spectrum,
allowing one to define unambiguously the sign of the logarithm
in Eq. (29). However, numerical analysis shows that this term
gives rise to a nonzero value of the logarithm for a loop which
does not enclose nodal points. Here we show analytically that
this is indeed the case.
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To be brief, consider a simple 2×2 Bogoliubov–de Gennes (BdG) Hamiltonian with the additional mσy term:

H =
(

ξ − a � − b − im

� − b + im −ξ + a

)
. (A1)

For m = 0, this Hamiltonian has the nodal point at ξ = a,� = b. For a nonzero m, we introduce link variable, according to
Eq. (27), and obtain Ã(ξ,�) �dξ in the form

Ã(ξ,�) �dξ = X1 + (ξ − a)dξ − (ξ + dξ + a)
√

X1 + √
X2[(a − ξ )

√
X1]

2N
√

[X1 + (a − ξ )
√

X1][X2 + (a − ξ − dξ )
√

X2]
,

X1 = m2 + (b − �)2 + (a − ξ )2, (A2)

X2 = m2 + (b − �)2 + (a − ξ − dξ )2,

where N is the normalization factor. Let us start from the origin of the (ξ,�) plane and select the loop such that it does not
encounter the nodal point. For this we choose dξ < a, d� < b, where dξ, d� are the elementary steps (equivalent to δx, δy in
the main text). We have

K(ξ,�) = Ã(0,0) �dξ Ã(dξ,0) �d�Ã(0,d�)−1
�dξ

Ã(0,0)−1
�d�

. (A3)

To first order in dξ and d�,

K = 1 + im(2a2 + b2 + m2 + 2a
√

a2 + b2 + m2)dξd�

2
√

a2 + b2 + m2(a2 + b2 + m2 + a
√

a2 + b2 + m2)2
. (A4)

It is obvious from this expression that for any finite m, ln K �= 0.
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