
PHYSICAL REVIEW B 97, 094427 (2018)

Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice

Akihisa Koga, Shiryu Nakauchi, and Joji Nasu
Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

(Received 25 May 2017; revised manuscript received 29 January 2018; published 30 March 2018)

We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying
the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This
model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field
approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and
spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is
realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the
nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit
coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to
account for the Kitaev-based magnetic properties in candidate materials.
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I. INTRODUCTION

Orbital. degrees of freedom have been studied as a central
topic of strongly correlated electron systems as they possess
own quantum dynamics and are strongly entangled with other
degrees of freedom such as charge and spin [1]. Recently, mul-
tiorbital systems with strong spin-orbit coupling (SOC) have
attracted considerable attention [2,3]. One of the intriguing
examples is the series of the Mott insulators with honeycomb-
based structures such as A2IrO3 (A = Na,Li) [4–6],
and β-Li2IrO3 [7]. Due to a strong SOC for 5d electrons, the
low-energy Kramers doublet, which is referred to as an isospin,
plays an important role at low temperatures. Furthermore,
anisotropic electronic clouds intrinsic in the t2g orbitals result
in peculiar exchange couplings between the isospins, which are
suggested to be dominated by the Kitaev-type interaction [8,9].
The ground state of the pure Kitaev model is a quantum spin
liquid (QSL), and hence a lot of experimental and theoretical
works have been devoted to the iridium oxides in this context
or to clarify the competition between the Kitaev model and
other interactions yielding magnetic orders [10–18].

Very recently, the ruthenium compound α-RuCl3 with 4d

electrons has been studied actively as another Kitaev candidate
material [19–27]. In general, the SOC in 4d orbitals is weaker
than that in 5d orbitals and is comparable with the exchange
energy. Therefore, it is highly desired to deal with SOC
and exchange couplings on an equal footing although the
magnetic properties for honeycomb-layered compounds have
been mainly discussed within the isospin model with the
Kitaev and other exchange couplings including longer-range
interactions [10,28–32].

In this paper, we study the role of the SOC in the Mott
insulator with orbital degrees of freedom. We examine the
localized spin-orbital model with the Kugel-Khomskii type su-
perexchange interactions between nearest-neighbor sites [33]
and onsite SOC on the two-dimensional honeycomb lattice. In
the strong SOC limit, this model is reduced to the Kitaev model
and the QSL state is realized. On the other hand, a conventional

spin-orbital ordered state may be stabilized in the small SOC
case. To examine the competition between the magnetically
disordered and ordered states in the intermediate SOC region,
we first use the cluster mean-field (CMF) theory [34] with
the exact diagonalization (ED). We determine the ground
state phase diagram in the model and clarify that a zigzag
magnetically ordered state is realized due to the competition
between distinct exchanges. Calculating the specific heat and
entropy in terms of the thermal pure quantum (TPQ) state [35],
we discuss how thermodynamic properties characteristic of the
Kitaev model appear in the intermediate SOC region.

The paper is organized as follows. In Sec. II, we introduce
the three-orbital model and derive the effective Hamiltonian
in the strong coupling limit. In Sec. III, we show the results
for the ground state obtained by the CMF method to clarify
the role of the SOC in the system. Thermodynamic properties
are discussed in Sec. IV. A summary is provided in the last
section.

II. EFFECTIVE HAMILTONIAN

We start with the three-orbital Hubbard model on the
honeycomb lattice. This should be appropriate to describe the
electronic state of the t2g orbitals in the compounds A2IrO3 and
α-RuCl3 since there exists a large crystalline electric field for
the d orbitals. The transfer integral t between the t2g orbitals
via ligand p orbitals are evaluated from the Slater-Koster
parameters, where the neighboring octahedra consisting of six
ligands surrounding transition metal ions share their edges.
Note that the transfer integrals involving one of the three t2g

orbitals vanish due to the anisotropic electronic clouds [9].
We refer to this as an inactive orbital and the other orbitals
as active ones. These depend on three inequivalent bonds,
which are schematically shown as the distinct colored lines in
Fig. 1. Moreover, we consider the onsite intra- and interorbital
Coulomb interactions, U and U ′, Hund coupling K , and pair
hopping K ′ in the conventional manner. In the following, we
restrict our discussions to the conditions U = U ′ + 2K and
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FIG. 1. Honeycomb lattice. Green, red, and blue lines denote x,
y, and z bonds, respectively. (a) Two kinds of effective clusters with
ten sites, which are colored in yellow and blue, are treated in the
framework of the CMF method (see text). (b) Twelve-site cluster for
the TPQ states.

K ′ = K , which are led by the symmetry argument of the
degenerate orbitals.

We use the second-order perturbation theory in the strong
coupling limit since the Mott insulating state is realized in the
honeycomb-layered compounds. We then obtain the Kugel-
Khomskii-type exchange model, assuming that five electrons
occupy the t2g orbitals in each site [36–39]. By taking the SOC
into account, the effective Hamiltonian is explicitly given as

H =
∑
〈ij〉γ

Hex(γ )
ij − λ

∑
i

Li · Si , (1)

where λ is the SOC, and Si and Li are spin and orbital angular-
momentum operators at the ith site, respectively. The exchange
Hamiltonian Hex(γ )

ij , which depends on the bond γ (=x,y,z)

of the honeycomb lattice (see Fig. 1), is given as Hex(γ )
ij =
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where we follow the notation of Ref. [36], and
J1 = 2t2/U [1 − 3K/U ]−1, J2 = 2t2/U [1 − K/U ]−1, J3 =
2t2/U [1 + 2K/U ]−1 are the exchange couplings between
nearest neighbor spins [36–39]. Here, we have newly
introduced the orbital pseudospin operators τ

(γ )
l with

l = x,y,z,0. Note that its definition depends on the direction of
the bond (γ bond) between the nearest neighbor pair 〈ij 〉. τ (γ )

l

is represented by the 3 × 3 matrix based on the three orbitals:
The 2 × 2 submatrix on the two active orbitals is given by
σl/2 for l = x,y,z and the identity matrix for l = 0, and the

other components for one inactive orbital are zero, where σl

is the Pauli matrix. Now, we comment on the role of three
kinds of spin-orbital Hamiltonians. Note that all eigenvalues
of the orbital parts described in [· · · ] in Eqs. (2)–(4) are not
negative. Thus, the Hamiltonian H1 enhances ferromagnetic
correlations, while H2 and H3 lead to antiferromagnetic
correlations. As for the orbital degrees of freedom, we find
that both orbital parts of Eqs. (2) and (3) prefer the ferrotype
orbital state. These should be understood by applying the
Goodenough-Kanamori rule to our honeycomb system, where
finite electron transfers between different orbitals via a
90-degree cation-anion-cation bridge favor ferromagnetic and
ferro-orbital correlations. There exists orbital frustration due
to the directional nature of the orbital degree of freedom [40]
and competitions between these three interactions (J1,J2, and
J3), which should stabilize nontrivial ground states. In the
possible candidate phases, ferromagnetically ordered, zigzag,
stripy, and Neel states, the number of nearest neighbor parallel
bonds is 3, 2, 1, and 0, respectively. Therefore, one naively
expects that the ferromagnetically and zigzag ordered states
are the most appropriate candidates realized in the system.

What is most distinct from ordinary spin-orbital models is
that the present system describes not only spin-orbital orders
but also the QSL state realized in the Kitaev model. When the
SOC is absent, the system is reduced to the standard Kugel-
Khomskii type Hamiltonian. In the large Hund coupling case,
the HamiltonianH(γ )

1;ij is dominant. Then, the ferromagnetically
ordered ground state should be realized. In the smaller case
of the Hund coupling, the ground state is not trivial due to
the competing interactions, discussed above. On the other
hand, in the case λ → ∞, the SOC lifts the degeneracy in
the t2g orbitals at each site and the lowest Kramers doublet,
|σ̃ 〉 = (|xy,σ 〉 ∓ |yz,σ̄ 〉 + i|zx,σ̄ 〉)/√3, plays a crucial role
for low temperature properties. Then, the model Hamiltonian
Eq. (1) is reduced to the exactly solvable Kitaev model with the
spin-1/2 isospin operator S̃, asHeff = −J̃

∑
〈ij〉γ S̃iγ S̃jγ (γ =

x,y,z), where J̃ [=2(J1 − J2)/3] is the effective exchange
coupling [8]. It is known that, in this effective spin model,
the QSL ground state is realized with the spin gap. At finite
temperatures, a fermionic fractionalization appears together
with double peaks in the specific heat [15,16]. In the following,
we set the exchange coupling J1 as a unit of energy. We
then study ground-state and finite-temperature properties in
the spin-orbital system with parameters K/U and λ/J1.

III. GROUND-STATE PROPERTIES

First, we discuss ground state properties in the spin-orbital
model by means of the CMF method [34]. In the method,
the original lattice model is mapped to an effective cluster
model, where spin and orbital correlations in the cluster can
be taken into account properly. Intercluster correlations are
treated through several mean fields at ith site, 〈Sik〉,〈τ (γ )

il 〉, and
〈Sikτ

(γ )
il 〉, where k = x,y,z and l = x,y,z,0. These mean fields

are determined via the self-consistent conditions imposed on
the effective cluster problem. The method is comparable with
the numerically exact methods if the cluster size is large and
has successfully been applied to quantum spin [34,41–43] and
hard-core bosonic systems [44–46]. To describe some possible
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FIG. 2. The spin moments as a function of the Hund coupling
K/U . Solid and open circles (squares) represent the results for the
ferromagnetically and zigzag ordered states in the system with λ/J1 =
0.0 (0.2). The ground state energy is shown in the inset.

ordered states such as the zigzag and stripy states [10], we
introduce two kinds of clusters in the honeycomb lattice, which
are shown as distinct colors in Fig. 1(a). Using the ED method,
we self-consistently solve two effective cluster problems. Here,
we will show the results for one of the mean-field solutions. To
discuss magnetic properties at zero temperature, we calculate
spin moment mα

S = |∑i(−1)δ
α
i 〈Si〉|/N and orbital angular

momentum mα
L = |∑i(−1)δ

α
i 〈Li〉|/N , where N is the number

of sites and δα
i is the phase factor for an ordered state α.

We start with the system without SOC. Figure 2 shows
the spin moments m

f

S and mz
S for the ferromagnetically and

zigzag ordered states, respectively, which are obtained by
means of the ten-site CMF method (CMF-10). Namely, we
have confirmed that other magnetically ordered states such
as antiferromagnetic and stripy states are never stabilized in
the present calculations, and thereby we do not show them
in Fig. 2. With regard to the orbital state, we find that the
realized magnetic orders are accompanied by the ferro-orbital
order where the occupation rate in one (xy) orbital is larger
than the others [see Figs. 3(c) and 3(d) at K/U = 0.12 and
0.3, respectively]. Meanwhile, the local angular momentum
〈Li〉 disappears in the case λ = 0. In the system with the large
Hund coupling, the exchange coupling J1 is dominant, and
the ferromagnetically ordered ground state is realized with
the fully-polarized moment m

f

S = 0.5, as shown in Fig. 2.
On the other hand, in the smaller K region, the exchange
couplings J2 and J3 are comparable with J1. Since H2 and
H3 should enhance antiferromagnetic correlations, the ferro-
magnetically ordered state becomes unstable. We find that a
zigzag magnetically ordered state is realized with finite mz

S

around K/U ∼ 0.12. To study the competition between these
ordered states, we show the ground state energies in the inset
of Fig. 2. We clearly find the hysteresis in the curves, which
indicates the existence of the first-order phase transition. By
examining the crossing point, we clarify that the quantum
phase transition between ferromagnetically and zigzag ordered
states occurs at K/U ∼ 0.15. In the case with K/U < 0.1,
due to strong competitions, it is hard to obtain the converged
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FIG. 3. Total magnetic moment mμ, spin moment mS , orbital
moment mL (upper panels), and the occupation rates of the t2g orbitals
(lower panels) in the spin-orbital systems with K/U = 0.12 (left
panels) and K/U = 0.3 (right panels) as functions of the SOC.

solutions. This will be interesting to clarify this point in a future
investigation.

The introduction of λ locally couples the spin and orbital
degrees of freedom. The spin moments slightly decrease in
both states, as shown in Fig. 2. The zigzag and ferromag-
netically ordered states are stable against the small SOC, and
the first-order transition point has little effect on the SOC. To
discuss the stability of these states against the strong SOC,
we calculate mS and mL in the system with K/U = 0.12
and 0.3, as shown in Fig. 3. The introduction of the SOC
slightly decreases the spin moment, as discussed above. By
contrast, the orbital angular momentum is induced parallel to
the spin moment. Therefore, the total magnetic moment mα

μ =
| ∑i(−1)δ

α
i 〈2Si + Li〉|/N increases. When K/U = 0.12, the

zigzag ordered state becomes unstable and the first-order
phase transition occurs to the ferromagnetically ordered state
at λ/J1 ∼ 0.4. Further increase of the SOC decreases the
total moment m

f
μ. Finally, a jump singularity appears around

λ/J1 ∼ 0.8(1.8) in the system with K/U = 0.12(0.3). It is
also found that the magnetic moment is almost zero and each
orbital is equally occupied as in the isospin states |σ̃ 〉 in the
larger SOC region as shown in Figs. 3(c) and 3(d). Therefore,
we believe that this state is essentially the same as the QSL
state realized in the Kitaev model.

By performing similar calculations, we obtain the ground
state phase diagram, as shown in Fig. 4. The disordered
(QSL) state is realized in the region with large λ/J1. The
ferromagnetically ordered state is realized in the region with
small λ/J1 and large K/U . We wish to note that the zigzag
ordered state is stable in the small SOC region, which is not
directly taken into account in the Kitaev model. On the other
hand, in the large λ case, the system is reduced to the Kitaev
model. If one considers the classical limit of the model, the
ground-state manifold includes the ferromagnetically ordered
state but not the zigzag state. This should explain no direct
phase transition between zigzag and QSL states, as shown
in Fig. 4. In our calculations, the clusters are restricted to
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FIG. 4. The ground state phase diagram of the spin-orbital model.
Transition points are obtained by the CMF-10. Spin configurations for
disordered, zigzag ordered, and ferromagnetically ordered states are
also shown.

be 10 sites, and we could not examine the cluster-size and
shape dependence for the obtained results. Nevertheless, the
numerical results are consistent with the above discussion,
and therefore we believe that those capture the essence of the
spin-orbital system on the honeycomb lattice.

IV. THERMODYNAMIC PROPERTIES

In this section we discuss thermodynamic properties in
the system. It is known that, in the Kitaev limit (λ → ∞),
the excitations are characterized by two energy scales, which
correspond to localized and itinerant Majorana fermions. This
clearly appears in the specific heat as two peaks at T/J̃ =
0.012 and 0.38 [16]. To clarify how the double peak structure
appears in the intermediate SOC region, we make use of the
TPQ state for the twelve-site cluster with the periodic boundary
condition [see Fig. 1(b)]. According to the previous study [30],
the double peak structure appears in the spin-1/2 Kitaev model
even with the twelve-site cluster. Therefore, we believe that
thermodynamic properties in the system can be discussed, at
least, qualitatively in our calculations.

Here, we fix the Hund coupling as K/U = 0.3 to discuss fi-
nite temperature properties in the system with the intermediate
SOC. Figure 5 shows the specific heat and entropy in the system
with λ/J1 = 0,1,2,4, and 10. In this calculation, the quantities
are deduced by the statistical average of the results obtained
from, at least, twenty independent TPQ states. When λ = 0, we
find a broad peak around T/J1 = 0.4 in the curve of the specific
heat. In addition, with decreasing temperatures, most of the
entropy is released at T/J1 ∼ 0.1, as shown in Fig. 5(b). This
can be explained by the fact that ferromagnetic correlations are
enhanced and spin degrees of freedom are almost frozen. The
appearance of the large residual entropy should be an artifact
in the small cluster with the orbital frustration.

The introduction of the SOC leads to interesting behav-
ior. It is clearly found that the broad peak shifts to higher
temperatures. This peak corresponds to the formation of the
Kramers doublet, which is associated with the release of a part
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FIG. 5. The specific heat (a) and entropy (b) as a function of the
temperature for the system with λ/J1 = 0,1,2,4, and 10. Shaded areas
are estimated by using the standard deviation of the results obtained
from thirty initial random states. Dashed lines represent the results
for the isospin Kitaev model with twelve sites.

of the entropy 	S = log(6) − log(2) as shown in Fig. 5(b).
Moreover, in the case λ/J1 � 2, we find two peaks in the
specific heat at lower temperatures almost independent of
the SOC, and the curves are quantitatively consistent with
the results for the isospin Kitaev model on the twelve sites,
which are shown as dashed lines. Therefore, we believe that
the Kitaev physics appears in the region. On the other hand,
when λ/J1 = 1, the specific heat exhibits a peak around
T/J1 ∼ 0.08, indicating that the Kitaev physics is hidden by
the formation of the Kramers doublet due to the competition
between the exchange interaction and SOC.

IV. SUMMARY

We have studied the effective spin-orbital model obtained
by the second-order perturbation theory. Combining the CMF
theory with the ED method, we have treated the Kugel-
Khomskii type superexchange interaction and SOC on an equal
footing to determine the ground-state phase diagram. We have
clarified how the magnetically ordered state competes with
the nonmagnetic state, which is adiabatically connected to
the QSL state realized in a strong SOC limit. Particularly,
we have revealed that a zigzag ordered state is realized in
this effective spin-orbital model with finite SOC. The present
study suggests another mechanism to stabilize the zigzag
ordered phase close to the QSL in the plausible situation
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and also will stimulate further experimental studies in the
viewpoint of the SOC effect on magnetic properties in Kitaev
candidate materials. While we have considered only the SOC
and superexchange interactions leading to the Kitaev model,
it is also interesting to clarify the role of realistic parameters
such as crystal-field splitting, direct hopping between d or-
bitals, and longer-range interaction. These are left for a future
work.
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