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Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes
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One recent breakthrough in the field of magnonics is the experimental realization of reconfigurable spin-wave
nanochannels formed by a magnetic domain wall with a width of 10–100 nm [Wagner et al., Nat. Nano. 11,
432 (2016)]. This remarkable progress enables an energy-efficient spin-wave propagation with a well-defined
wave vector along its propagating path inside the wall. In the mentioned experiment, a microfocus Brillouin light
scattering spectroscopy was taken in a line-scans manner to measure the frequency of the bounded spin wave.
Due to their localization nature, the confined spin waves can hardly be detected from outside the wall channel,
which guarantees the information security to some extent. In this work, we theoretically propose a scheme to
detect/eavesdrop on the spin waves inside the domain-wall nanochannel via nonlinear three-magnon processes.
We send a spin wave (ωi,ki) in one magnetic domain to interact with the bounded mode (ωb,kb) in the wall,
where kb is parallel with the domain-wall channel defined as the ẑ axis. Two kinds of three-magnon processes, i.e.,
confluence and splitting, are expected to occur. The confluence process is conventional: conservation of energy and
momentum parallel with the wall indicates a transmitted wave in the opposite domain with ω(k) = ωi + ωb and
(ki + kb − k) · ẑ = 0, while the momentum perpendicular to the domain wall is not necessary to be conserved due
to the nonuniform internal field near the wall. We predict a stimulated three-magnon splitting (or “magnon laser”)
effect: the presence of a bound magnon propagating along the domain wall channel assists the splitting of the
incident wave into two modes, one is ω1 = ωb,k1 = kb identical to the bound mode in the channel, and the other
one is ω2 = ωi − ωb with (ki − kb − k2) · ẑ = 0 propagating in the opposite magnetic domain. Micromagnetic
simulations confirm our theoretical analysis. These results demonstrate that one is able to uniquely infer the
spectrum of the spin wave in the domain-wall nanochannel once we know both the injection and the transmitted
waves.

DOI: 10.1103/PhysRevB.97.094421

I. INTRODUCTION

Spin waves (or magnons) are elementary excitations in
ordered magnets. There has been long-term research interest
on spin waves ever since they were introduced by Bloch [1]
to explain the celebrated T 3/2 dependence of spontaneous
magnetization on the absolute temperature T . In the past few
years, intensive investigation on the behavior of spin waves in
nanostructured elements gives birth to an emerging subfield of
condensed matter physics, the magnonics [2–4]. The scientific
community of magnonics has made huge efforts to achieve
concepts to utilize spin waves as data carriers for information
processing based on their wave properties [5–7]. On the one
hand, it has been proposed that spin waves can efficiently
drive the motion of magnetic topological solitons, such as
domain walls [8] and skyrmions [9,10]. On the other hand,
spin-wave propagation confined in geometrically patterned
waveguides has been realized [11]. But it lacks the flexibility
for controlling the spin-wave propagation path which is re-
quired for reprogrammable magnonic devices. From an energy
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point of view, the dynamic manipulation of spin waves in
two-dimensional structures relies on a continuous application
of external forces, e.g., microwaves or spin-polarized currents,
and thus demands a high energy consumption. One recent
breakthrough is the experimental realization of reconfigurable
spin-wave nanochannels formed by a magnetic domain wall
with a width of 10–100 nm [12]. This remarkable progress
enables an energy-efficient spin wave propagating with a
well-defined wave vector along its propagation path inside the
wall. Wagner and co-workers used a Brillouin light scattering
microscope to locally measure the frequency of the bounded
spin waves [12]. Due to their localization nature, the bound spin
waves can hardly be detected from outside the wall channel,
which guarantees the information security to some extent.

In this work we propose a nonlocal scheme to eavesdrop
on the spectrum of channeled spin waves via nonlinear three-
magnon processes. Three-magnon effects have been known to
be important for nonlinear processes in magnetic thin films,
since they can give rise to very different output waves [13].
For example, in the so-called saturation of ferromagnetic
resonance [14], the uniform mode decays into two modes
with a half frequency. Recent spin pumping experiments show
that three-magnon processes in magnetic insulators can en-
hance the interfacial spin-current emission [15]. Conventional
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FIG. 1. Schematic plot of three-magnon processes arising inside
a Néel domain wall in an extended thin ferromagnetic film. kb is the
wave vector of the bounded spin wave propagating along the domain-
wall channel, while ki is the wave vector of bulk spin wave in the
magnetic domain. Three-magnon confluence generates an emerging
mode with wave vector k. The domain wall structure is zoomed in at
the top left corner. The three-magnon splitting process is not shown.

three-magnon processes are triggered by the weak nonlocal
magnetic dipole-dipole interaction in uniform magnetic thin
films [16]. There are two different three-magnon-scattering
processes: splitting and confluence. Due to conservation of
energy the splitting in three-magnon-scattering events only
occurs if the pumping frequency is at least twice the frequency
of the bottom of the spin-wave band. The spin-wave band
typically starts at a nonzero frequency and hence, three-
magnon scattering is prohibited if the pumping frequency
is not high enough [17]. Exchange coupling and magnetic
anisotropy (including both the magnetocrystalline anisotropy
and the shape anisotropy due to the local part of the dipolar
interaction), on the other hand, are often much stronger
than the nonlocal dipole-dipole interaction in ferromagnet. In
homogeneous ferromagnets without external magnetic fields,
the lowest-order nonlinear process by these two interactions
is the four-magnon scattering [18]. However, three-magnon
processes can occur in magnetic textures such as the skyrmion
without the dipolar interaction [19]. Here we consider a three-
magnon effect arising in the domain-wall nanochannel (shown
in Fig. 1): we input a spin wave (ωi,ki) in one magnetic domain
to interact with the mode (ωb,kb) bounded in the domain
wall with kb ‖ ẑ, where ωi,b and ki,b are the frequency and
the wave vector of magnons, respectively. Conservations of
both the energy and the momentum parallel with the wall,
i.e., ω(k) = ωi + ωb and (ki + kb − k) · ẑ = 0, enable us to
uniquely determine the spectrum (ω,k) of the three-magnon
confluence. We note that the momentum perpendicular to
the domain wall is not necessary to be conserved due to
the nonuniform internal field near the wall. On the other
hand, when the frequency of incident magnons goes beyond
a threshold value, the three-magnon splitting emerges as
well, i.e., ωi → ω1 + ω2 and ki → k1 + k2. In general, the
mentioned two conservation laws are insufficient to uniquely
determine the splitting spectrum. However, the presence of the
bounded magnon stimulates a “magnon laser” effect which
makes one of the two split modes identical to the bound
mode, i.e., ω1 = ωb and k1 = kb. The other mode (ω2,k2)
then can be uniquely determined from the energy-momentum
conservations, i.e., ω2 = ωi − ωb and (ki − kb − k2) · ẑ = 0.

These results demonstrate that, with the help of the information
of injection wave in one magnetic domain and the emerging
modes in another domain, we are able to uniquely infer the
spectrum of the spin wave in the nanochannel formed by the
domain wall. Micromagnetic simulations are implemented to
verify our theoretical results.

This paper is organized as follows. In Sec. II the theoretical
consideration based on the Landau-Lifshitz phenomenology
is presented. Spectrum of linear spin waves is given on top
of a two-dimensional domain wall structure. Three-magnon
processes arising inside the wall channel are analyzed as well.
Section III gives the results of micromagnetic simulations to
verify the theoretical predictions. Conclusions are drawn in
Sec. IV. A magnon-magnon interaction Hamiltonian in inho-
mogeneous magnetization textures is derived in the Appendix.

II. THEORETICAL CONSIDERATIONS

We start with the Hamiltonian

H =
∫

dr
[

A

M2
s

(∇M)2 − D

M2
s

(M · n)2

]
(1)

in two spatial dimensions. Here M = Msm is the magne-
tization with the saturated value Ms and the direction m,
A is the exchange constant, D is the anisotropy constant,
and n is the unit vector along the anisotropy axis (the z

axis). In the theoretical analysis, the magnetic dipole-dipole
interaction is ignored for simplicity, but it can be included in
numerical calculations in the next section. Based on this energy
functional, we consider a magnetic thin film with two magnetic
domains, whose magnetizations point in opposite directions
separated by a Néel domain wall, as shown in Fig. 1. The film is
in they-z plane and the magnetization in the left/right domain is
along the ±ẑ direction, i.e., m(y = ±∞) = ∓ẑ, respectively.
The nanochannel formed by the domain wall is along the
ẑ direction as well. Minimizing the energy functional with
the mentioned boundary condition gives rise to the so-called
Walker solution [20]

m0,x = 0, m0,y = 1

cosh y−Y

w

, and m0,z = − tanh
y − Y

w
,

(2)
describing the spatial distribution of static domain wall mag-
netization m0. Here Y is the position of the domain wall center
and w = √

A/D is the domain wall width. Spatiotemporal evo-
lution of dynamic magnetization is governed by the classical
Landau-Lifshitz-Gilbert (LLG) equation

∂m(r,t)
∂t

= −γ m × Heff + αm × ∂m
∂t

, (3)

where γ is the gyromagnetic ratio, α � 1 is the dimensionless
Gilbert damping constant, and Heff = −μ−1

0 δH/δM is the
effective magnetic field with vacuum permeability μ0. We first
derive the linear spin-wave spectrum on top of the static domain
wall. To this end, we assume a small fluctuation of m around
m0, and express m in local spherical coordinates er ,eθ , and eφ

as m(r,t) ≈ m0 + mθ (r,t)eθ + mφ(r,t)eφ with er ≡ m0 and
|mθ,φ| � 1. By defining a wave function ψ(r,t) = mθ (r,t) −
imφ(r,t) and neglecting the Gilbert damping, the LLG equa-
tion (3) can be linearized and recast into a Schrödinger-like
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equation [8]

ih̄
∂ψ

∂τ
=

[
p̂2

2m∗ + V (r)

]
ψ, (4)

with τ = γ t/μ0Ms , the effective mass m∗ = h̄/4A, the mo-
mentum operator p̂ = −ih̄∇, and the reflectionless potential
well V (r) = 2Dh̄[1 − 2 cosh−2( y−Y

w
)] with h̄ the reduced

Planck constant. One should note that h̄ can be completely
eliminated by dividing it on both sides of Eq. (4) which thus
is not a true quantum-mechanical Schrödinger equation. How-
ever, its solutions can indicate interesting physics. Equation (4)
allows two types of solutions. One is the scattering spin-wave
state with [21]

ψk,i(r,t) = tanh
(

y−Y

w

) − ikyw√
1 + w2k2

y

ei(kyy+kzz)−iωi t ,

ωi = 2γ

μ0Ms

[
D + A

(
k2
y + k2

z

)]
, (5)

while the other one corresponds to a spin wave localized near
the domain wall

ψk,b(r,t) = 1√
2

sech

(
y − Y

w

)
eikzz−iωbt ,

ωb = 2γ

μ0Ms

Ak2
z .

(6)

The set of functions ψk(r,t) is complete and orthonormal.
Important physics associated with both the scattering (5) and
the bound states (6) have been exploited in recent literatures.
For instance, the reflectionless property of the scattering states
leads to the so-called all-magnonic spin transfer torque [8],
while the realization of spin-wave propagation along the
domain-wall nanochannel numerically [22,23] and experi-
mentally [12] relies on the localized nature of the bound
states. However, the interplay between these two modes is
yet to be addressed. We present the rigorous derivation of
the magnon-magnon interaction Hamiltonian in the Appendix,
and here focus on the physics of the three-magnon effect
which is the lowest-order nonlinear process in inhomogeneous
magnetization textures, even without the magnetic dipolar
interaction. As shown in Fig. 1, we input a propagating wave
(ωi,ki) in the left magnetic domain, to interact with the
bounded mode (ωb,kb). In general, both the confluence and
the splitting events can occur in the three-magnon processes,
as shown in Fig. 2.

A. Three-magnon confluence

We first consider the three-magnon confluence event shown
in Fig. 2(a). In this process, the energy is conserved (under the
assumption of negligibly small dissipation due to the Gilbert
damping) while the particle number is not. Translational
invariance along z direction guarantees the conservation of
momentum parallel with the domain wall. We thus have

ωk = ωi + ωb, (k − ki − kb) · ẑ = 0. (7)

Considering propagating wave with an arbitrary incident angle
β, i.e., ki = |ki |(cos βŷ + sin βẑ), we obtain the solution of
the confluence spectrum k = (|ki | cos β + q)ŷ + (|ki | sin β +

ik

bk

k

ik 1k

2k

ik

bk 2k

1 b=k k

(a)

(b)

(c)

FIG. 2. Schematic picture of nonlinear three-magnon processes.
(a) Three-magnon confluence of ki and kb into k. (b) Spontaneous
three-magnon splitting of ki into two random modes k1 and k2. (c)
Stimulated three-magnon splitting of ki into two modes k1 = kb and
k2, assisted by a localized magnon kb (gray arrow).

kb)ẑ, where the parameter q measures the momentum mis-
match perpendicular to the wall and satisfies the following
equation:

q2 + 2(|ki | cos β)q + 2|ki | sin βkb = 0. (8)

For a normal incident, i.e., β = 0, we obtain q = 0 and q =
−2|ki | which corresponds to a forward confluence

k = ki + kb, (9)

and a backward one

k = −ki + kb, (10)

respectively. The intensity of the three-magnon confluence
process is given by Icon ∝ nki

nkb
[24], with nki

and nkb
the

numbers of magnons in the initial states. In the classical region,
nki,b

 1.

B. Three-magnon splitting: Random and stimulated

Figure 2(b) shows a general three-magnon splitting process
of the incident wave (ωi,ki). In this process, the energy-
momentum conservation gives rise to

ω1 + ω2 = ωi, (k1 + k2 − ki) · ẑ = 0, (11)

with the intensity given by Ispl ∝ nki
[24] with nki

the magnon
number in the initial state, which is much smaller than the
intensity of the confluence process. Furthermore, the solution
of Eqs. (11) is obviously not unique. We thus call this process as
a random (or spontaneous) three-magnon splitting. However,
the presence of a bound magnon propagating along the wall
can trigger a stimulated three-magnon splitting, making one of
the two split modes identical to the localized mode, i.e.,

k1 = kb and ω1 = ωb. (12)

In analogy to the stimulated emission of electromagnetic
radiation, we call this process a “magnon laser” effect. The
spectrum intensity Ispl then will be significantly enhanced by
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the very presence of the stimulating modes, and will increase
with the increasing nkb

(see numerical evidences in Fig. 9
below). While a microscopic perturbative calculation is not
the scope of the present work, we note that the concept of
stimulated emission was first introduced by Einstein in his
seminal derivation of the blackbody spectrum [25]. It is some-
times regarded as a pure quantum-mechanical effect. However,
it has been pointed out that the stimulated emission arises also
in purely classical nonlinear systems by Gaponov [26], Fain
[27], and Fain and Milonni [28]. The stimulated emission is
understood as a constructive interference between the incident
wave and the wave scattered [29]. In our stimulated three-
magnon splittings, the localized magnon acts as the incident
wave, while the impinging magnon corresponds to the wave
scattered. The other mode then can be uniquely determined by
k2 = (|ki | cos β + q)ŷ + (|ki | sin β − kb)ẑ, with parameter q

the solution of the following equation:

q2 + (2|ki | cos β)q + 2k2
b − 2|ki | sin βkb = 0. (13)

We are again interested in the normal-incident case. Then the
above equation is reduced to q2 + 2|ki |q + 2k2

b = 0 which
allows real solutions q = −|ki | ±

√
|ki |2 − 2k2

b only when

|ki | �
√

2kb. (14)

We thus obtain

k2 = ±
√

|ki |2 − 2k2
b ŷ − kb, (15)

corresponding to the forward (“+” sign) and the backward
(“−” sign) splitting solutions. We focus on the forward one in
this work.

III. NUMERICAL RESULTS

To verify our theoretical analysis, we solve numerically the
full LLG equation (3) using the micromagnetic simulation
codes MuMax3 [30]. We used magnetic parameters of Co
with an exchange constant A = 4 × 10−11 Jm−1, a uniaxial
anisotropy D = 5.2 × 105 Jm−3, a saturated magnetization
Ms = 1.4 × 106 Am−1, a gyromagnetic ratio γ = 2.21 × 105

rad s−1mA−1, and a Gilbert damping constant α = 0.02. The
geometry is illustrated in Fig. 3. The magnetic thin film lies
in the y-z plane, with length 1800 nm, width 1000 nm, and
thickness 2 nm, which was discretized using 900 × 500 × 1
finite difference cells. Figures 3(a) and 3(b) show the film
without and with a Néel domain wall, respectively. We first
simulate the linear spin-wave spectrum. To this end, we
apply a microwave driving field with the sinc-function h(t) =
h0 sin[ωH (t − t0)]/[ωH (t − t0)]x̂ for 10 ns with h0 = 0.1 T,
ωH /2π = 80 GHz, and t0 = 1 ns, over the regions of orange
color with volumes 30 × 1000 × 2 nm3 and 30 × 400 × 2 nm3

shown in Figs. 3(a) and 3(b), respectively. Figure 3(c) shows
the time dependence of the excitation field. The spatiotemporal
oscillation of the out-of-plane magnetization component Mx

is analyzed over the lattices along z = 500 nm in Fig. 3(a),
and over the lattices in the domain-wall center, i.e., y =
Y = 900 nm, in Fig. 3(b). The corresponding fast Fourier
transformation (FFT) spectrums are plotted in Figs. 3(d)
and 3(e), respectively. The frequency resolution of the FFT is
0.1 GHz. Numerical results agree excellently with the analyt-
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FIG. 3. Geometry in numerically calculating the linear spin-wave
spectrum. (a) Single magnetic domain. (b) Magnetic thin film with
a domain wall. (c) Time dependence of the sinc-function field h(t).
(d) FFT spectrum over the lattices along z = 500 nm in (a). (e) FFT
spectrum along the domain-wall channel y = Y = 900 nm in (b). In
(d) and (e), the solid curves are the analytical formula (5) and (6),
respectively, without any fitting parameter. Microwave driving fields
are located in the regions of orange color in (a) and (b).

ical formula Eqs. (5) and (6) [solid curves shown in Figs. 3(d)
and 3(e)]. In Fig. 3(e) we did not plot the spectrum very close
to the gap γD/(πμ0Ms) = 20.79 GHz, because in higher
frequencies the confinement of spin waves becomes worse and
one cannot clearly identify the localized mode from the FFT.
We therefore only show the frequency up to 15 GHz.

Then, we simulate the interaction between the propagating
and the localized spin waves. We focus on the normal incident
case. To this end, we put two sinusoidal monochromatic
microwave sources simultaneously over the magnetic film
[orange regions shown in Fig. 4(a)]: one source is hi(t) =
hi sin(ωit)x̂ put in the left domain and the other one is
hb(t) = hb sin(ωbt)x̂ located at the bottom of the film across
the domain wall, where ωi(b) should be well above (below)
the band gap of bulk spin waves. We set hi = hb = h0 unless
otherwise stated. A gradient in the damping constant is utilized
at the film edges [dashed area shown in Fig. 4(a)] to avoid
the artificial spin-wave reflections by the boundaries [31]. We
consider ωi/2π = 30 GHz and ωb/2π = 6 GHz (much lower
than the band gap of bulk spin waves). The excited magnons
carry wave vectors ki = 0.078ŷ and kb = 0.06ẑ in units of
nm−1, respectively. FFT spectrum analysis at a single cell [the
green dot in Fig. 4(a)] shows two peaks at 30 and 36 GHz,
respectively, as plotted in Fig. 4(b). The main peak of 30 GHz
is from the propagating spin wave generated by the microwave
source in the left domain. While we infer that the relatively
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FIG. 4. Setup to simulate the nonlinear three-magnon processes.
(a) Magnetic thin film with a domain wall. (b) FFT spectrum at a
single lattice cell [green dot in (a)]. (c) Single magnetic domain.
(d) FFT of a single lattice cell [green dot in (c)]. External microwave
fields are located in the regions of orange color in (a) and (c).
Absorbing boundary conditions are adopted in the dashed area near
the film edges.

weak peak at 36 GHz is due to the three-magnon confluence
process, because “36 = 30 + 6”, there, however, still exists a
loophole in this argument: There are two microwave sources
hi(t) and hb(t) acting on the ferromagnet, so it is possible
that the output spin wave with the sum frequency could be
simply due to the combined driving of the microwave fields on
the magnetic moment, rather than the interaction between the
propagating wave and the localized wave moving in the domain
wall. To close this loophole, we consider a single domain
setup shown in Fig. 4(c), without changing rest conditions.
The FFT analysis at the same lattice cell [the green dot in
Fig. 4(c)] clearly shows the disappearance of the 36 GHz
mode without the domain wall, as plotted in Fig. 4(d). This
concludes that the emerging high-frequency mode must come
from the interaction between the propagating wave and the
wave bounded in the domain-wall channel.

To provide a direct evidence, we implement spatial FFT
spectrum analysis for the two frequency peaks over the region
inside the green square with the side length 730 nm plotted
in Fig. 5. The spatial resolution of the FFT spectrum is
0.009 nm−1. FFT results are shown in Figs. 5(a) and 5(b).

30GHz(a) 36GHz(b)

zm

1−

1+

ŷ

ẑ

730 nm

(0.078,0)

(0.078,0.060)

FIG. 5. Spatial FFT spectrum for the two peaks (a) 30 GHz and (b)
36 GHz, observed in Fig. 4(b) where the incident magnon frequency
is ωi/2π = 30 GHz and the bound magnon frequency is ωb/2π =
6 GHz. The FFT analysis is implemented over the region inside the
green square with the side length 730 nm.

(a) (b)

ih
 (m

T)

/ω πi 2 (GHz) /ω πb 2 (GHz)

bh
 (m

T)

FIG. 6. Dependence on the field amplitude and the frequency of
the driving power (a) Pi to generate the impinging spin waves under
hb = 100 mT and ωb/2π = 6 GHz, and (b) Pb to excite the bounded
spin waves with hi = 100 mT and ωi/2π = 30 GHz.

The magnon wave vectors at 30 and 36 GHz are ki = 0.078ŷ

and k = 0.078ŷ + 0.06ẑ in units of nm−1, respectively. These
numbers excellently agree with the forward three-magnon
confluence formula Eq. (9).

As we stated earlier, one advantage to use the domain-wall
channeled spin wave is its economic energy consumption. To
demonstrate this, we compute the driving powers to excite
both the impinging and the bound waves. The instantaneous
power is written as Pi,b(t) = − ∫

Vi,b
M · ḣi,b(t)dr with Vi(b) the

volume of the ferromagnet covered by microwave sources (as
shown in Fig. 5) to generate the impinging (bound) waves.
Its time average as functions of both the field amplitude and
the frequency is plotted in Fig. 6. In the calculations, we open
both microwave sources to mimic the situation of detection.
We find that the mean power to excite bound spin waves is
two orders of magnitude smaller than that needed to generate
the impinging waves. As an example, Pi = 86 nW has to be
consumed to excite the impinging wave, while Pb is 0.89 nW
only to generate the bound wave investigated in Fig. 5.

Up to now, signals associated with the three-magnon split-
ting process, however, did not appear yet. According to the
criterion (14), we expect the emergence of stimulated splittings
when the incident frequency ωi/2π is higher than 32.5 GHz
under a fixed ωb/2π = 6 GHz. We therefore systematically
increase the frequency of the incident wave from 30 to 38 GHz
in the simulations. Numerical results are shown in Figs. 7(a)–
7(f), from which we observe a new peak (with FFT amplitude
larger than 3 × 10−4) emerging in the low frequency side when
the incident wave frequency is no less than 32 GHz, besides
the main peak due to the incident wave and the peak in the
high frequency side because of the three-magnon confluence
process discussed above. The threshold frequency obtained
numerically is consistent with the theoretical prediction (14)
with a discrepancy less than 1.5%. The distance from the new
peak to the main peak is again exactly the frequency of the
bound mode. We have interpreted this in terms of a stimulated
three-magnon splitting. We would like to remark that the small
peak at 25 GHz in Fig. 7(a) was excluded from the splitting
process, because the FFT amplitude is too weak on the one
hand and the corresponding momentum violates the splitting
solution (15) on the other hand (see below). We attribute it to
higher order spin-wave processes. To provide more evidences,

094421-5



ZHANG, WANG, CAO, YAN, AND WANG PHYSICAL REVIEW B 97, 094421 (2018)

FIG. 7. Temporal FFT spectrum analysis for six different incident
wave frequencies. (a) ωi/2π = 31 GHz. (b) ωi/2π = 32 GHz. (c)
ωi/2π = 33 GHz. (d) ωi/2π = 34 GHz. (e) ωi/2π = 36 GHz. (f)
ωi/2π = 38 GHz.

we do the spatial FFT spectrum analysis for the case ωi/2π =
34 GHz. Numerical results are shown in Figs. 8(a)– 8(c).
The obtained wave vector at 28 GHz perfectly fits Eq. (15).
Spatial FFT analysis on other frequencies ωi/2π = 32,33,36,

and 38 GHz (except ωi/2π = 31 GHz) supports the same
conclusion.

In the above calculations, we have studied the three-magnon
events under fixed microwave fields, while it is not clear
how the nonlinear processes are modulated by the strength
of driving fields. To this end, we systematically calculate the
spatial FFT amplitude as functions of hi and hb, under fixed
input frequencies ωi/2π = 34 GHz and ωb/2π = 6 GHz.
Figure 9(a) shows the hi dependence of the spatial FFT
amplitudes by fixing hb = 100 mT. We find that the confluence
amplitude increases with increasing field. The amplitude of the
splitting process shows a similar field dependence when the
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28GHz 34GHz 40GHz(a) (b) (c)

FIG. 8. Spatial FFT spectrum analysis for the three peaks at (a)
28 GHz, (b) 34 GHz, and (c) 40 GHz, observed in Fig. 7(d) where
the incident magnon frequency is ωi/2π = 34 GHz and the bound
magnon frequency is ωb/2π = 6 GHz.
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FIG. 9. Amplitude of spatial FFT as a function of (a) hi by keeping
hb = 100 mT, and (b) hb with fixed hi = 100 mT, for the confluence
peak at 40 GHz (red circles) and the splitting peak at 28 GHz (black
squares) observed in Fig. 8. Other parameters are ωi/2π = 34 GHz
and ωb/2π = 6 GHz.

field is below 100 mT. These results are consistent with our
analysis, particularly in the very low field region where we have
the FFT amplitude ∝√

I and the field strength ∝√
n, with I the

intensity of the nonlinear process and n the magnon number
discussed in Secs. II A and II B. The splitting amplitude then
decreases with a dip at 160 mT and increases again with respect
to hi , which may involve higher-order nonlinear processes.
The hb dependence of the spatial FFT amplitudes is plotted
in Fig. 9(b), in which we keep hi = 100 mT. It shows that
the amplitude of the confluence (stimulated splitting) process
monotonically increases with the driving field hb until 110 mT
(130 mT) and decreases subsequently, which indeed supports
the view that the presence of bounded mode stimulates a
significant enhancement of the three-magnon splittings.

Before concluding this article, we discuss the effect from
the magnonic spin transfer torque [8] which was not addressed
in the above analysis. In the micromagnetic simulations, we
indeed observed a spin-wave driven domain-wall propagation
to the left domain (not shown), with a velocity VDW ≈
0.84–1.59 ms−1 for all incident frequencies considered in the
numerical calculations. This finite domain wall velocity could
result in a violation of the energy conservation used in Eqs. (7)
and (11), with a value qVDW ≈ 0.04–0.1 GHz smaller than the
frequency resolution of FFT.

IV. CONCLUSION

To summarize, we theoretically address the interaction
between propagating spin-wave modes and localized modes
in inhomogeneous magnetization textures, and propose a
scheme to eavesdrop on the spin-wave spectrum confined
in the domain-wall nanochannel via nonlinear three-magnon
processes. The three-magnon confluence process is routine,
while the three-magnon splitting is highly nontrivial. We
uncover a stimulated three-magnon splitting effect, assisted
by the bounded magnon moving in the wall channel. Our
theoretical analysis shows that, once knowing the information
of injection wave in one magnetic domain and the emerging
modes in the opposite domain, we are able to uniquely infer
the spectrum of the spin wave in the nanochannel formed by
the domain wall. Micromagnetic simulations agree excellently
with analytical formulas. Our results expose an information
security issue to the magnonics community by demonstrating
a novel nonlocal method to detect the channeled spin waves.
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APPENDIX

We derive the magnon-magnon interaction in inhomoge-
neous magnetization textures by starting with the following
Hamiltonian:

H =
∫

dr
{

A

M2
s

(∇M)2 − D

M2
s

(M · n)2

}
, (A1)

where M is the magnetization, A is the exchange constant,
D is the anisotropy constant, and n is the unit vector along
the anisotropy axis (the z axis). We consider small oscil-
lations of the magnetization against the background of a
classical spin texture. To this end, we represent M in the form
M0(r,t) + s(r,t), where M0(r,t) is the background magneti-
zation distribution, and s corresponds to the small oscillations
of the magnetization against M0. For simplicity, we do not
consider the case of a time-dependent magnetization texture.
So, M0(r,t) = M0(r). It is convenient to introduce a new
coordinate system (shown in Fig. 10) in which the axis of
quantization e3 for s coincides with the equilibrium direction

1

2

3

FIG. 10. Cartesian coordinates in the laboratory and local frames.

M0(r):⎛
⎝e1

e2

e3

⎞
⎠ =

⎛
⎝ sin φ − cos φ 0

cos θ cos φ cos θ sin φ − sin θ

sin θ cos φ sin θ sin φ cos θ

⎞
⎠

⎛
⎝ex

ey

ez

⎞
⎠, (A2)

In this system M03 = M0,M01 = M02 = 0; the nonuniform
magnetization distribution corresponding to the domain wall
is described by the angles θ (r) and φ(r). We thus have

Mx = M1 sin φ + M2 cos θ cos φ + M3 sin θ cos φ,

My = −M1 cos φ + M2 cos θ sin φ + M3 sin θ sin φ,

Mz = −M2 sin θ + M3 cos θ, (A3)

where M1 = s1,M2 = s2, and M3 = M0 + s3.

Then, we obtain the expression of the exchange energy

A

M2
s

(∇M)2 = A

M2
s

[(∇M1)2 + (∇M2)2 + (∇M3)2] + A

M2
s

(∇θ )2[(M2)2 + (M3)2]

+ A

M2
s

(∇φ)2[(M1)2 + (M2 cos θ + M3 sin θ )2] + 2A

M2
s

(∇θ )(∇φ)M1(M3 cos θ − M2 sin θ )

+ 2A

M2
s

(∇φ)[sin θ (M1∇M3 − M3∇M1) + cos θ (M1∇M2 − M2∇M1)]

+ 2A

M2
s

(∇θ )(M3∇M2 − M2∇M3), (A4)

the anisotropy energy

− D

M2
s

(M · n)2 = − D

M2
s

(M3 cos θ − M2 sin θ )2, (A5)

and finally the total energy

H =
∫

dr
{

A

M2
s

(∇M)2 − D

M2
s

(M · n)2

}

=
∫

dr
{ ∑

i

A

M2
s

(∇Mi)
2 + A

M2
s

(∇θ )2[(M2)2 + (M3)2] + A

M2
s

(∇φ)2[(M1)2 + (M2 cos θ + M3 sin θ )2]

+ 2A

M2
s

(∇θ )(∇φ)M1(M3 cos θ − M2 sin θ ) + 2A

M2
s

∇θ (M3∇M2 − M2∇M3)

+ 2A

M2
s

∇φ[sin θ (M1∇M3 − M3∇M1) + cos θ (M1∇M2 − M2∇M1)] − D

M2
s

(M3 cos θ − M2 sin θ )2

}
. (A6)
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We shall express the components of s(r,t) in the rotated coordinates in terms of the Holstein-Primakoff operators a(r) and a+(r):

s+ = s1 + is2 = 2
√

μBMs

(
1 − μBa+a

Ms

)1/2

a,

s− = s1 − is2 = 2
√

μBMsa
+
(

1 − μBa+a

Ms

)1/2

,

s3 = −2μBa+a, (A7)

where μB is the Bohr magneton. The operators a(r) and a+(r) satisfy the Bose commutation relations

[a(r),a+(r′)] = δ(r − r′), (A8)

and are the annihilation and creation operators of spin waves. We then have

M1 = μB

√
2S

[(
1 − a+a

2S

)1/2

a + a+
(

1 − a+a

2S

)1/2
]
,

M2 = −iμB

√
2S

[(
1 − a+a

2S

)1/2

a − a+
(

1 − a+a

2S

)1/2
]
,

M3 = 2μB(S − a+a), (A9)

with S = Ms/(2μB) the spin of an atom. Substituting Eqs. (A9) into the total energy (A6), we obtain a formal expansion of the
resulting bosonic Hamiltonian with a small parameter 1/S:

H = S2Eclass + SH (2) +
√

SH
(3)
int + S0H

(4)
int + · · · . (A10)

The first term Eclass corresponds to the classical energy of the ferromagnet,

S2Eclass =
∫

dr{A[(∇θ )2 + sin2 θ (∇φ)2] + D sin2 θ}. (A11)

The second term H (2) in (A10) is quadratic in boson operators a(r) and a+(r), and describes the linear spin-wave theory on top
of inhomogeneous magnetization textures. The expression of H (2) is presented in the following:

SH (2) = 2S−1
∫

dr
{
A(∇a+∇a) + a+a

[
D − A

2
(∇θ )2 − 3D

2
sin2 θ + A

2
(∇φ)2(1 + cos2 θ )

]

+ 1

4
(a+a+ + aa)[(A(∇φ)2 + D) sin2 θ − A(∇θ )2] + iA

2
[(−a+a+ + aa)∇θ∇φ + (−a+∇a + a∇a+) cos θ∇φ]

}
,

(A12)

which is applicable to arbitrary inhomogeneous magnetization textures. The forms of H
(3)
int and H

(4)
int are very complicated for

general magnetization textures. We thus consider a Néel domain wall structure with the magnetization profile described by Eq. (2)
in the main text, and obtain

SH (2) = 2S−1D

∫
dr

{
w2(∇a+)(∇a) +

[
1 − 2

cosh2
(

y−Y

w

)
]
a+a

}
,

√
SH

(3)
int = i2

√
2S−3/2D

∫
dr

{
wa+a

d

dy

[
a+ − a

cosh
(

y−Y

w

)
]}

,

S0H
(4)
int = S−2D

∫
dra+a

{
w2(∇a+)(∇a) +

[
1 − 2

cosh2
(

y−Y

w

)
]
a+a

}
,

... (A13)

[1] F. Bloch, Zur theorie des ferromagnetismus, Z. Phys. 61, 206
(1930).

[2] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Magnonics,
J. Phys. D: Appl. Phys. 43, 264001 (2010).

094421-8

https://doi.org/10.1007/BF01339661
https://doi.org/10.1007/BF01339661
https://doi.org/10.1007/BF01339661
https://doi.org/10.1007/BF01339661
https://doi.org/10.1088/0022-3727/43/26/264001
https://doi.org/10.1088/0022-3727/43/26/264001
https://doi.org/10.1088/0022-3727/43/26/264001
https://doi.org/10.1088/0022-3727/43/26/264001


EAVESDROPPING ON SPIN WAVES INSIDE THE … PHYSICAL REVIEW B 97, 094421 (2018)

[3] B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, The building
blocks of magnonics, Phys. Rep. 507, 107 (2011).

[4] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Magnon spintronics, Nat. Phys. 11, 453 (2015).

[5] K. Vogt et al., Spin waves turning a corner, Appl. Phys. Lett.
101, 042410 (2012).

[6] A. V. Chumak, A. A. Serga, and B. Hillebrands, Magnon
transistor for all-magnon data processing, Nat. Commun. 5, 4700
(2014).

[7] K. Vogt et al., Realization of a spin-wave multiplexer,
Nat. Commun. 5, 3727 (2014).

[8] P. Yan, X. S. Wang, and X. R. Wang, All-Magnonic Spin Transfer
Torque and Domain Wall Propagation, Phys. Rev. Lett. 107,
177207 (2011).

[9] J. Iwasaki, A. J. Beekman, and N. Nagaosa, Theory of magnon-
skyrmion scattering in chiral magnets, Phys. Rev. B 89, 064412
(2014).

[10] C. Schütte and M. Garst, Magnon-skyrmion scattering in chiral
magnets, Phys. Rev. B 90, 094423 (2014).

[11] S. Urazhdin et al., Nanomagnonic devices based on the spin-
transfer torque, Nat. Nanotech. 9, 509 (2014).

[12] K. Wagner, A. Kàkay, K. Schultheiss, A. Henschke, T. Se-
bastian, and H. Schultheiss, Magnetic domain walls as re-
configurable spin-wave nanochannels, Nat. Nanotech. 11, 432
(2016).

[13] H. Schultheiss, X. Janssens, M. vanKampen, F. Ciubotaru,
S. J. Hermsdoerfer, B. Obry, A. Laraoui, A. A. Serga, L.
Lagae, A. N. Slavin, B. Leven, and B. Hillebrands, Di-
rect Current Control of Three Magnon Scattering Processes
in Spin-Valve Nanocontacts, Phys. Rev. Lett. 103, 157202
(2009).

[14] H. Suhl, Subsidiary Absorption peaks in ferromagnetic reso-
nance at high signal levels, Phys. Rev. 101, 1437 (1956).

[15] H. Kurebayashi, O. Dzyapko, V. E. Demidov, D. Fang, A. J.
Ferguson, and S. O. Demokritov, Controlled enhancement of
spin-current emission by three-magnon splitting, Nat. Mater. 10,
660 (2011).

[16] R. N. Costa Filho, M. G. Cottam, and G. A. Farias, Microscopic
theory of dipole-exchange spin waves in ferromagnetic films:
Linear and nonlinear processes, Phys. Rev. B 62, 6545 (2000).

[17] C. L. Ordóñez-Romero, B. A. Kalinikos, P. Krivosik, W. Tong, P.
Kabos, and C. E. Patton, Three-magnon splitting and confluence
processes for spin-wave excitations in yttrium iron garnet films:
Wave vector selective Brillouin light scattering measurements
and analysis, Phys. Rev. B 79, 144428 (2009).

[18] H. Schultheiss, K. Vogt, and B. Hillebrands, Direct observation
of nonlinear four-magnon scattering in spin-wave microcon-
duits, Phys. Rev. B 86, 054414 (2012).

[19] D. N. Aristov and P. G. Matveeva, Stability of a skyrmion and
interaction of magnons, Phys. Rev. B 94, 214425 (2016).

[20] N. L. Schryer and L. R. Walker, The motion of 180◦ domain
walls in uniform dc magnetic fields, J. Appl. Phys. 45, 5406
(1974).

[21] C. Bayer, H. Schultheiss, B. Hillebrands, and R. L. Stamps,
Phase shift of spin waves traveling through a 180◦ Bloch-domain
wall, IEEE Trans. Magn. 41, 3094 (2005).

[22] J. Lan, W. Yu, R. Wu, and J. Xiao, Spin-Wave Diode, Phys. Rev.
X 5, 041049 (2015).

[23] F. Garcia-Sanchez, P. Borys, R. Soucaille, J.-P. Adam, R. L.
Stamps, and J.-V. Kim, Narrow Magnonic Waveguides Based
on Domain Walls, Phys. Rev. Lett. 114, 247206 (2015).

[24] A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin
Waves (North-Holland, Amsterdam, 1968), pp. 259–262.

[25] A. Einstein, Zur quantentheorie der strahlung, Physikalische
Zeitschrift 18, 121 (1917).

[26] A. V. Gaponov, Instability of a system of excited oscillators
with respect to electromagnetic perturbations, Sov. Phys. JETP
12, 232 (1961).

[27] V. M. Fain, A quantum generalization of the expression for
energy dissipation, Sov. Phys. JETP 23, 882 (1966).

[28] B. Fain and P. W. Milonni, Classical stimulated emission, J. Opt.
Soc. Am. B 4, 78 (1987).

[29] M. Cray, M. L. Shih, and P. W. Milonni, Stimulated emission,
absorption, and interference, Am. J. Phys. 50, 1016 (1982).

[30] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-
Sanchez, and B. Van Waeyenberge, The design and verification
of MuMax3, AIP Adv. 4, 107133 (2014).

[31] J. Yang, M.-W. Yoo, and S.-K. Kim, Spin-wave-driven high-
speed domain-wall motions in soft magnetic nanotubes, J. Appl.
Phys. 118, 163902 (2015).

094421-9

https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1063/1.4738887
https://doi.org/10.1063/1.4738887
https://doi.org/10.1063/1.4738887
https://doi.org/10.1063/1.4738887
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1038/ncomms4727
https://doi.org/10.1038/ncomms4727
https://doi.org/10.1038/ncomms4727
https://doi.org/10.1038/ncomms4727
https://doi.org/10.1103/PhysRevLett.107.177207
https://doi.org/10.1103/PhysRevLett.107.177207
https://doi.org/10.1103/PhysRevLett.107.177207
https://doi.org/10.1103/PhysRevLett.107.177207
https://doi.org/10.1103/PhysRevB.89.064412
https://doi.org/10.1103/PhysRevB.89.064412
https://doi.org/10.1103/PhysRevB.89.064412
https://doi.org/10.1103/PhysRevB.89.064412
https://doi.org/10.1103/PhysRevB.90.094423
https://doi.org/10.1103/PhysRevB.90.094423
https://doi.org/10.1103/PhysRevB.90.094423
https://doi.org/10.1103/PhysRevB.90.094423
https://doi.org/10.1038/nnano.2014.88
https://doi.org/10.1038/nnano.2014.88
https://doi.org/10.1038/nnano.2014.88
https://doi.org/10.1038/nnano.2014.88
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1038/nnano.2015.339
https://doi.org/10.1103/PhysRevLett.103.157202
https://doi.org/10.1103/PhysRevLett.103.157202
https://doi.org/10.1103/PhysRevLett.103.157202
https://doi.org/10.1103/PhysRevLett.103.157202
https://doi.org/10.1103/PhysRev.101.1437
https://doi.org/10.1103/PhysRev.101.1437
https://doi.org/10.1103/PhysRev.101.1437
https://doi.org/10.1103/PhysRev.101.1437
https://doi.org/10.1038/nmat3053
https://doi.org/10.1038/nmat3053
https://doi.org/10.1038/nmat3053
https://doi.org/10.1038/nmat3053
https://doi.org/10.1103/PhysRevB.62.6545
https://doi.org/10.1103/PhysRevB.62.6545
https://doi.org/10.1103/PhysRevB.62.6545
https://doi.org/10.1103/PhysRevB.62.6545
https://doi.org/10.1103/PhysRevB.79.144428
https://doi.org/10.1103/PhysRevB.79.144428
https://doi.org/10.1103/PhysRevB.79.144428
https://doi.org/10.1103/PhysRevB.79.144428
https://doi.org/10.1103/PhysRevB.86.054414
https://doi.org/10.1103/PhysRevB.86.054414
https://doi.org/10.1103/PhysRevB.86.054414
https://doi.org/10.1103/PhysRevB.86.054414
https://doi.org/10.1103/PhysRevB.94.214425
https://doi.org/10.1103/PhysRevB.94.214425
https://doi.org/10.1103/PhysRevB.94.214425
https://doi.org/10.1103/PhysRevB.94.214425
https://doi.org/10.1063/1.1663252
https://doi.org/10.1063/1.1663252
https://doi.org/10.1063/1.1663252
https://doi.org/10.1063/1.1663252
https://doi.org/10.1109/TMAG.2005.855233
https://doi.org/10.1109/TMAG.2005.855233
https://doi.org/10.1109/TMAG.2005.855233
https://doi.org/10.1109/TMAG.2005.855233
https://doi.org/10.1103/PhysRevX.5.041049
https://doi.org/10.1103/PhysRevX.5.041049
https://doi.org/10.1103/PhysRevX.5.041049
https://doi.org/10.1103/PhysRevX.5.041049
https://doi.org/10.1103/PhysRevLett.114.247206
https://doi.org/10.1103/PhysRevLett.114.247206
https://doi.org/10.1103/PhysRevLett.114.247206
https://doi.org/10.1103/PhysRevLett.114.247206
https://doi.org/10.1364/JOSAB.4.000078
https://doi.org/10.1364/JOSAB.4.000078
https://doi.org/10.1364/JOSAB.4.000078
https://doi.org/10.1364/JOSAB.4.000078
https://doi.org/10.1119/1.12956
https://doi.org/10.1119/1.12956
https://doi.org/10.1119/1.12956
https://doi.org/10.1119/1.12956
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4933398
https://doi.org/10.1063/1.4933398
https://doi.org/10.1063/1.4933398
https://doi.org/10.1063/1.4933398



