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Dzyaloshinskii-Moriya interaction in the presence of Rashba and Dresselhaus spin-orbit coupling
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Chiral order in magnetic structures is currently an area of considerable interest and leads to skyrmion structures
and domain walls with certain chirality. The chiral structure originates from the Dzyaloshinskii-Moriya interaction
caused by broken inversion symmetry and the spin-orbit interaction. In addition to the Rashba or Dresselhaus
interactions, there may also exist substantial spin polarization in magnetic thin films. Here, we study the exchange
interaction between two localized magnetic moments in the spin-polarized electron gas with both Rashba and
Dresselhaus spin-orbit interaction present. Analytical expressions are found in certain limits in addition to what
is known in the literature. The stability of the Bloch and Néel domain walls in magnetic thin films is discussed in

light of our results.
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I. INTRODUCTION

The indirect exchange interaction between two localized
magnetic moments, known as the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [1-3], has been studied for a long
tirge. Ihis interaction, which has the Heisenberg form of E =
J S - S,, was originally developed for systems without any
broken symmetry or spin-orbit coupling (SOC). Dzyaloshin-
skii and Moriya [4,5] showed that in addition to this scalar
interaction, vector and tensor interactions of the types D - S; X

5’2 and § 1 F -52, respectively, can result in a solid, where both
the inversion symmetry is broken and the SOC is present.

The Dzyaloshinskii-Moriya interaction (DMI) is of consid-
erable current interest because of the chiral magnetic states that
it can produce, which are an important ingredient, for example,
in the formation of skyrmion states as well as the helical
spin structures in magnetic bilayers. Recent experiments have
shown that the nature of the magnetic domain walls in ultrathin
magnetic films depends on the DMI, and furthermore, they can
be switched from one type to another via interface engineering
[6]. Similarly, another recent experiment has shown that the
skyrmion state can be tuned by altering the DMI by varying
the magnetic layer compositions [7].

The Rashba [8] and Dresselhaus [9] SOC terms, present due
to the surface and bulk inversion asymmetries, respectively,
lead in turn to the DMI, which is the subject of this paper.
Recently, experimenters [6,7,10-13] were able to tune the
strength of the DMI using quantum well structures and/or gate
voltage, which leads in turn to the tuning of the magnetic
exchange interactions between neighboring spins. Interest-
ingly, Chen et al. have shown that by tuning the DMI, the
chirality of the magnetic domain walls can be altered [6].
Another motivation for the present work is the Dutta-Das spin
transistor [14], where the strength of the Rashba interaction
can be controlled by a gate voltage, with potential applications
in spintronics.
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There were several earlier studies of the DMI in the presence
of the Rashba and Dresselhaus SOCs, usually when either one
or the other is present. In an earlier work, Imamura et al. [15]
studied the DMI in the presence of the Rashba term, followed
by Lyu et al. [11] and Mross and Johannesson [16]. Chesi and
Loss [17] included the Dresselhaus term and obtained the DMI
in certain limits. All of these studies are for a nonmagnetic
host material, so that the host electrons are not spin polarized.
For the case where spin polarization is present, as in magnetic
thin-film structures, very little work has been done, and to our
knowledge, just two papers have treated this case and only in
the presence of the Rashba term [18,19]. In this paper, we study
the DMI in a two-dimensional electron gas (2DEG) with both
Rashba and Dresselhaus spin-orbit couplings present along
with spin polarization of the electron gas.

II. FORMALISM

We consider a 2D spin-polarized electron gas in the presence
of Rashba and Dresselhaus spin-orbit interaction, which is
relevant, for example, for a magnetic thin film with bulk
and/or surface broken inversion symmetries. The broken bulk
inversion symmetry produces the Dresselhaus term, while the
surface asymmetry produces the Rashba term, and recently,
it was possible [12] to tune the relative magnitudes of the
two terms experimentally in semiconductor quantum wells
via interface engineering. With both Rashba and Dresselhaus
terms present, the system is described by the Hamiltonian

nk?
H = ——o00 + alkyoy — ky0y) + Blkyo, — kyoy) + Ao,

2m
(D

where « and B are, respectively, the strengths of the Rashba
and Dresselhaus terms, o; are the Pauli matrices, oy is the unit
2 X 2 matrix, k is the electron momentum, and A describes the
Zeeman spin splitting of the electron states.

General formalism. We are interested in the magnetic
interaction between two localized moments, S; and S, which
are embedded in the host electrons and treated as classical
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spins. The localized moments interact with the host electrons
via the following contact interaction:

Vi(F) = —A8(GF — R))S; - 3, )

where I_él =0 and 132 — R are the positions of the two
moments and § = /5 /2.

The magnetic interaction is conveniently expressed as inte-
grals over the expansion coefficients of the Green’s functions
(GFs) in terms of the Dirac matrices. Below we derive these
results, which are true for any general case irrespective of the
dimensionality of the system. _

The interaction energy E(R) between the two moments is
given by the well-known expression [20]

N _)\’2 Erp N o
E(R) = — Im / Tr[G(O,R,E) S, - 5

x G(R,0,E)S; - 5]dE, (3)

where G(E) = (E + in — H)~!, with n — 0%, is the retarded
GF and Ep is the Fermi energy. The Zeeman term in Eq. (1)
introduces a net spin polarization in the electron gas for A # 0,
leading to a constant shift in energy given by

AR
Eo === (812 + $22)(np —ny). “

The spin polarization n4 — n depends on the system, and for
the 2DEG under study here, it is easily shown to be ny —
n, =4w2m)' 2 (EF + A)V? — (EF — A)Y?], e.g., from
the wave functions given later in Eq. (13). Including this energy
shift, the total energy becomes

E = Ey+ E(R)+ O(}Y). (5)

The GFs in Eq. (3) are 2 x 2 matrices in spin space with
the matrix elements given by

nd W;U(ﬂ,al)l/fgu(?zﬁz)

Gaa _'s_},E = 6

(L0 E) =) R (6)
kv

where G0, (F1,72,E) = (F101|G(E)|h00), Y7, (F0) =

(Fo |lzv), and kv labels the eigenstates of the system.

It is convenient to write the GFs in terms of the Pauli
matrices and express the interaction energy (3) in terms of
the trace of products of the Pauli matrices. We thus have

3
G(R,0,E) = gooo + Y _ i 01,
i=1
3
G(0,R,E) = gyoo + Y _ &} 01, )

i=1
where the two GFs are different if we do not have inversion
symmetry, which is true for the present case. Using the trace
identities
TI'(O','O’j) = 285],
Tr(o;0j0%) = 2igiji, (®)
Tr(o;00101) = 2(8;j0k — SixSj1 + 8i1d k),

where §;; are the Kronecker deltas and ¢;; are the Levi-
Civita symbols, it is straightforward to evaluate the interaction

energy (3), which yields
ER) =JS -5 4+D-5 x5 +8-T -5 9

Defining vectors g = Zle giiandg' = Zle g/i, the expres-
sions for the RKKY and the Dzyaloshinskii-Moriya interaction
constants are written as

_)\‘2 h2 Er .
J = / Im (gyg0 — &' - §)dE,

2 0

o _)\42 hz Ep

D = f Re (g) & — 80 §)dE, (10)
2 oo

PN _ )\'2 h2 Ep

r / Im (g '+ g g)dE.
2 oo

The problem thus boils down to the calculation of the GF

coefficients (g9, 8. g(.&') for the given Hamiltonian.

These equations represent a central result of this paper. They
are valid quite generally, i.e., for any system with a 2 x 2 spin
Hamiltonian matrix, irrespective of the dimensionality of the
system.

Note that if the inversion symmetry is present, e.g., when
the Rashba and Dresselhaus terms « and 8 are zero, we have
G(R,0,E) = G(0O,R,E), so that go = g{, and g = g'. In this
case, Eq. (10) immediately leads to the well-known result
D =0, i.e., the absence of the DM interaction for a system
with inversion symmetry.

Simplified expressions for the 2DEG. For the 2DEG de-
scribed by the Hamiltonian (1), the calculation becomes a bit
simplified due to the fact that

g =28, & =-8, & =8 & =&:- (11

This can be easily proved. To show this, we find the eigenvalues
of Hamiltonian (1), which read

. h2 2
ey (k) = S (—=D"[A? + («® + B% + 2af sin 20)k>]'/2,
m

12)

where v = 1,2 is the band index and 6 is the polar angle in
k space, 0 = tan’l(ky / ky), and the corresponding eigenfunc-
tions are

)

> a

lkv) = ( k;>,
Y

= Ag,(1+ 4z, 1H7"72,

)
ey
al =+, )72 (13)

A i[A + (=1)"/A2 + (a2 + B2 + 2apB sin 20)k?]
kv ™ k(ael® +ip e=i?) ’

The GFs, G(ﬁ,O,E) and G(O,ﬁ,E), can be obtained from
Eq. (6), which becomes

ik-(F1—T2) ,01 , 02%
1 e az'a
Goo,(F1 P2, E) = — ) ——— K (14
0 (F1.72, E) A; T (14)
with A being the area of the 2D space. From Egs. (12) and (13)
and the fact that changing k to —k is equivalent to changing
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the polar angle 6 to 6 + 7, one readily finds the following
equalities:
7y — _r T __ 1 V4
ev(k)=ey(=k), a; =—a ;. a =a;. (15
Using these results, it is easy to see that if we interchange i
and 7, and change the dummy index k to —k in Eq. (14), the

spin-diagonal part of the GF remains unchanged, while the
off-diagonal part changes sign, viz.,

GGU(Flv?Z’E) = GGU(?Z’;:lsE)’

L. - (16)
Go’a’(rlersE) = _Gaa’(rZJ"l»E)-

Note that this is not a general result but is valid only for specific
spin texture of the wave function, and the conditions Eq. (15)
must be satisfied under momentum inversion. Setting 7/, = R
and 7; = 0 and substituting this equation into Eq. (7), we
readily find our desired result for the GF coefficients, Eq. (11).

The expressions for the RKKY and the Dzyaloshinskii-
Moriya interaction constants, Eq. (10), simplify to

Er
J:—A/ Im (gg—i—glz—i—g%—g%) dE, a7

o0

D = (D,,D,,0), with

- Er
Dx = —)\.f Re(2g0g1)dE,

Er
D, = —X/ Re(2g0g2)dE, (18)
—0o0
and finally,
PN Yxx yxy 0
r=|»: v 0], (19)
O 0 )/ZZ
with

Er
Vex = X/ Im(2g7) dE,

Er
Yyy = X/ Im(2g3) dE,
e (20)
Vor = —)\/ Im(2g3) dE,

oo

Er
Vay = Vyx = )L/ Im(Zgng) dE,
—0o0
where A = (27)~" A2h%. Note that the GF coefficients gy and g;
are functions of R and E, being expansions of G(R,0,E). In
the next sections, we use expressions (17)—(20) to evaluate
the magnetic interactions in the 2DEG described by the
Hamiltonian (1).

II1. 2DEG WITH RASHBA SPIN-ORBIT COUPLING

We consider first a 2DEG where only the Rashba interac-
tion is present, with the remaining interactions (Zeeman and
Dresselhaus) being zero (8 = A = 0). This is an important
case found in many situations such as the semiconductor

FIG. 1. Spin eigenfunctions for the 2DEG with Rashba (left) and
Dresselhaus (right) spin-orbit coupling.

quantum wells [21] and oxide surfaces [22]. Diagonalizing
the Hamiltonian (1) for this case
iake™
I @1

2K
H(k) — ‘2m y
—iake' e

we have the eigenvalues and the eigenfunctions: g =

W2k%/2m + ak, agv = %(—1)”6”'0, and agu = % for bands
v =1and 2, and 6 = tan~'(k,/k,), again, is the polar angle
in momentum space. The spin eigenfunctions are indicated in

Fig. 1. From Eq. (6), the GF matrix elements G 5,/ (71,72, E) are

Gir=G, = Sk 1
=0 = E e e )

i oL 1 1
Gi? - _ ezk~(r|—r2)el<9 — ),
2A &+ &

where
er = E+ipn— (B*k*/2m + ak). (23)

The summations can be performed to yield the GF ex-
pansion coefficients g; by changing the summations into
integrations and using the Jacobi-Anger expansion [23]

oo
e F T = Jok[Fy — Fal) + 2 ) i"Ju(klF1 — 7al) cos(ng),
n=1

(24)

where J,,(x) is the nth-order Bessel function and ¢ is the angle
between r; — 7, and k. Since we have the rotational symmetry
in the plane [the Rashba term can be written as (k x 2) - 7, so
that 2 is the only unique axis], we can choose k, along 7| — 7»
without any loss of generality. Thus ¢ = 6, and performing the
angular integrations in Eq. (22) yields the GFs in terms of the
Bessel functions, viz.,

- o 1 *° .. 1 1
G‘“’(rl””%E):E/ kfo(k|”1—r2|)(—+—>,
0

[N E_

- 1 [ L. 1 1
G¢¢(F1,r2,E)=—4—n kJi(k|ry — ra]) )
0 + -

G 1 (F1,72,E) = =G4 (F1,72,E). 25)
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The diagonal elements are the same, while the off-diagonal
elements differ by a sign, which leads to the form G(R,0,E) =
8000 + g202, with g; and g3 both being zero. One can simi-
larly evaluate G(0, R, E) = gooo — g202, so that G(R 0,F) #
G(0, R.E ), a result consistent with the broken inversion sym-
metry. The momentum integrations in Eq. (25), after some
algebra, yield the coefficients

] E
% <f(05 )+05H(1)
4h

80 = — { Lf(a, E)+Ot]R}

flE)
%Hg”{%[ﬂa,m—am}),
_% f”{%[f(a,E)—a]R}), (26)

where f(o,E) =+va’+ Z-F and H{"(x) are the Hankel
functions of the first kind and order n. N

The magnetic interactions J, 5, and I" are obtained from
Egs. (17)—(19) and (26), and in light of the fact that only go and
&> are nonzero, this in turn makes only J, Dy, and y,, nonzero,
with all other components being zero. These can be computed
numerically in general, but for specific limits, approximate
results may be obtained analytically, which we explore below.

It is straightforward to take the limit of the Rashba SOC
going to zero (¢ = 0) in Eq. (26) and obtain the well-known re-
sults for J for the standard electron gas in two dimensions [24].

Itis instructive to show explicitly the rotational invariance of
the interzgction energy E(R); that is, if we rotate the position of
the spin R as well as Sy, S, about the Z axis, then the energy will
not change, even though the individual interaction parameters
might. This is true only if we have rotational symmetry in the
plane, which is the case fog the Rashba interaction.

To this end, we choose R = 7, — 7| along the direction with
polar angle y in the k,-k, plane and compute the coefficients
gi, which now depend on y. The results, expressed in terms
of the y-independent quantities in Eq. (26), are go(y) = go,
gi1(y) = —gasiny, and g,(y) = g»cosy. Putting these in
Egs. (17)—(20), we find the new interaction coefficients in
terms of the old ones, viz., J(y) = J, Di(y) = —Dysiny,
Dy(y) = Dycosy, yux(¥) = Vyy sin” Ys Yiy(¥) = Vyy cos’y,
and y,,(y) = yyx(¥) = =,y siny cos y, and the rest of the
coefficients are zero. After some matrix multiplications, one
finds from Eq. (9) that the total energy E(R) does not change
under rotation, even though the individual interaction coeffi-
cients do change as just listed above.

A. High-Fermi-energy limit

We consider high Fermi energy (Er >> ma?/k*) and the
long-distance limit for R, so that the argument x of the Hankel
function in Eq. (26) is large, and the asymptotic expansion
becomes

HV(x) 2~ 22 (rx) 2 expli(x — nm/2 — /M. (27)

This is valid for all energy except for E ~ 0, where the
prefactor x makes the limit x H{"'(x) — x'/2, which there-
fore does not contribute much to the energy integrals in

Egs. (17)—(20). With this consideration, the large-x limit can
be used in the entire range of energy E, and Eq. (26) yields in
this limit the results

- [ m b4 D)
g0~ —ifexp|i ﬁf(a,E)R 7 cos(mh “aR),
(28)
@~ fexp [i(%f(a,E)R _ %)] sin(mh 2 R),
where f = m'?[2nh? f(o, E)R]™'/? and we have assumed

f(a,E) > «. Putting these expressions in Egs. (17)-(20), we
immediately find the long-distance behavior

A2m 2ma .
J = ~322R2 cos 2 R | sin(2gr R), 29)
B gn (2 R) s (2qrR) (30)
= sin sin ,
V8n2R? [ r
Am 2mo .
Vyy = e R 1 — cos FR sin(2grR), (31)
where
F = (m*a®/h* + 2mEp /). (32)

This is consistent with the known results in the literature [15].

There are several things to notice from these equations. The
first is that when o = 0, one recovers the limit for the standard
2DEG results [24] for J, and the vector and tensor interactions

D and F become zero. Second, when one takes the small o

limit, one gets the result that J oc D o a, and 1"0( o?,

which indicates the appropriate power-law dependence on the
strength of the SOC «. Finally, note that Eqgs. (29)—(31) show
a beat pattern, which comes from the two different momentum
scales in the problem, viz., the Fermi momentum for the two
bands or their average ¢y and the difference 2ma/h?, which
appear in the equations.

To check the correctness of our approximations (27) and
(28), in Fig. 2, we plot the magnitudes of the magnetic
interactions computed with and without these approximations
[in the latter case Egs. (26) and (17)—(20) are used]. The
similarity of these two curves confirms the approximations
we have used in deriving the long-distance behavior equations
(29)-(31).

B. Low-Fermi-energy limit

We consider now the limit of low Fermi energy (|Ef —
Emin| < | Emin|) and again the long-distance limit. In this case,
the electrons occupy a small circular strip, as indicated in Fig. 3,
which resembles a one-dimensional system. Not surprisingly,
the system shows magnetic interaction characteristics of the
one-dimensional electron gas, as we shall see below. For this
case, it is easy to see that

flo,F) K a. (33)

With this approximation, o can be neglected in the prefactors
f(a,E) £ a appearing in the expressions for gy and g, in
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FIG. 2. Numerical results for the ratios D,/J and y,,/J as
a function of @ (in eVA) in the large-Er and large-R limit.
The points connected by lines indicate the numerical results, while
the smooth lines are analytical results, Egs. (29)—(31). Note from the
same equations that the Fermi energy dependence drops out in the
ratios, and here, R = 7.5 A was used.

Eq. (26) but must be kept in the arguments of the Hankel
functions, which will produce the characteristic oscillations
of the RKKY interactions as a function of R. Once again,
for the long-distance limit, the asymptotic expansion (27) for
Hankel’s functions can be used, leading to the result

mo 1
80 =—l—5 —F———
4h” JmaRe
% {ei( %R+”ﬁ’—fl€ﬂr/4)+iei( %Rf%anM)}’ (34)
mo 1
2= ——
4n* JmaRe
y {ei( 2 R+15 R—37/4) _i %Rf%Rf&TM)}.
(35

maz

In the above equations, ¢ = E + T which measures the
energy with respect to the energy minimum in momentum
space. Equations (17)—(20) then lead to the results in the
low-Fermi-energy limit:

g Xmle (2koR)Si(2A4R) (36)
= ———sin si ,
472R2R 0 k

Energy
A

FIG. 3. Occupied momentum states in the low-E ¢ limit, valid for
cases of both Rashba-only and Dresselhaus-only SOC. The occupied
states form a thin circular strip, resembling a 1D electron gas. We have
defined A, = (k; — k2)/2 and kg = (k; + k»)/2, where ky = ozm/}‘z2
(Rashba) or ky = Bm /h? (Dresselhaus).

by me (2koR)si(2A, R) (37)
= — COS S1 5
Y 4R 0 ¢

2,2

ﬁ[sin(ZkoR) —15iCALR),  (38)
where si(x) = Si(x) — /2, with Si(x) being the well-known
sine integral. Clearly, if « — 0, there are no electrons in the
system, so that the magnetic interactions go to zero. Also,
not surprisingly, the si(x) function appears here, similar to
what happens in the one-dimensional (1D) case [25] since
the Fermi surface forms a thin circular strip, as seen from
Fig. 3. Nevertheless, at large distances si(x) o 1/x, so that
the magnetic interactions still fall off as 1/ R?, the well-known
decay factor for the RKKY interaction for the 2D case [24].

Vyy =

IV. 2DEG WITH DRESSELHAUS SPIN-ORBIT COUPLING

We consider the case when only the Dresselhaus term is
present, so that the Hamiltonian is

k2 i0
H(/?):( PR ) (39)

—if k2
'Bke 2m

which leads to eigenstates with energies &, = k% 2m +
(—=1)V"Bk and the wave functions |l;v) = (agu,agv) =
2712((—=1)"e?,1) for v =1 and 2, respectively. The spin
eigenfunctions are indicated in the right hand part of Fig. 1.
The GF coefficients for the Dresselhaus case can be expressed
in terms of the same for Rashba case to yield

gy =280, 8 =-g. g =g =0, (40)

where in expressions (26) for gg and g», « is to be replaced by
B. Thus the algebra to get the magnetic interactions is the same
as that for the Rashba case, and one finds using Eqs. (17)—(20)
that the magnetic interactions between the two cases are closely
related.

Explicitly, one finds, in the high-Fermi-energy, long-
distance limit, the result

AZm 2mp .
= — g < (T2 R ) sinarR), (41)

- 22 2
D= —x# sin (%fze) sin2grR), (42

Azm 2m,3 .
ey [1 — cos <FR>} sin2grR),  (43)

where gr = (m>B%/h* + 2mEp /%',
Similarly, in the low-Fermi-energy, long-distance limit, we
get

J= Komp sin(2koR)si(2 AL R) (44)
Am2h*R ’
D=4% Mom’p cos(2koR)si(2Ax R) (45)
472KR%R ’
2m2

P [sin(2koR) — 1]si(2Ak R). (46)

Vo = A72RR
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QHlike the case of Rashba interaction in the last section, here,
D is in the X direction, while only the y,, term is nonzero in

<>

the tensor term I".

In writing expression (40), we have, like in the Rashba
case, taken the distance vector R along the k, direction. If
we take R along the polar angle y, then the expressions for
the GF coefficients become g(f’(y) = g(?, gP(y)=gPcosy,
and gP(y) = gPsiny, with the rest being zero. However,
interestingly, energy E (I_é) here also does not depend on the
direction of R in the plane.

V. SPIN-POLARIZED 2DEG WITH NO RASHBA OR
DRESSELHAUS TERM

Another limit in which one can obtain the long-distance
behavior for the magnetic interactions is the limit where there
is spin polarization, but both the Rashba and Dresselhaus SOC
terms are absent, i.e., « = § = 0 but A # 0. This case was
treated in our earlier work [20,26], and we quote the results
here for completeness.

In this case, the Green’s function becomes spin diagonal
with the form

V2
GooF 7 E) = —%KO [—i h’” 7 — la(E + A)},
4

(47)

where + (—) stands for o = 1 ({), Ko is the modified Bessel
function of the second kind, and

o) = {ﬁ if x > 0, 48)

i/]x] ifx <O.

The only terms that survive are J and y,., and the expressions
are

22 m? 2 A
J= 2 {__/ Re[Ko(k R)]Jo(ky R)AE
8mh T Joa

Er
+ f [o(k_R) Yo(ky R) + Yo(k_R) Jo(k+R)]dE},
A

AZm

~ 167 R?

where I'(x) = x2[Jo(x) Yo(x) + J1(x) Y;(x)]. Even though the
time-reversal symmetry is broken, the inversion symmetry is
still present, so that the DM interaction term D = 0. It can be
easily shown that when the spin polarization A = 0, the only
term that survives is J, and the expression becomes the same
as the result for the standard 2DEG [24].

Yz [I'(kp—R) + I'(kp+ RO — J, (49)

VI. MAGNETIC INTERACTIONS IN THE GENERAL CASE

In the general case, when more than one of the three
terms «, B, and A are nonzero, the Green’s functions as well
as the magnetic interactions must be calculated numerically
using Eqgs. (7), (13), (14), and (17)—(20). We present below
some numerical results. A case of particular interest is where
o = and A =0, i.e.,, where the strengths of the Rashba
and the Dresselhaus terms are the same. The system has

FIG. 4. The spin eigenfunctions and the Fermi surface for the case
o = B and A = 0, which consists of two circles with their centers
shifted by the vector Q =(0:,0y) = 24/2ma(1,1). The two bands
are indexed by v = 1 for the outer shell and v = 2 for the inner shell.

SU(2) symmetry [27], and the Fermi surface and the spin
eigenfunctions are shown in Fig. 4.
The expressions for the eigenstates are

er, = B2 2m + (—1)'V2alk, + k| (50)
and
lkv) = i[(—l)””" sgn(k, +k )|¢>+|¢>] (51)
- ﬁ \/E g X y )

where sgn(x) is the sign function. Putting these into Eq. (14)
for the GF, one finds after straightforward calculations the
following results for the GF coefficients:

1 ios 1 1
_ ik-(r1—r2)
=— + :
g0 ZAXE:e (E+m—g’+ E—i—iu—e/)

1 TG 7 ( 1 1 >

— PUAG ) _ ,
82 2ﬁA; E+in—c¢, E+ip—e.

(52)

g =0, g =-g, (53)

where ¢/ = B2 )2m % N 2a(ky + ky). The general equa-

tions for the magnetic interactions (17)—(20) along with

Eq. (53) lead to the results, viz., D, = —D,, Yxx = Vyy»

¥, = 0 in this case, as may be seen from the computed
interactions shown in Fig. 5.

VII. DOMAIN WALL ENERGETICS

As mentioned already, it is increasingly being realized that
the DM interactions have an important effect in determining the
domain wall structures in magnetic materials, particularly for
ultrathin films, where surface and bulk inversion asymmetries
lead to the Rashba and Dresselhaus SOC terms, which in turn
lead to the DM interactions. In an earlier work, Chen et al. [6]
observed the formation of the Néel wall with a definite chirality
in magnetized Ni/Co film, which was surprising since the
Bloch wall usually has alower energy. This was attributed to the
existence of a strong DM interaction in the film. Furthermore,
by interface engineering, they were able to adjust the DM
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FIG. 5. Computed magnetic interactions for equal Rashba and
Dresselhaus SOCs and A =0. Here, Ep =34 eV, a =8 =
0.22eV 1&, distance R is in angstroms, and the magnetic interactions
are in units of 10™* A%m.

interaction and stabilize either the left-handed or the right-
handed Néel walls or nonchiral Bloch walls. In a more recent
experiment, Di et al. [13] were able to directly measure a strong
DM interaction in Pt/Co/Ni thin-film structures using Brillouin
spectroscopy. In addition, the strength of the DM interactions
can be controlled by external means. For example, we have
recently shown from ab initio calculations that the Rashba
SOC can be tuned at the surface by an applied electric field
[22]. Our work below does not refer to any specific material,
but we make a few general observations on the domain wall
energy based on our results in previous sections.

We consider the domain walls in ferromagnetic structures
and the change in the wall energy due to the DM interactions.
As first pointed out by Bloch [28], the domain wall thickness
is determined by a competition between the exchange and the
anisotropy energy. The wall structure, discussed in the seminal
paper [29] by Landau and Lifshitz, is determined by optimizing
the total energy E = [° (A6* — B cos®0) dx, subject to the
boundary conditions 6(—o0) = 0 and 6(co) = 7, where A is
the exchange stiffness, B is the anisotropy constant, 8(x) is the
spin orientation across the domain wall, and 9 =do /dx. The
structure of the wall, obtained by solving the corresponding
Euler-Lagrange equations, is given by

O(x) = 2tan" ! exp(2x/L), (54)

where L = 2(A/B)'/? is the width of the wall and the result
0(x) = /B/Asin6(x) is used later in calculating the domain
wall energy. We assume that the wall thickness does not change

Néel LH

111t D RN A DL
I(JI\U\NK/\L/%«#i
<> L

FIG. 6. Bloch and Néel walls, right (RH) and left (LH) handed.

due to the DM interactions, which is reasonable because the
DM interactions are considerably weaker than the exchange
and anisotropy energies, which determine the width of the
domain wall.

The spin orientations (see Fig. 6) for the Néel and Bloch
walls, Sf;’[‘(x) and S’,ﬁ’L(x), where R (L) refers to the right-
handed (left-handed) wall, are given by

S¥E(x) = cos O(x)z £ sinO(x)%,

. (55)
SHE(x) = cos O(x)z £ sin 6(x)3.

We compute the extra wall energy due to the DM terms for
different walls from the total energy expression (9) and the
wall structure Eq. (54) and by keeping the dominant nearest-
neighbor DM interactions for simplicity. The integrations are
straightforward, leading to the desired result

E]f;,L J Nw 3]/)()( — Yz
=——4+7aD A Wxx — TaN.
52 N, STt (ax = ¥ze) + 4N,
quL J Nw 3)/yy — Vzz
R PR T
(56)

where N,, = L/a is the size of the wall, the upper (lower)
sign in & or F refers to the right- (left-) handed wall, and
the interactions J,D,,D,,y;; are between nearest neighbors.
Comparing the relative energies of the two walls, we get

R.L

8,;,L +7 Dy + C Yrx, 57)

&g = FrD:+c Vyys
where ¢ = 27N, +3(4N,)"" is a constant. The type of
wall that forms in the structure depends on the minimum
of these energies. The result, Eq. (57), clearly shows that
the helicity of the wall simply depends on the sign of the
DM interaction D, while the type of wall (Bloch or Néel)

depends on both the vector and tensor DMI, D and F Since
the DMI is controlled by the strengths of the Rashba and
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Dresselhaus SOCs, these results suggest the possibility of
tailoring the domain wall structures by modifying the Rashba
and Dresselhaus interactions by interface engineering or by
applying an external gate voltage.

VIII. SUMMARY

In summary, we studied the Dzyaloshinskii-Moriya inter-
action in the presence of Rashba and Dresselhaus spin-orbit
coupling for a spin-polarized electron gas and obtained some
general conclusions for domain wall structures in magnetic thin
films. General expressions for the RKKY and DM interactions

J, 5, and F), valid irrespective of the dimensionality of the
system, were obtained as integrals over the Pauli expansion
coefficients of the Green’s function [Eq. (10)].

Using these expressions, we obtained the analytical expres-
sions for the magnetic interactions in the long-distance limit
for specific cases, viz., when only the Rashba or Dresselhaus
interaction is present in both the high- and low-Fermi-energy

limits. Our results agree with the limits that were already
obtained in the literature, viz., the high-Fermi-energy case.
The low-Fermi-energy limit, where the electrons occupy a thin
circular strip in the momentum space, shows 1D-like behavior
for the magnetic interactions.

Finally, we examined the energetics of the Bloch and Néel
domain walls and obtained general expressions that suggest
how the magnetic domain wall structures can be tailored by
controlling the relative strengths of the Rashba and the Dres-
selhaus terms. Such control may be achieved by interface engi-
neering, as has been demonstrated for semiconductor quantum
well structures and/or by the application of a gate voltage.
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