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Characterization of the hyperfine interaction of the excited 5D0 state of Eu3+:Y2SiO5
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We characterize the europium (Eu3+) hyperfine interaction of the excited state (5D0) and determine its effective
spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method
is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field
orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition
probabilities between hyperfine levels for the 7F0 ←→ 5D0 transition. The obtained results provide necessary
information to realize an optical quantum memory scheme which utilizes long spin coherence properties of
151Eu3+:Y2SiO5 material under external magnetic fields.
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I. INTRODUCTION

Rare-earth-ion-doped crystals (REIC) have been actively
studied during the last decade as promising solid-state ma-
terials for quantum information processing. In the field of
quantum communication, these compounds have been used
as optical quantum memories: devices capable to store and
release quantum states of light [1–4]. In this context, different
quantum memory protocols were utilized to demonstrate high-
efficiency [5–7], long storage time [8–10], efficient tempo-
ral [11] and frequency multiplexing [12], multiple-photon
storage and entanglement storage [13,14] in various types
of REICs.

Europium-doped yttrium orthosilicate Eu3+:Y2SiO5 is one
of the most attractive solid-state systems to realize optical
quantum memory for quantum repeater application. This is
due to the long optical coherence times of a few milliseconds
[15–17], which together with the excellent spin coherence
properties of tens of milliseconds lifetime [18] offer the
possibility to realize spin-wave storage of photonic states [19].
Storage times up to a few milliseconds have been demonstrated
using different quantum memory schemes at zero magnetic
field [10,20,21].

Recently, the extension of the spin coherence lifetime
in Eu3+:Y2SiO5 up to one minute has been demonstrated
using the zero-first-order Zeeman shift (ZEFOZ) condition
at high magnetic fields [22]. The long coherence time is
due to the decoupling of the hyperfine transition from
magnetic-field fluctuations from the host spin flips [23,24].
Further application of the dynamical decoupling technique
using trains of rf-pulses resulted in extended hyperfine
coherences up to 6 hours [22,25]. This clearly demon-
strates the potential of Eu3+:Y2SiO5 crystals to realize long-
duration quantum light matter interface applicable for quantum
communication.
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Further use of the ZEFOZ transition for storing optical
excitations requires knowledge of optical properties for this
material under an applied magnetic field. This is important
in order to find a proper energy level path where single
photons can be efficiently transferred to spin-wave excitations.
The excited state spin Hamiltonians have been previously
characterized for other non-Kramers crystals [26,27]. This
information allowed to predict optical transition probabilities
between the ground and excited hyperfine levels. However, the
magnetic properties of the 5D0 excited state of Eu3+:Y2SiO5

crystal have not been fully characterized so far.
In this work, we investigate the hyperfine properties of the

excited state 5D0 of 151Eu3+:Y2SiO5 by fully reconstructing its
effective spin Hamiltonian. To this end, we use an optical free
induction decay (FID) method on the optical 7F0 ←→ 5D0

transition [17], which allows us to measure all hyperfine
splittings under weak external magnetic fields (up to 10 mT)
applied in various directions. With this approach, all hyperfine
splittings can be measured for both the ground and excited
states at the same time, which is an efficient method to
precisely characterize the relative orientation of the two spin
Hamiltonians (for ground and excited states). This is crucial
in order to predict optical branching ratios for various optical
pumping tasks, like quantum memory applications. Using both
Hamiltonians, we are able to find parameters that result in an
good agreement between calculated and experimental optical
transition probabilities, the optical transition probabilities for
different hyperfine levels of the optical 7F0 ←→ 5D0 transition
as a function of the external magnetic field.

The work is organized as follows. In Sec. II, we present
the effective Hamiltonian describing the magnetic properties
of hyperfine levels in 151Eu3+:Y2SiO5. In Sec. III, we present
the measurement method and the experimental details. Sec-
tion IV shows the main results: the measurement of ground
state and excited state hyperfine splittings as a function of
the external magnetic field angle and the prediction of the
transition probabilities using the fitted parameters. We finally
discuss the implications of our findings and give an outlook
in Sec. V.
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FIG. 1. The energy level structure of 151Eu3+:Y2SiO5, without
(left) and with (right) an external magnetic field B. The inhomoge-
neous broadening of the optical transition 7F0 ←→ 5D0 resonant at
580 nm contains hyperfine mI = −5/2 · · · + 5/2 sublevels both for
the ground 7F0 and the excited 5D0 states. The ground state hyperfine
splittings were characterized in [31].

II. HYPERFINE INTERACTION FOR REICS

A. Spin Hamiltonian

The hyperfine interaction of rare-earth centers is usually
described using a Hamiltonian of the form [28]

H0 = [Hfree + Hcf ] + [Hhyp + HQ + HZ + Hz], (1)

where the first two terms describe the free ion and the crystal-
field (cf), which together characterize the electronic coupling
and determine the optical transitions. All other terms describe
the hyperfine coupling, the nuclear quadrupole coupling, and
the electronic and nuclear Zeeman Hamiltonians, respectively.

In the present work, we consider the optical transition of
151Eu3+ between the ground 7F0 (denoted as |g〉) and the
excited state 5D0 (denoted as |e〉), which for Y2SiO5 material
takes place at 580.04 nm wavelength (in vacuum, optical site
I [15]). The energy level structure is displayed in Fig. 1.

Due to the singlet states (J = 0) connected by the optical
7F0 ←→ 5D0 transition for Eu3+ ion and the even number of
electrons the net orbital angular momentum and the electron
spin are quenched [28]. This allows to efficiently represent
the second group of terms in Eq. (1) as a perturbation for the
electronic levels. Due to the quenching, the hyperfine coupling
and electronic Zeeman interactions are not present at the first
order, which at zero magnetic field leads to the same order
of magnitude for all the terms inside the second brackets of
Eq. (1).

Representing these terms as a second-order perturbation for
the first group allows us to consider only the effective nuclear

spin Hamiltonian [29,30]

H = Î · Q · Î + �B · M · Î + ( �B · Z · �B)1. (2)

In this expression, the first term corresponds to the quadrupole
interaction and is responsible for a partial lifting of the
nuclear-spin states degeneracy in both the ground and the
excited states for the I = 5/2 nuclear spin of europium (see
Fig. 1, left). In general, this term includes pure quadrupolar
and pseudoquadrupolar contributions [29]. The second term
describes the Zeeman interaction and results in nondegenerate
hyperfine levels in the presence of a magnetic field (see Fig. 1,
right). The third term is the quadratic Zeeman interaction,
which we neglect since it does not contribute to the admixtures
of the eigenstates. The labels used for the hyperfine levels in
Fig. 1 are only approximate, since mI is not a good quantum
number.

As the energy splittings due to H are very small compared
to the optical transition, this term can be seen as a perturbation
of the whole Hamiltonian. Two hyperfine Hamiltonians can be
defined: one for the ground state H(g) and one for the excited
state H(e). The hyperfine ground state Hamiltonian has already
been determined in a previous work [31]. We are thus interested
in the present work in characterizing the Hamiltonian of the
excited state and its orientation with respect to the ground state
Hamiltonian. This is done by determining experimentally Q(e)

and M(e), that is, the quadrupole and Zeeman tensors of the
excited state hyperfine Hamiltonian.

B. Symmetry considerations in Y2SiO5

In the present work, we study only one of the stable eu-
ropium isotope, particularly, 151Eu. While two isotopes 151Eu
and 153Eu appear in approximately equal concentrations, their
magnetic properties are slightly different. The larger electric
quadrupole moment of 153Eu usually results in larger zero field
splittings, while nuclear gyromagnetic ratio is usually stronger
for the 151Eu isotope [32,33]. For quantum information appli-
cations, the 153Eu isotope can offer a larger optical bandwidth
and potentially longer coherence times, however, the magnetic
field intensities required to find ZEFOZ transitions are larger
with this isotope, due to the stronger electric quadrupole
moment [22].

Y2SiO5 is a monoclinic biaxial crystal of the C6
2h space

group. When Eu3+ ions substitute yttrium Y3+ ions, they can
occupy two different crystallographic sites. Here we study the
crystallographic site that offers a higher absorption coefficient
and a longer optical coherence time (site I) [15]. For this site,
europium ion can also occupy two magnetically inequivalent
subsites, and the Hamiltonians of these two subsites are related
by a π -rotation around the C2 symmetry axis of the crystal.
This means that two quadrupole tensors Q(e)

1 and Q(e)
2 and

two Zeeman tensors M(e)
1 and M(e)

2 must be defined, one per
magnetic subsite. Note that the two magnetic subsites become
equivalent when an external magnetic field is applied along
the crystal symmetry C2 axis or in the plane perpendicular to
it. The crystal was cut along the polarization extinction axes
D1,D2, and b [34], where b coincides with the crystallographic
C2 symmetry axis.

To summarize, in this work, we determine the two tensors
Q(e)

1 and M(e)
1 in the (D1, D2, b) basis by measuring the
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splittings of the hyperfine excited state due to the presence
of a magnetic field. The two tensors Q(e)

2 and M(e)
2 are then

deduced by a π rotation around the C2 axis (see Appendix A
for more details). Since the point symmetry at the site of Eu3+

in Y2SiO5 crystal is C1, the tensor axes for each interaction
type can be arbitrarily oriented with respect to each other for a
given electronic state, and additionally have different relative
orientations in the ground and excited states. This makes
the characterization of their relative orientations in different
electronic states a complicated problem.

III. EXPERIMENTAL METHODS

Several experimental methods can be used to measure
the ground and excited state splittings. The most common
techniques combine optical and radio-frequency (rf) fields,
such as Raman heterodyne scattering (RHS) [27,31,35]. This
method requires an efficient coupling between rf radiation and
the spin transition under study. Due to the large quadrupole
splittings and the weak Rabi frequencies for the excited state
5D0, this method is technically demanding in terms of rf
power and impedance matching. Preliminary RHS signals we
recorded were weak and difficult to use for a quantitative
analysis. This does not preclude the use of RHS for such a
measurement, however we chose another approach to obtain
the required experimental data.

To overcome these technical limitations, we use spectral
hole burning (SHB). With SHB, one can measure simulta-
neously the ground- and excited-state splittings with a single
absorption measurement and without using rf fields. A diffi-
culty using SHB is the interpretation of the complicated SHB
spectrum. To solve this problem, we use a technique called
class cleaning, which we now describe in detail.

A. Class cleaning for SHB at the Zeeman level

The general idea of SHB is the following [36,37]: given that
the inhomogeneous broadening of the 7F0 ←→ 5D0 transition
is large compared to the hyperfine splittings, sending a pump
laser of fixed frequency on the ensemble for a much longer
time than the radiative lifetime will cause the atoms to be
redistributed among the hyperfine ground-state levels. For a
system with Ng ground-state levels and Ne excited states, there
will be a total of Ng × Ne resonant transitions, corresponding
to different classes of atoms. For instance, Fig. 2(a) shows the
four classes of resonant atoms in the case Ng = Ne = 2. The
pumping process eventually leads to a spectral pattern of holes
and antiholes in the absorption profile, shown in Fig. 2(b).

We could try to directly use this technique to probe the
different splittings we want to measure, but the spectral pattern
for I = 5/2 would be composed of 31 holes and 930 antiholes
originating from the 36 classes of atoms for each magnetically
inequivalent site. Retrieving the excited and ground-state
splittings would be a challenging task in this case.

Instead of using all the 36 classes of atoms, we perform
a class cleaning of the atoms at the quadrupole level [38].
This means that by using an appropriate sequence presented
in detail in [10,39], we address a single transition of the
kind |±k/2〉(g) ←→ |±l/2〉(e), with (k,l) ∈ {1,3,5}. Since the
class cleaning is only done at the quadrupole level, when

FIG. 2. (a) The class cleaning procedure at the quadrupole level
(described in the main text) leaves four classes of atoms between
the ground |± k

2 〉(g) and excited |± l

2 〉(e) Zeeman doublets. Under an
external magnetic field, each doublet splits with energy difference δe

and δg for the ground and excited state, respectively. (b) Using SHB
technique, one can redistribute the population to reveal the energetic
structure with contribution from the four different classes.

sending light on a |±k/2〉(g) ←→ |±l/2〉(e) transition, we
simultaneously address atoms on the four transitions associated
with this system. This is due to the fact that all the Zeeman
splittings (∼200 kHz) are much smaller than the bandwidth
of the class cleaning procedure (5 MHz). Hence we are left
with four classes of atoms on the Zeeman structure instead of
36, as depicted in Fig. 2(a). Once this class cleaning procedure
has been performed, burning a hole leads to the appearance of
three holes and six antiholes, the positions of which directly
give the excited δe and the ground-state splittings δg [40] [see
Fig. 2(b)]. For typical Zeeman splittings lower than 400 kHz,
the challenge of measuring holeburning spectra is twofold:
first, the burning laser should have a narrower linewidth than
the energy splittings, and second, the readout of the structure
should be very precise in order to resolve it. We will see in the
next section how we solve these issues in the present case.

B. SHB spectrum measurement: heterodyne
measurement of the FID

As explained previously, our goal is to measure SHB
spectra, like the one shown in Fig. 2(b), and extract the excited
state splittings as a function of the direction of the magnetic
field. A first simple idea is to use a readout pulse, whose
frequency is chirped over time. The limitation with this solution
is that the resolution of the measurement is strongly linked with
the chirp rate: as the structure that we want to measure is only
a few kilohertz wide, the chirp rate should be very slow. This
tends to work with very weak readout amplitudes to avoid hole
burning due to the readout pulse, implying measurements with
low signal-to-noise ratios.
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FIG. 3. (a) Experimental setup. The laser is split into two beams and sent to two different paths: the signal, which prepares and probes
the crystal and the local oscillator (LO). The amplitudes and frequencies of these beams are adjusted using acousto-optic modulators (AOM),
which are used in double-pass configuration. PBS stands for polarizing beamsplitter. Coils around the cryostat provide the external magnetic
field. (b) Experimental sequence, consisting of a preparation step, a spectral hole burning (SHB) step and the readout (R) step. The FID is
measured with an oscilloscope right after the end of the readout pulse. (c) Oscilloscope trace for 10 mT magnetic field applied along �B ‖ D1 :
interference of the FID with the 4 MHz detuned local oscillator. The beatings reveal a complex absorption structure. (d) Imaginary part of the
Fourier transform of the temporal trace presented in (c), which is proportional to the absorption of the spectral structure. Antiholes are indicated
by a dashed vertical line, the solid vertical lines correspond to side holes.

Instead of a frequency-resolved absorption measurement,
we perform a temporal measurement of a signal emitted by
the spectral structure we want to measure. In other terms, we
excite the spectral structure with a short readout pulse, which
will create an optical coherence on the atoms. These atoms will
then emit light after the end of the readout pulse: this is the
free induction decay (FID) [41,42]. As a temporal counterpart
of the direct spectral absorption measurement, the absorption
spectrum is simply the imaginary part of the Fourier transform
of the measured FID. This requires that the spectrum of the
readout pulse should be large compared to the probed spectral
structure.

To measure the FID, we use an interferometric technique
called balanced heterodyne detection: we mix the FID field
with a 4-MHz detuned optical local oscillator (LO) on a 50:50
beamsplitter, and measure the difference in photocurrent of
two photodiodes placed in its two outputs. The advantage of
this method is that the measurement is only limited by the shot
noise of the readout pulse.

C. Experimental setup

In Fig. 3(a), we show the experimental setup. Our laser
source is a cavity-stabilized source with a subkilohertz
linewidth, which emits 2 W of light at 580.04 nm. We use
40 mW for this experiment and split the power into two
different beams. The first one, the signal beam, is used to
prepare and excite the crystal sample. The second beam is used
as the local oscillator for the heterodyne detection. In order to
modulate the frequencies and the amplitudes of both the signal
and the LO for the implementation of the sequence, acousto-
optical modulators (AOMs) in a double pass configuration are
used. The AOMs are driven by an analog generator card that
performs both amplitude and phase modulation. The signal
beam is then recombined on a 50:50 beamsplitter with the

local oscillator for the heterodyne measurement, performed
by a balanced photodiode detector.

For our study we use a 1-cm-long isotopically pure
151Eu3+:Y2SiO5 crystal with a doping concentration of
1000 ppm. We chose this particular host crystal for its low
nuclear spin density, which leads to long optical and hyperfine
coherence times [15–17]. The crystal was grown by the
Czochralski method. For more details regarding the crystal
and its growth, see Ref. [43].

To minimize the effect of decoherence processes, the crystal
is cooled to 3 K in a commercial closed-cycle cooler from
Cryomech, with a custom-made vibration-damping mount.
In order to apply the magnetic field necessary to lift the
Zeeman degeneracy, we use three pairs of copper coils close
to a Helmholtz configuration. The magnetic field is limited to
Bx = By = 10 mT in the X and Y directions and to Bz = 5 mT
in the Z direction, due to heating through the Joule effect. The
axes of the coils X, Y , and Z define the laboratory frame in
which the spin Hamiltonian is defined. The crystal axes D1,
D2, and b are oriented closely to the Y , X, and Z axes of the
coils, respectively. Further possible misalignment is included
in the fitting procedure discussed later.

Each |±k/2〉(g) ←→ |±l/2〉(e) transition that is probed
requires a specific preparation procedure: as we want the FID
signal to be the strongest possible, we additionally polarize all
the spins in the selected class to the |±k/2〉(g) state by optical
pumping. These are simply variants of the basic class cleaning
procedure discussed in Ref. [10].

Figure 3(b) shows the sequence that is used for the ex-
periment. First, the direction and amplitude of the magnetic
field are set using three independent current sources. Then the
atomic preparation occurs, which consists in the class cleaning
procedure (see Sec. III A) and the pumping procedure previ-
ously mentioned. The preparation of the atoms is performed
over an optical bandwidth of 5 MHz. Then, we perform SHB
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on the ensemble by sending a series of identical and spectrally
narrow pulses. This sequence results in burning a structure of
the type presented in Fig. 2(b), where the holes and antiholes
have a typical width of the order of 10 kHz. We believe that
this width is currently limited by the residual vibrations of the
crystal during the SHB procedure. Finally, a single 1.5-μs-long
square pulse is sent as the readout pulse. The beginning of the
FID measurement is triggered right after the end of this pulse.
The LO is continuously sent to the heterodyne detection, with
a detuning of 4 MHz with respect to the readout pulse.

IV. EXPERIMENTAL RESULTS

A. Obtaining the absorption spectra

Figure 3(c) shows a typical trace recorded by the oscillo-
scope: the FID is beating with the LO at 4 MHz, and the slow
modulations reveal the existence of a structure in the spectral
domain. Nevertheless, if we consider directly the imaginary
part of the Fourier transform of the measured signal, we do not
recover the expected absorption spectrum; in close analogy
to NMR [44], we need to apply a linear phase correction
to our data. The origin of this phase correction is twofold:
first, for each FID measurement, the relative phase of the
LO is random. A constant phase should then be added for
each measurement. Secondly, the measurement does not start
right at the beginning of the FID emission. This shift in time
implies a linear correction in frequency. Once these corrections
have been applied, we obtain the absorption profile shown in
Fig. 3(d), which is of the same form as the one schematically
presented in Fig. 2(b).

B. Scanning the magnetic field

In order to reconstruct the two Q(e)
1 and M(e)

1 tensors, we
have to know the splittings for several possible directions of
the magnetic field. To scan the field homogeneously in space,
we use the same method as the one presented in Ref. [30]: we
scan the magnetic field along a spiral parametrized by

�Bn =

⎛
⎜⎝

Bx

√
1 − t2

n cos(6πtn)

−Bytn

Bz

√
1 − t2

n sin(6πtn)

⎞
⎟⎠, (3)

where tn = −1 + 2 n−1
N−1 , n ∈ [[1,N ]]. In our case, the scan of

the space occurs along an ellipsoid, because Bz 	= Bx = By .
Since the D1−D2 plane is roughly parallel to the X-Y plane,
if we scan around the X or Y axes, we will cross the D1-D2

plane several times. Outside this plane we observe two different
SHB spectra as shown in Fig. 2(b). Using this fact one can
precisely identify the position of the D1-D2 plane from the
spiral measurement. In all of the spiral measurements we
present in the article, N was chosen to be 200.

In Fig. 4, we show the SHB spectra for three transitions
between the 7F0 and 5D0 manifolds, obtained with spiral
scans. The hole positions were identified in these rotation
patterns manually, by looking at the SHB spectrum for each
orientation of the magnetic field along the spiral pattern
individually. Whenever possible, the main antiholes would also
be identified, however, their amplitudes were generally smaller.

FIG. 4. Experimental SHB spectra obtained using the spiral
scan of the magnetic field, for transitions connecting different hy-
perfine levels of the 7F0 ground state and the 5D0 excited state
of 151Eu3+:Y2SiO5. Each vertical slice represents a hole burning
spectrum obtained using the FID signal [an example is shown in
Fig. 3(d)]. White regions correspond to higher transmission (holes)
while black regions represent increased absorption (antiholes). The
positions of the side holes give directly the splittings of the excited
state, while the positions of the strongest antiholes correspond to the
ground-state splitting (cf. Fig. 2). The energy splittings predicted by
the fitted spin Hamiltonian are shown as white (holes) and black
(antiholes) lines. The strong central hole was removed to increase
the contrast of the image. The color axis is nonlinear.

C. Fitting procedure

To find the Hamiltonian that explains the observed spectra,
we parametrize the effective Hamiltonian [Eq. (2)]. Since the
diagonal elements of the quadrupolar tensor Q(e)

1 are known
[45], we only fit the orientation of this tensor, using three
Euler angles αQ, βQ, and γQ in the (X,Y,Z) laboratory frame.
Then, the Zeeman part is described by six parameters. They
correspond to its three diagonal elements g1, g2, and g3 and
three angles αM , βM , and γM representing the orientation
of the M(e)

1 tensor in the (X,Y,Z) laboratory frame. These
angles are not the same as for the Q(e)

1 tensor due to the low
site symmetry in the crystal. Finally, two more parameters
are used to identify the orientation of the C2 symmetry axis
connecting two magnetically inequivalent subsites: αC2 and
βC2 defined in spherical coordinates in (X,Y,Z) laboratory
frame. A rotation of π around this axis for both tensors is used
to obtain the Hamiltonian for the second subsite containing
Q(e)

2 and M(e)
2 tensors as explained in Sec. II. The exact form of

the Hamiltonian and details about the rotation transformations
are given in the Appendix A.
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TABLE I. Best fit parameters with fit errors for 151Eu3+:Y2SiO5.
D and E parameters of the quadrupole Q tensor were taken from
previous spectroscopic studies (Ref. [31] for ground 7F0 and Ref. [15]
excited 5D0 states). γ accounts for the position of the polarization
extinction axes D1 and D2 and was measured separately using the
polarization dependent absorption of the crystal. All other parameters
were used to fit the spin Hamiltonian on the optical transition. The
error estimation was done using the covariance matrices from the
nonlinear fit and do not include errors in the magnetic field, which
are expected to be less than 5%. The angles αi , βi , and γi are Euler
angles that express the tensors in the (X,Y,Z) laboratory frame.

Parameter Ground state, 7F0 Excited state, 5D0

D (MHz) −12.3797 27.26
E, (MHz) −2.735 5.85
αQ (deg) −29.9(3) 165.30(7)
βQ (deg) 53.4(25) 154.91(35)
γQ (deg) 124.05(86) 107.81(45)
g1 (MHz/T) 4.30(12) 9.11(46)
g2 (MHz/T) 5.559(55) 9.158(17)
g3 (MHz/T) −10.891(59) 9.069(26)
αM (deg) 105.25(72) 70.53(38)
βM (deg) 163.74(61) 5.0(2)
γM (deg) 124.56(65) 62.17(64)
αC2 (deg) −140(4)
βC2 (deg) 172(3)
γ (deg) −51

In order to determine these 11 parameters, we used a
standard least squares fitting method. Using the simulated
annealing approach [46] it was possible to ensure that the fit
corresponds to a global solution. In addition to this conven-
tional method of analyzing the data, in Appendix C, we develop
a novel approach based on perturbation theory to facilitate the
fitting procedure. Using this approach, it is possible to esti-
mate certain set of parameters of the Hamiltonian (specifically
the orientation of the Q tensor and the C2 symmetry axis)
before performing a fitting. This in turn simplifies the search
of a global solution by reducing the amount of numerical efforts
for the fitting procedure.

In Fig. 4, we show the experimental SHB spectra obtained
using the spiral scan of the magnetic field. These maps were
constructed by assembling SHB spectra as shown in Fig. 3(d)
into an image, where each vertical line consists of an SHB
spectrum. Each spectrum was then examined individually, in
order to identify the positions of the side holes and the main,
strong antiholes. These directly give the nuclear Zeeman split-
tings of the excited and ground states [see Fig. 2], respectively.
All measured positions can be found in Fig. 6 in the Appendix.
The measured positions were used to fit all the parameters of
the spin Hamiltonian. The final solution, which will be detailed
below, accurately predicts the positions of the side holes and
the main antiholes, as shown in Figs. 4 and 6 in the Appendix.
We further note that also the fainter antiholes seen in Fig. 4,
which were not used for fitting, can be explained using the
predicted Zeeman splittings. These antiholes are positioned at
the sum and differences of the ground and excited state Zeeman
splittings (cf. Fig. 2).

FIG. 5. Experimental SHB spectra obtained by scanning the
magnetic field of 10 mT in the D1-D2 plane (perpendicular to the C2

symmetry axis). In this plane, the magnetic subsites are degenerate,
such that fewer holes and antiholes are seen. The measured spectra are
in good agreement with the energy splittings predicted by the fitted
spin Hamiltonian, without any additional tuning of the parameters
with respect to the fit shown in Fig. 4. All other experimental details
are identical to Fig. 4.

It should be noted that the measured ground-state Zeeman
splittings are also in good agreement with predictions based
on the spin Hamiltonian in Ref. [31], up to a rotation of about
5◦ around the C2 symmetry axis (in the D1-D2 plane). This is
within the estimated error of the position of the D1 axis in the
D1-D2 plane in Ref. [31], which was stated to be 10◦.

The fitted C2 symmetry axis is tilted by only 8◦ from the z

axis (Table I), as expected from the orientation of the crystal
with respect to the z axis of the coils. Having identified the
C2 symmetry axis, it is possible to do measurements in the
D1-D2 plane, which is perpendicular to this axis. The results
(Fig. 5) are in good agreement with predicted spectra and
contain only one set of lines (holes and antiholes) due to the
fact that both subsites in this plane are magnetically equivalent.
The degeneracy of the subsites confirms that the C2 symmetry
axis has been accurately determined.

D. Fitting ambiguities due to spin Hamiltonian symmetries

By fitting the recorded spectrum as a function of �Bn, one
cannot determine the spin Hamiltonian without ambiguity, as
there is no unique solution. This is due to the fact that the
measured spectrum is invariant under certain transformations
of the Hamiltonian coming from its symmetries. Some types
of the symmetries related, for example, to the global rotations
of the interaction tensors M and Q or the order of their
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diagonal elements are not physically meaningful. However,
the type of the symmetry related to the relative signs of the
diagonal elements (this transformation can be considered as a
mirror reflection) does modify the relative orientations of the
interaction tensors (for details see Appendix B).

In general, only absolute values of the diagonal elements
of the effective Q and M tensors can be extracted from
the fit, which leads to the fact that relative signs of the
eigenvalues can not be experimentally determined based on
only such a measurement (Appendix B). For example, for each
combination of the signs of g1, g2, and g3, one obtains different
solutions that lead to the same spectrum, but for which the
orientation of the Q tensor is different (see Appendix B). Since
the signs of the M tensor for the ground and excited states have
never been measured for this material, we have 23 = 8 possible
combinations for each state, which means a total of 64 possible
solutions. We determined the sign of D in the Q tensor from
the known order of the zero field splittings for 151Eu3+:Y2SiO5

[20,39,47] both for the ground and excited states.

E. Reducing fitting ambiguities

Some assumptions can be made to choose the global sign of
both M tensors. The nuclear magnetic moment of the ion can
be substantially quenched or even inverted due to higher-order
hyperfine interaction [49]. The M(g) tensor for the ground state
is very anisotropic (see Table I), so its eigenvalues might differ
substantially from the value of the nuclear magnetic moment of
the free ion, in particular some g values could even be negative.
For the excited state 5D0, however, this effect is negligible
[49]. This is due to the much larger energy spacing for the
closest energy level for the excited state (>1700 cm−1 for 5D1

while only >200 cm−1 for 7F1), which reduces the higher-order
perturbation effects on the nuclear magnetic moment for 5D0.

The weak perturbation in the excited state is supported by
the fact that the eigenvalues of M(e) are all similar (isotropic,
see Table I), and close to the magnetic moment of a free ion
(1.389μN = 10.56 MHz/T) up to the small quenching. Taking
this into account, we therefore assume that all eigenvalues of
M(e) are positive. We are then left with 16 possible solutions.

F. Identifying a unique solution from the optical
branching ratios

To find a unique solution, one could measure the quadratic
Zeeman interaction using SHB, as it is sensitive to the sign of
the M tensor [50,51]. This approach requires measuring the
shift of the spectral hole under strong magnetic fields (≈ 1 T).
One can also utilize optical branching ratios, which are known
to be sensitive to the sign and/or absolute value change of the
nuclear projection between two electronic states. We use the
latter to identify the proper solution.

The optical branching ratios at zero magnetic field were
measured in a previous study using tailoring techniques [39]
and are given in Table II. We verified that the measured table of
relative oscillator strengths is equivalent for the 151Eu isotope
at least within the experimental errors given in Ref. [39].
In order to calculate the relative oscillator strength for each
transition |±k/2〉(g) ←→ |±l/2〉(e), we write it as an overlap
between nuclear eigenstates μeg = μopt〈±k/2(g)|±l/2(e)〉. In

TABLE II. Comparison between predicted (cal) and measured
(exp) relative optical oscillator strengths for Eu3+:Y2SiO5. The cal-
culated values are derived from Table I and are compared with results
from Ref. [39]. Rows correspond to transitions starting from the
ground-state hyperfine levels and columns correspond to transitions
to different excited state hyperfine levels.

|±1/2〉e |±3/2〉e |±5/2〉e

〈±1/2|g 0.02 0.18 0.80 (calc)
0.03(3) 0.22(3) 0.75(3) (exp)

〈±3/2|g 0.12 0.71 0.17 (calc)
0.12(3) 0.68(3) 0.20(3) (exp)

〈±5/2|g 0.87 0.10 0.03 (calc)
0.85(3) 0.10(3) 0.05(3) (exp)

this expression, μopt is the dipole moment of the optical
transition defined by the electronic wave functions and is the
same for each nuclear spin projection. This is done assuming
that the electronic and the nuclear wave functions are separable
for the ground and excited states, which was confirmed to be
a good approximation in the case of quenched electronic spin
[52,53].

The branching ratio table is calculated for each magnetic
subsite and the average values are considered (Table II). By
comparing experimental results with all possible combinations
(deduced from the assumptions discussed above) obtained
from the fitted Hamiltonians, we found the solution, which
gives the best agreement. We note that among the remaining
combinations the solution given in Table I is the only one that
gives the relative oscillator strengths close to the experimental
error bars. Other possible solutions are listed in Appendix B.

G. Systematic errors and tensor orientations
along D1, D2, and b axes

The error in the orientation of the cut surfaces of the crystal
is inferior to 1◦. The relative orientations of the X, Y , and Z

axes of the coils should also be smaller than 1◦. The main source
of error is then the orientation of the crystal with respect to the
X, Y , and Z axes. As discussed in Sec. IV C, the C2 symmetry
axis (or crystal b axis) could be determined from the fit and it is
misaligned with about 8◦ with respect to the Z axis. For optics
experiment, the most commonly used reference frame is given

TABLE III. Summary for hyperfine properties on the optical
7F0 ←→ 5D0 transition of Eu3+:Y2SiO5 crystal for different isotopes
(151Eu and 153Eu). The D and E are parameters of the quadrupolar
tensor Q, η = 3E/D is the ellipticity parameter of the Q tensor. The
nuclear magnetic moment quenching for the principal values of M
tensor is expressed using α parameters and the gi = (1 − αi)gN ex-
pression, where gN is the nuclear magnetic moment of the free 151Eu3+

ion. Experimental values for 153Eu are taken from Refs. [15,48].

ν1, MHz ν2, MHz D, MHz η α1 α2 α3

151Eu 7F0 34.54 46.25 −12.3797 0.663 0.59 0.47 2.03
5D0 102 75 27.26 0.644 0.14 0.13 0.14

153Eu 7F0 90 119.2 −32.02 0.674
5D0 260 194 69.67 0.660
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by the D1, D2, and b axes. To determine the orientation of the
D1 axis in the X-Y plane we used the polarization-dependent
absorption coefficient [17]. This allowed us to express the M
and Q tensors in the D1, D2, and b reference frame, which are
given in A. We estimate that the final error in the D1, D2, and
b reference frame is at most a few degrees, and mostly in the
D1-D2 plane.

V. DISCUSSIONS AND CONCLUSIONS

Our analysis yields a spin Hamiltonian which inverts the
sign for one of the eigenvalues of the M(g) tensor (see Table II).
Such a sign change for the nuclear magnetic moment has
been observed previously [51], and originates from the well
established effect of nuclear magnetic moment quenching [54].
This effect is caused by the interaction with nearby J = 1
electronic levels giving rise to the pseudoquadrupole inter-
action and reduced magnetic moment, which can be written
as g = (1 − α)gN , where gN = 10.56 MHz/T is the nuclear
magnetic moment of the free europium ion [28]. The calculated
α parameters are given in Table III, both for the ground and
excited states.

Another particular feature is the negative sign of the D

parameter in the ground state, which leads to the inverted
order of energy levels at zero field [see Fig. 1(a)], while for the
excited state the D parameter is positive. This holds true also
for the 153Eu isotope (see Table III). This difference in sign of
D has been observed in previous studies of Eu3+ doped crystals
[35,51]. It can be explained by taking into account the electric
field gradient created by the 4f electronic configuration in
each electronic state [55,56]. This type of contribution for Eu3+

ion is defined by the mixing with the second electronic level
(J = 2) but not J = 1 due to the fact that J = 0. This effect
will be negligible for the excited 5D0 state again due to the
much higher energy for 5D2 levels (>4100 cm−1 for 5D2 [48]
and >860 cm−1 for 7F2 levels [17]).

In conclusion, we have characterized the spin Hamiltonian
of the excited state of 151Eu3+:Y2SiO5. We have determined
all relevant parameters of the nuclear spin Hamiltonian in the
electronic excited-state 5D0 and characterized its orientation
with respect to the ground-state spin Hamiltonian. It is partic-
ularly important to be able to predict the behavior of optical
transitions under external magnetic fields.

Our characterization of 151Eu3+:Y2SiO5 is in good agree-
ment with previously obtained results for relative optical
strengths at zero magnetic fields. We characterized the relative
signs between the hyperfine parameters for electronic ground
and excited states and identified a unique solution compatible
with previous results from other crystals. Our results allow
the calculation of transition frequencies and relative oscillator
strengths for arbitrary magnetic field vectors. This is a crucial
requirement in order to use highly coherent spin transitions
in this material for the implementation of long lived optical
quantum memories combined with extended spin coherence
properties for spin transitions.
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APPENDIX A: THE Q AND M TENSORS

The tensors Q(e)
i and M(e)

i can be diagonalized in their
respective principle axis systems. In order to express them in
the (X,Y,Z) laboratory frame, we apply a rotation with the
usual Euler angle convention:

Q(e)
1 = R(αQ,βQ,γQ) ·

⎡
⎢⎣

−E 0 0

0 E 0

0 0 D

⎤
⎥⎦ · R(αQ,βQ,γQ)T ,

(A1)

M(e)
1 = R(αM,βM,γM ) ·

⎡
⎢⎣

g1 0 0

0 g2 0

0 0 g3

⎤
⎥⎦ · R(αM,βM,γM )T ,

(A2)

where R(α,β,γ ) is the rotation matrix with Euler angles
(α,β,γ ) for ZYZ convention

R(α,β,γ ) = Rz(γ ) · Ry(β) · Rz(α), (A2bis)

where

Rz(α) =

⎡
⎢⎣

cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1

⎤
⎥⎦, (A3)

Ry(β) =

⎡
⎢⎣

cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

⎤
⎥⎦. (A4)

The interaction tensors for the other magnetic subsite are
defined using an additional π rotation around the symmetry
axis of the crystal and given by

M(e)
2 = RC2 · M(e)

1 · RT
C2

, (A5)

Q(e)
2 = RC2 · Q(e)

1 · RT
C2

, (A6)

where RC2 is the rotation of angle π around the C2 axis:

RC2 = RT (αC2 ,βC2 ,0)Rz(π )R(αC2 ,βC2 ,0).

The total rotation from the crystal (D1,D2,b) frame
to the (X,Y,Z) laboratory frame is given by the rotation
R(αC2 ,βC2 ,γ ), where γ is an additional rotation angle in
the D1-D2 plane. It was measured separately using the
polarization-dependent absorption of the crystal.

In this work, we extract the parameters g1, g2, g3, αM , βM ,
γM , αQ, βQ, and γQ from the measurement of the excited state
splittings, in the presence of an external magnetic field. This
is done using the fitting procedure explained in the main text.
The final fitting is depicted on Fig. 6. The resulting interaction

094416-8



CHARACTERIZATION OF THE HYPERFINE INTERACTION … PHYSICAL REVIEW B 97, 094416 (2018)

FIG. 6. Measured positions of the side holes (red squares) and
main antiholes (black circles), which correspond to the nuclear
Zeeman splittings of the excited 5D0 and ground 7F0 state, respec-
tively. The dashed lines represent the result of the fitting of the spin
Hamiltonian for each state. The extracted parameters are presented
in Table I. The bottom figure shows the average residual difference
between the measured spectra and the fit (averaging over the three
spectra).

tensors in the (D1,D2,b) basis can be calculated based on the
fitted parameters (Table I) and are found to be

Q(g)
1 =

⎛
⎜⎝

−3.0685 −2.4714 6.7354

−2.4714 −4.2007 2.4588

6.7354 2.4588 −5.1106

⎞
⎟⎠

D1D2b

,

M(g)
1 =

⎛
⎜⎝

3.8330 −0.896 −4.7029

−0.8958 3.3680 −3.7497

−4.7029 −3.7497 −8.2410

⎞
⎟⎠

D1D2b

,

Q(e)
1 =

⎛
⎜⎝

4.8095 −1.5956 13.0154

−1.5956 4.3611 7.0101

13.0154 7.0101 18.0894

⎞
⎟⎠

D1D2b

,

M(e)
1 =

⎛
⎜⎝

9.1340 −0.0248 0.0032

−0.0248 9.1347 −0.0092

0.0032 −0.0092 9.0713

⎞
⎟⎠

D1D2b

.

APPENDIX B: ON THE SYMMETRY
OF THE HAMILTONIAN

The main problem is to determine the right orientations
of the magnetic tensors of the considered Hamiltonians:
quadrupole interaction tensor Q and nuclear Zeeman interac-
tion tensor M. It is the relative orientations of the considered
tensors for the ground and excited states that determine the
optical transition strength behavior under an external magnetic
field. In the case of low symmetry of the crystal site, the
orientation of the interaction tensors for different energy levels
can be very different. This makes the separate study of the
energetic spectra of two states to be insufficient to fully predict
the optical transition strengths.

Here, we show that the observed data can be fitted with
different orientations of the quadruple interaction tensor Q if
the relative signs of the eigenvalues of the Zeeman nuclear
interaction tensor M are unknown. Since the same reasoning
applies to the excited state, this leads to an ambiguity about
the relative orientation of the Q tensors from the ground and
excited state and hence to different transition probabilities.

To this end, we define the transformation S ′
i that changes

the sign of the ith eigenvalue,

S ′
i = R(αM,βM,γM )SiR(αM,βM,γM )T , (B1)

where Si is a reflection in the plane perpendicular to the
ith direction (i.e., Si inverts the coordinate i and leaves the
orthogonal components unchanged). When applied to one side
of M, this O(3) transformation maps M to M′, that is, the same
tensor with eigenvalues of the same moduli but with different
signs. By doing a change of coordinates via �I ′ = S ′T

i
�I , the

Hamiltonian now reads

H = �I ′T · Q′ · �I ′ + �BT · M′ · �I ′, (B2)

TABLE IV. The list of possible solutions for the ground state Hamiltonian for different combination of signs of the M tensor for the ground
or excited states. Assuming positive signs for the excited state M(e) tensor (first solution), the solution 4 for the ground state was found to be
consistent with the optical branching ratio measurements.

Solution M tensor signs Q(g) tensor angles Q(e) tensor angles

g1 g2 g3 αQ (deg) βQ (deg) γQ (deg) αQ (deg) βQ (deg) γQ (deg)

1 + + + –149.96 93.88 124.10 165.2982 154.9117 107.8092
2 – + + 157.85 95.76 97.23 191.8467 151.8768 335.2023
3 + – + 140.59 –124.22 88.90 212.0108 149.7404 172.8981
4 + + – –29.90 53.48 124.05 28.1173 32.8277 96.0319
5 – + – 39.41 55.78 91.10 327.9892 30.2596 352.8981
6 + – – 22.14 84.24 –82.77 348.2384 28.0900 155.1711
7 – – + –150.10 126.52 –55.95 151.8827 147.1723 276.0319
8 – – – –30.04 86.12 –55.90 11.5272 25.0883 287.8092
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FIG. 7. Spherical plot (violet) of the energy splitting for the ground (three figures below) and excited (three figures above) states, δk/(2| �B|),
in natural units for k = 1/2, 3/2, and 5/2 (from left to right) as a function of �n(θ,φ) = �B/| �B|). The orange plot is the hypothetical energy
splitting if M were isotropic (i.e., M ∝ 1), which is almost the case for excited state (and, hence, there the orange plot is basically covered by
the violet one). The coordinate system is the eigenbasis of Q(e) or Q(g), respectively.

with Q′ = S ′
iQS ′T

i . Since Q′ is symmetric, the transformation
does not change the energy spectrum of the Hamiltonian but
rotates the eigenstates.

As a consequence, for every change of sign for the eigen-
values of the M tensor, a different orientation of the Q tensor is
found, which in total gives the same experimental spectra. The
list of possible solutions for the ground and excited states is
given in Table IV. In general, eight different combinations of
the signs lead to eight different solutions for each state (some
of them can be equivalent). This leads to 8 × 8 possible ways
to connect each pair of solutions to calculate the branching
ratio table.

APPENDIX C: PERTURBATION THEORY APPROACH

While the search for the parameters of H [Eq. (2)] as
presented in Table I was done numerically for the exact
Hamiltonian, a perturbation theory approach helps to better
understand the energy splittings as a function of the magnetic
field orientation. It can also be used to facilitate the fitting
procedure of the measured spectra involving 11 parameters
for another material. The perturbation approach can be used to
estimate certain number of parameters which can be further
used as an initial guess for the nonlinear fitting. This can
substantially decrease the computational time and verify its
consistency. In our case, the quadrupole interaction H0 =
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FIG. 8. Overlay of δk for k = 1/2, 3/2, and 5/2 (from left to right) from the experimental data (red dots) and the perturbation theory based
on the fitted parameters (blue surface) in the laboratory frame for the ground (three figures below) and excited (three figures above) states.

�I T · Q · �I is dominant over the Zeeman termH1 = �BT · M · �I ,
Eq. (2) (again we only consider one subsite). Then, at the
first order, the energy splitting of each degenerate level k ∈
{1/2,3/2,5/2} can be seen as an isolated two-level system. Let
us denote the eigenstates of H0 by | ± k〉. The energy splitting
is approximately

δk ≈ |〈+k|H1|+k〉 − 〈−k|H1|−k〉|. (C1)

Note that the degeneracy in H0 leads to an apparent ambiguity
in the choice of | ± k〉. For a well defined perturbation theory
calculation, we have to ensure that 〈−k|H1| + k〉 = 0 implying
that we have to maximize δk over all possible eigenbases for
each subspace k. In other words, one finds that δk = λ+

k −
λ−

k = 2λ+
k , where λ+

k and λ−
k are the maximal and minimal

eigenvalues, respectively, of H1 reduced to the subspace
spanned by | ± k〉.

Let us discuss the special case of isotropic coupling, M =
1. In addition, we work in a reference frame �I = ∑3

i=j Ij êj

where Q is diagonal (i.e., Q = −Eê1 · êT
1 + Eê2 · êT

2 + Dê3 ·
êT

3 ) and denote the direction of �B in this frame by �n(θ,φ) =
sin θ (cos φê1 + sin φê2) + cos θ ê3. Then, it turns out that

λ+
k (θ,φ) =

√√√√
3∑

j=1

c2
k,j nj (θ,φ)2, (C2)

where the {ck,j }j only depends on k and the eigenvalues of Q:
±E,D. In other words, the energy splitting δk is proportional
to the distance from the origin to the surface of an ellipsoid
with principal axes aligned to the eigenbases of Q and length
ck,j . Some examples, which were calculated for the extracted
spin Hamiltonians, are depicted in Fig. 7.

In the laboratory frame, the principal axes of the ellipsoids
are rotated by R(αQ,βQ,γQ). If we could assume M = 1, we
could directly identify the unknown angles αQ,βQ,γQ from the
orientation of the ellipsoids in the laboratory frame. This does
no longer hold in the case of general M. In our case, it turns
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out that |M| ≈ 1, which means that the orientation of Q′ (see
Appendix B) is close to the orientation given by the measured
values of δk (see Fig. 8).

In summary, the procedure to fit the spin Hamiltonian of the
form can be described in different steps. (1) The parameters D

and E of the Q tensor can be determined from broadband SHB
or RHS. (2) Measuring all the splittings in different directions
for each energy level and using perturbation approach, one
can estimate the Q tensor angles from the orientation of the
ellipsoids in the laboratory frame as described above. From
this, all the required parameters of the Q tensor are found.
(3) For our crystal, due to the presence of two magnetic
subsites, it was necessary to deduce the orientation of the
symmetry axis C2. This orientation can be estimated precisely

by looking at the measured spectras and choosing directions
of the magnetic field where two splittings coincide or are very
close to each other. By extracting their positions, it is possible
to get the orientation of the symmetry axis. (4) From this
point, the only parameters that are unknown correspond to
the M tensor. Six parameters representing three eigenvalues
and three rotation angles can be used to fit the data assuming
that all its eigenvalues are in the order of magnitude of
the nuclear magneton μN . In this way, only six parameters
can be used for the first fit, which highly simplifies the
overall task.

We approved this procedure for our case. It substantially
decreased the numerical effort in a problem with a large number
of free parameters.
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