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Phase separation and second-order phase transition in the phenomenological model for a
Coulomb-frustrated two-dimensional system
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We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged
system. The coupling of the order parameter with the charge was considered as the local temperature. We have
found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we
have obtained different types (“stripes,” “rings,” “snakes”) of phase-separated states and determined the parameter
ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases.
First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with
two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ > 0). Then a first-order
transition occurs to another phase-separated state, in which both phases have different and nonzero values of
the order parameter (for τ < 0). Only a further decrease of temperature leads to a transition to a homogeneous
ordered state.
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I. INTRODUCTION

The problem of phase separation attracts considerable
attention, because the variety of different phase states and the
coexistence of several phases are observed in many materials
currently being studied [1–10]. This includes a class of man-
ganites with colossal magnetoresistance [1–5] in which there
is a phase separation with charge inhomogeneity (“droplets,”
“bubbles,” etc.), as well as cuprate high-temperature supercon-
ductors [6–8,10], in which a pseudogap state for T > Tc and
static and dynamic charge density waves (CDW) are observed.
The phenomenon of the phase separation is accompanied by
the charge inhomogeneity, which is confirmed by various
experimental observations. The charge inhomogeneity was
observed by methods of scanning tunneling microscopy [11],
photoelectron spectroscopy with angular resolution (ARPES)
[6], x-ray and neutron diffraction [7,10]. For these materials,
there is a certain range of temperature and doping level in
which the coexistence of phases is in the ground energy state.
The spatial size of the single-phase regions is determined by
the energy balance between the Coulomb interaction, which
is important in the presence of an overcharge created by the
doping, and the energy gain that appears when a more ordered
phase occurs [12–14].

There are many theoretical studies of the states with charge
inhomogeneity in which states with “droplets” and “stripes”
has been obtained (see, for example, Refs. [15–23]). Usually
in these papers it is considered the Coulomb frustrated first
order phase transition where the scalar order parameter is either
coupled linearly with the charge density [18,21,22] or the order
parameter is proportional to the charge density [17,18,20,23]. It
is shown that these models are unstable with respect to phase
separation. The phase-separated state represents the charged
regions of different phases with different values of the order
parameter. Note that in the case of the second order phase

transition this type of coupling of the order parameter to the
charge density is forbidden. In the case of the second order
phase transition the order parameter is not a scalar. Here we
discuss the case of the Coulomb frustrated second order phase
transition where we consider the lowest possible coupling of
the charge density with the square of the order parameter.
Within this model we discuss a possibility of the existence
of a phase-separated state with charge inhomogeneities near
Tc, where in the matrix of the “high-temperature” phase with
the order parameter equal to η1 (η1 �= 0) exist inclusions of the
“low-temperature” phase with the order parameter equal to η2

(η2 > η1). Moreover, with the change of temperature, several
phase transitions can be observed.

In this paper we apply a phenomenological approach based
on the Ginzburg-Landau theory to describe the static phase
separation of a 2D system in the vicinity of the second-
order phase transition, taking into account the presence of the
Coulomb interaction, associated with the overcharging effects
due to doping. Because the types of materials stated above
are quasi-two-dimensional (CuO planes in the cuprates and
MnO planes in a number of manganites), the 2D description
represents a reasonable approximation. We define the range
of parameters (related to the temperature and the doping),
for which the phase separation is energetically favorable. We
also calculate the region of the phase diagram in which two
inhomogeneous phases coexist.

II. THEORETICAL MODEL

Let us consider the 2D system in the vicinity of the
second order phase transition. In de Gennes work [24] the
effects of the double exchange in compounds with mixed
valency such as manganites (La1−xCax)(Mn1−x

3+Mnx
4+)O3

were studied. It was shown [24] that the motion of “extra” holes
or “extra” electrons in antiferromagnet is lowering the energy
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of the system. Also it was shown that the Curie temperature
depends on the doping x. Following de Gennes we begin with
the Hamiltonian, where we add the term with the Coulomb
interaction. For “layer” antiferromagnet the Hamiltonian may
be written as follows:

H = −
∑
ij

Jij SiSj −
∑
ijσ

tij a
+
iσ ajσ − JH

∑
i

Sisi + HCoul.

(1)

Here the first term describes the exchange interaction of the Mn
ions. Si is the spin operator of the ionic spin on the site (i). Jij is
the exchange interaction; Jij connects only neighboring i and
j magnetic sites. The second and the third terms describe the
double exchange interaction [25]. The second term in Eq. (1)
describes the hopping of an electron with the spin σ along ij

lattice sites. a+
iσ (aiσ ) is the creation (annihilation) operator of

electron on i site, tij is the hopping integral. The third term of
(1) describes the Hund’s coupling. Here si is the spin operator
of the conduction electron, which can be expressed in terms
of the creation and annihilation operators for the electron and
the Pauli matrices [25]. The last term describes the Coulomb
interaction. Following de Gennes we assume that the spin
ordering of the unperturbed system is of the “antiferromagnetic
layer” type. Each ionic spin S is coupled ferromagnetically to z′
neighboring spins in the same layer and antiferromagnetically
to z spins in the adjacent layers. The exchange integrals are
called J ′(> 0) and J (< 0). The Zener carriers [26] are allowed
to hop both in the layer (with transfer integrals t ′) and also from
one layer to the other (with transfer integrals t). The number
of magnetic ions per unit volume is called N and the number
of Zener carriers Nx. The model of double exchange is the
exchange model under strong coupling conditions JH � zt

and JH � z′t ′.
In the limit of finite temperature and at low values of the rel-

ative sublattice magnetization, a phenomenological expression
for the free energy was derived. Then in the limit JH → ∞ the
density of the thermodynamic potential of the system φ(η,ρ)
(� = ∫

φ(η,ρ)dr), which describes the order parameter η, can
be written in the form

φ(η,ρ) = φ0 + φη + φint + φCoul , (2)

where for a phase transition of the second order

φη = α

2
η2 + β

4
η4 + δ

6
η6 + ζ

8
η8 + D

2
(∇η)2. (3)

The order parameter η describes the relative magnetization
of each sublattice [24]. Here α = α′(T − Tc), Tc is the phase
transition temperature without doping, α′ ∼ 1/C, C is the
Curie constant, β > 0. φη includes a second-order term from η,
a positive fourth order, a positive sixth order, a positive eighth
order term, and a gradient term. Here:

α = 2N
(

3
2kBT − S2(z′J ′ + zJ )

)
, (4)

β = 4N

(
9

20kBT + 6

175
x(z′t ′ + zt)

)
, (5)

δ = 6N (0.325kBT + 0.27x(z′t ′ + zt)), (6)

ζ = 8N (0.06kBT + 2.21x(z′t ′ + zt)), (7)

kB is the Boltzmann’s constant. φint describes the interaction
of the order parameter η with the local charge density ρ

φint = −σ1

2
η2ρ. (8)

The expression is obtained from the double exchange interac-
tion terms [see Eq. (1)] averaged over the temperature. The
interaction is written here as the local temperature; σ1 is the
interaction constant.

Main physical properties of the system are determined by
the parameter σ1 that is defined as

ρ̄σ1 = 4N

5
x(z′t ′ + zt). (9)

φCoul = γ

2

∫
(ρ(r) − ρ̄)(ρ(r′) − ρ̄)

| r − r′ | dr′ (10)

is the energy density of the Coulomb interaction; the constant
γ is determined by the dielectric constant. In the absence of
terms of φint and φCoul a phase transition of the second order is
observed at α = 0. For α < 0 there exists an equilibrium value
of the order parameter η �= 0. For α > 0, the equilibrium value
of η = 0, then there is no order, which is determined by the
parameter η. In expressions (9) and (10) ρ̄ is the average 2D
surface density of charge

ρ̄ = 1

S

∫
S

ρdr, (11)

where r is 2D vector.
The total free energy � should be minimized with respect

to η(r) and ρ. The minimization of � with respect to ρ gives

−σ1

2
∇2

3Dη2 = 4πγ (ρ(r) − ρ̄)δ(z)d. (12)

Here thickness of the 2D layer d is introduced to preserve
dimensionality. δ(z) is the Dirac delta function. Substituting
(12) in (2), we obtain

φ = φ0 + α

2
η2 + β

4
η4 + δ

6
η6 + ζ

8
η8

+ D

2
(∇η)2 − σ1

2
η2ρ̄

− σ1
2

32π2γ d2

∫ ∇2Dη2(r)∇2Dη2(r′)
| r − r′ | dr′, (13)

where r and r′ are 2D vectors. The last two terms in this ex-
pression are negative. The term σ1

2 η2ρ̄ renormalizes the critical
temperature of the phase transition. The critical temperature
now depends on the average charge density. The coefficient in
front of η2 is changed from α to α̃.

α̃ = α − σ1ρ̄ (14)

Note that the presence of the last nonlocal term in expression
(13) leads to the instability of the homogeneous state.

Let us introduce dimensionless values � and ξ as � = η/η0

and ξx = x/a, ξy = y/a, where η0
4 = β/ζ and a =

√
Dζ 1/2

2β3/2 χ .
Here χ is a constant. We choose the value of the constant in
the interval from 3 to 20. This constant allows us to change
the size of an area in which the spatial distribution of the order
parameter η(r) is calculated. Then the expression (13) has the
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FIG. 1. The distribution of the order parameter �(ξx = const,ξy)
(solid curve) and �ρ = ρ(ξx = const,ξy) − ρ̄ (dashed curve) for χ =
3, A = 3, and τ = 2.8 in the inhomogeneous state. The inset shows
the distribution of the order parameter in 2D. The figure represents
the results of numerical calculations for N = 512.

form

φ = U0

(
τ�2 + �4

2
+ δ̃

�6

3
+ �8

4
+ 2

χ2
(∇�)2

−A

χ

∫ ∇2D�2(ξ )∇2D�2(ξ ′)
| ξ − ξ ′ | dξ ′

)
. (15)

Here parameters U0, τ , χ , A, and δ̃ are defined as

U0 = β

2
η0

4 = β2

2ζ
, (16)

τ = α̃

βη0
2

=
√

ζ

β3
(α′(T − Tc) − σ1ρ̄), (17)

χ = aη0

√
2β

D
, (18)

A = σ1
2

8γ d2π2
√

2D 4
√

βζ
, (19)

δ̃ = δ

β
η0

2 = 2δ√
βζ

. (20)

III. RESULTS

In order to find the minimum of � = ∫
φdr (15) the method

of conjugate gradients (CGM) was used. We have introduced
N × N (N = 128 or N = 512) discrete points on a square
with side a. We have applied the periodic boundary conditions.
In the numerical calculations three parameters A, τ , and χ were
used.

We have studied the dependence of the free energy from the
parameters A and τ with the fixed value of χ . The inset in Fig. 1
shows the spatial distribution of the order parameter �(ξx,ξy)
for the parameters A = 2.8, τ = 3, χ = 3, and N = 512. The
free energy of this state is negative (� < 0). The inset shows
that at the given values of the parameters a phase separation

FIG. 2. Inhomogeneous states are shown for A = 3, χ = 5, and
τ = 3.2(a),2(b),1(c), − 1(d), −5(e), − 15(f ), −20(g), − 25(h), re-
spectively. The phase-separated state is stable at 3.2 � τ � −27.
The parameter τ decreases from (a) to (h), corresponding to the
decreasing of temperature T . All figures represent the results of
numerical calculations for N = 128. The order parameter changes
from �min = 0 to �max = 2.2 in (a) and (b). The difference between
�max and �min decreases from (c) to (h).

takes place. It means that spatially inhomogeneous distribution
of the order parameter represents a global minimum of the
free energy. This state is energetically more favorable than
the homogeneous state [the energy of homogeneous state
with �(r) = 0 is � = 0]. These nonuniform states are formed
because of the charge redistribution [12].

Figure 1 shows the distribution of the order parameter
�(ξx, ξy) and the incremental charge �ρ = ρ(ξx,ξy) − ρ̄

along the line perpendicular to the strip (along the y axis).
As it follows from this figure, in the region of inhomogeneous
distribution of the order parameter �(ξx = const, ξy) there
exists a triple extra charged layer. The total charge of this layer
is zero with high precision, �ρ > 0 in the center of a stripe,
and �ρ < 0 on each side (dashed curve).

For the fixed values of the parameter A = 3 the inhomoge-
neous distribution of the order parameter exists in the range
τ2 � τ � τ3 (τ2 = −27 and τ3 = 4.2 for A = 3). The free
energy is less than zero for τ � τ1 (τ1 = 3.3 for A = 3).

According to Eq. (17) τ is a linear function of T − Tc and
is changed with ρ̄, where Tc is the transition temperature in
the absence of interaction (i.e., at �int = 0). ρ̄ is the average
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FIG. 3. Inhomogeneous states are shown for A = 2.2, χ =
10, and τ = 0.01(a), − 0.1(b), − 0.2(c), − 0.5(d), −1(e), − 2(f ),
−3(g), − 3.7(h), respectively. The inhomogeneous state exists in a
more narrow interval of τ (0.01 � τ � −0.37) for A = 2.2 than for
A = 3. The decrease of A (increase of Coulomb interaction) leads
to the decrease of the interval of τ where the phase separation is
observed. All figures represent the results of numerical calculations
for N = 128.

charge; ρ̄ is proportional to the level of doping. The parameter
A Eq. (19) depends on the coupling parameter σ1 and the
strength of the Coulomb interaction. With the increase of
the Coulomb interaction parameter A decreases. As a result
the region of τ , where the phase separation is observed, is
shrinking.

In Fig. 2 a change of a form of inhomogeneous states is
shown for A = 3 and with the reduction of τ from 3.2 to −25.
The free energy of these inhomogeneous states is negative and
smaller than the energy of a homogeneous state.

The landscape of the phase separation changes with the
change of τ as shown in Fig. 2. For τ > 0 the phase separation
is observed in the form of stripes or rings. The stripe with
� > 0 appears on the background with zero order parameter
� = 0. The stripes may be straight or may have a more complex
closed form. With increasing of τ , the number of such stripes
is reduced, and the rings are compressed. Note that the value of
the order parameter in the center of the stripes is not changed
[see Figs. 2(c), 2(b) and 2(a)]. When the value of τ becomes
negative and with the further reduction of τ , the loop’s form
is changing. They are bent more strongly, and the value of

FIG. 4. The maximum �max and minimum �min values of the
order parameter in the inhomogeneous states as a function of τ for
different values of A. The inset shows the distribution of the order
parameter � in 2D for A = 2, τ = −1.25, and ξ = 10. The figure
represents the results of numerical calculations for N = 512.

the order parameter in the “background” becomes different
from zero. With further decreasing of τ the phase separation
becomes more shallow. The difference between � inside and
outside of the “stripe” is decreasing to zero at τ = τ2 and the
transition to the homogeneous state with � = const occurs
[see Figs. 2(d)–2(h)].

In Fig. 3 the change of a form of the inhomogeneous states
is shown for A = 2.2, χ = 10 and with the reduction of τ from
0.01 to −3.7. From Figs. 2 and 3 it is clearly seen that the main
features of a phase separated state are similar. Note that the
region of the existence of a phase separated state for A = 2.2
is reduced in comparison with that for A = 3 (see Fig. 4).

Figure 4 shows the dependence of the maximum value of
the order parameter �max and the minimum value �min as a
function of τ for four different values of A = 2, 2.2, 2.5, and
3 in the phase-separated state. A smooth solid line shows the
change in the order parameter for A = 0, i.e., for the case
when there is no interaction between the order parameter and
the charge [σ1 = 0, see Eq. (8)]. Figure 4 shows that the phase
transition of the second order is observed at A = 0 and τ = 0.
The order parameter is zero for τ > 0, and the phase with a
nonzero order parameter appears below Tc τ < 0. The energy
of this state becomes negative �hom < 0 at τ < 0.

In our model there is an interaction of the order parameter
and the charge (σ1 �= 0). Therefore, the minimum in free
energy �inhom < 0 corresponds to an inhomogeneous phase-
separated state with the order parameter varying from �min to
�max (see Fig. 4). Consider the changes of phases that occur
when τ decreases for the case of A = 3. An inhomogeneous
phase-separated state appears as a jump (a phase transition of
the first order) at τ = τ1. The regions with � �= 0 grow on the
background with zero order parameter � = 0. �max = 2.2 in
these regions. The number of such regions increases when τ

decreases from τ1 to 0. Note that the values of �max = 2.2 and
�min = 0 do not change in this region of τ [see Figs. 2(a),
2(b) and 2(c)]. At τ = 0, the phase-separated state starts to
change. �max begins to decrease, and �min begins to increase
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FIG. 5. The distribution of the order parameter �(r) (solid curve)
and�ρ = ρ(r) − ρ̄ (dashed curve) forχ = 10,A = 2.2, and negative
value τ = −3 in the inhomogeneous state. The direction of r is chosen
perpendicular to the strips on the inset. The inset shows the distribution
of the order parameter in 2D for this set of parameters. The figure
represents the results of numerical calculations for N = 128.

[see Figs. 2(d)–2(h)]. With further decreasing of τ < 0, the
difference between �max and �min decreases, and �max =
�min = � at τ = τ2, therefore a phase transition of the second
order from an inhomogeneous state to a homogeneous state is
observed.

Figure 5 shows the inhomogeneous distribution of the order
parameter �(r) and the incremental charge �ρ = ρ(r) − ρ̄

along a line perpendicular to strips for negative value τ = −3.
The order parameter � is varying from �min = 0.8 to �max =
1.3. In the region of inhomogeneous distribution of the order
parameter � there exists inhomogeneous distribution of the
incremental charge (dashed curve). When χ changes from 3 to
20 (with A = const), the interval of τ where inhomogeneous
states are formed does not change.

In Fig. 6(a) τ = τ1 and τ = τ2 lines indicate the boundaries
of the inhomogeneous states in axes A − τ for χ = 10 for
which � < 0. The figure shows that with the increase of
the parameter A the regions of τ in which inhomogeneous
distribution of the order parameter �(ξx,ξy) was observed are
expanding. In Fig. 6(a) the τ = τ3 line shows the boundary of
the region of metastable inhomogeneous phases. For τ1 < τ <

τ3 heterogeneous state corresponds to the local minimum of the
free energy, but � > 0. This state is similar to “superheated
liquid.”

In Fig. 6(b) a phase diagram of inhomogeneous states is
shown in the axes T − 1/A. I and IV regions correspond
to the homogeneous phases with zero and nonzero order
parameters, respectively. II and III regions correspond to the
inhomogeneous phases. 1/A is proportional to the value of
the Coulomb interaction γ and inversely proportional to the
square σ1 [see Eq. (19)]. The phase separation is impossible
below the critical end point at A = 1.8 which is represented
by the dot in the phase diagram Fig. 6(b). Indeed at a large
value of the Coulomb interaction and a small value of the
double-exchange energy the Coulomb energy for any charge

FIG. 6. (a) The phase diagram of inhomogeneous states in axes
A − τ for χ = 10 for which �� < 0. The energy of the inhomo-
geneous phase-separated state �inhom is lower than the energy of
the homogeneous state �hom at τ2 < τ < τ1. �� = �inhom − �hom.
(b) The phase diagram plotted in the axes T − 1/A, where T is the
temperature. The following parameters were used: Tc + σ1ρ̄ = 275K,
τ

α′

√
β3

ζ
= 0.3K−1. Region I is a homogeneous nonmagnetic state with

� = 0. Region II is a phase-separated state with zero and nonzero
order parameters. Region III is a phase-separated state with nonzero
order parameter. Region IV is the homogeneous magnetic state with
� �= 0. The point at A = 1.8 is the critical end point. For A < 1.8 the
phase separation is impossible.

modulation becomes so large that it is always larger than energy
gain due to ordering.

Figure 7 shows the phase diagram of the inhomogeneous
state in x − T axes for A = 2.7 and σ1 = 10. The decrease in
A leads to the decrease of the area where the phase separation
is observed.

As it was mentioned in the Introduction the phase separation
is observed in manganites as well as in the cuprate high-
temperature superconductors [1–10]. We discuss in this paper
the inhomogeneous phases in manganites where a sequence of
phase transitions to inhomogeneous states is observed [2–4].
Let us consider the La1−xSrxMnO3 system. For strontium
concentration x = 0.125 the following sequence of the phase
transition is observed. First at T = 275 K the transition from
homogeneous to inhomogeneous phase I is observed. Then
with lowering of the temperature the transition to inhomoge-
neous phase II takes place. Only then at 140 K the system
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FIG. 7. Phase diagram in x − T axes. The parameter A is equal
to 2.7, and σ1 = 10. The area between solid and dash dot lines is
a phase-separated state, which corresponds to regions II and III in
Fig. 6(b). Dotted line is the temperature of the phase transition in the
absence of a phase-separated state.

undergoes the transition to homogeneous state [4,27,28]. This
sequence of the phase transitions is very similar to that
discussed in our paper. In addition similar inhomogeneous
states may appear in the cuprates as well [29–33].

IV. CONCLUSION

In conclusion we consider the theory of phase transition
of the second order, where in addition to the standard expan-
sion of the free energy in powers of the order parameter, it

was introduced the Coulomb interaction and the interaction
of a charge with the order parameter. The distribution of
the order parameter and the charge distribution in the 2D
plane that correspond to the minimum of free energy were
found. Numerical calculations were performed using the CGM
method. Calculations showed that between the regions which
are characterized by constant values of the order parameter,
there is an area with inhomogeneous distribution of the order
parameter and inhomogeneous distribution of the charge. This
phase separation can exist in the form of one-dimensional
stripes or in two-dimensional rings or “snakes.” A series
of phase transitions have been found. With a decrease of
temperature, first, the phase transition from the homogeneous
state with zero order parameter to the phase-separated state
with two phases with zero and nonzero order parameter
(τ > 0) occurs. Then a first-order phase transition to another
phase-separated state, in which both phases have different and
nonzero values of order parameter (for τ < 0), is observed.
Only with a further decrease of temperature the transition
to a homogeneous ordered state takes place. The regions in
the parameter space “temperature-doping level,” for which
the phase separation or the coexisting of phases occur, have
been defined. We have tracked the change in the type of phase
separation under the change of the temperature, the doping
level of the material, and the alteration of the coupling constant.
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