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Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal processes
of electric field-driven spin torque and magnetization dynamics-driven spin and charge flow. Both dampinglike
and fieldlike spin-orbit torques have been observed in the forward process of current-driven spin torque and
dampinglike inverse spin-orbit torque has been well studied via spin pumping into heavy metal layers. Here, we
demonstrate that established microwave transmission spectroscopy of ferromagnet/normal metal bilayers under
ferromagnetic resonance can be used to inductively detect the ac charge currents driven by the inverse spin-charge
conversion processes. This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR)
measurements. We show that in addition to the commonly extracted spectroscopic information, VNA-FMR
measurements can be used to quantify the magnitude and phase of all ac charge currents in the sample, including
those due to spin pumping and spin-charge conversion. Our findings reveal that Ni80Fe20/Pt bilayers exhibit both
dampinglike and fieldlike inverse spin-orbit torques. While the magnitudes of both the dampinglike and fieldlike
inverse spin-orbit torque are of comparable scale to prior reported values for similar material systems, we observed
a significant dependence of the dampinglike magnitude on the order of deposition. This suggests interface quality
plays an important role in the overall strength of the dampinglike spin-to-charge conversion.
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I. INTRODUCTION

Spin-charge transduction effects for ferromagnet/
nonmagnet (FM/NM) multilayers couple electric fields to
magnetic torques in the forward process [so-called spin-orbit
torque (SOT)], and they couple magnetization dynamics to
currents in the inverse process (iSOT). In general, these torques
can be phenomenologically separated into two components:
dampinglike and fieldlike. Both are perpendicular to the
FM magnetization, but the dampinglike torque is odd under
time-reversal and dissipative, whereas the fieldlike torque
is even under time-reversal and conservative [1]. A classic
example of a fieldlike torque is the action of an Oersted field
on an FM magnetization due to a charge current in an adjacent
conducting layer. By Onsager reciprocity, the inverse process
is captured by Faraday’s law: magnetization dynamics in
the FM generate charge currents in the NM. Recently, it has
been found that spin-orbit coupling (SOC) in multilayers
can give rise to both field- and dampinglike SOTs [2,3], but
with substantially different scaling than that achieved with
Oersted fields. Unlike the Oersted effect, these spin-orbitronic
effects are short-range, making them highly advantageous
for microelectronic applications that require device scaling
to high densities such as nonvolatile memory and alternative
state-variable logic [4,5].
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Dampinglike torques due to the spin Hall effect (SHE) in
heavy NM layers such as Pt and β-Ta are well-studied and
understood, and have been investigated in both forward [4] and
inverse configurations [6–8]. Substantial fieldlike torques have
also been measured for FM/NM interfaces in the forward con-
figuration [2,9–11]. However, an inverse measurement of the
fieldlike torque in Ni80Fe20/Pt has not yet been unambiguosly
reported [12]. Here, we present simultaneous measurements
of inverse fieldlike and dampinglike torques in Ni80Fe20/Pt
bilayers via well-established coplanar waveguide (CPW) fer-
romagnetic resonance (FMR). Time-varying magnetic fields
produced by a FM/NM sample under FMR excitation will
inductively couple into the CPW, altering the total inductance
of the microwave circuit. Such fields are produced by (1) the
Py precessing magnetization, (2) Faraday effect induced ac
currents in the Pt layer, and (3) spin-orbit ac currents due to
dampinglike and (4) fieldlike processes. We show that through
proper background normalization, combined with Onsager
reciprocity for the specific phenomenology of these measure-
ments, commonly-used vector network analyzer (VNA) FMR
spectroscopy allows accurate identification of the processes
that contribute to spin-charge conversion.

The paper is organized as follows. In Sec. II, by appealing
to Onsager reciprocity, we provide the phenomenological
background relating the forward and inverse processes that
produce magnetic torques and charge flow in a ferromag-
net/normal metal system under electrical bias or with excited
magnetization dynamics. Section III describes the quantitative
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VNA-FMR technique, and derives the expressions we use to
calculate the sample’s complex inductance. This section also
introduces the effective conductivity σ̃NM that quantifies the
magnitude and symmetry of magnetic torques due to applied
charge currents, and reciprocally, of the ac charge currents
flowing in a sample in response to the driven magnetization dy-
namics. In Sec. IV, we present data acquired from Ni80Fe20/Pt
bilayers and Ni80Fe20/Cu control samples. The magnitude of
the phenomenological parameter σ̃NM extracted from these
data is well within the range of reported values, and it obeys the
usual symmetry properties associated with the stacking order
of the Ni80Fe20and Pt layers. Finally, we discuss the results
in Sec. V by comparing our extracted iSOT parameters to the
microscopic spin-charge conversion parameters of spin Hall
angle and Rashba parameter. In all cases, the magnitudes of the
extracted spin Hall angle and Rashba parameter are in rough
agreement with what has been reported in the literature, though
this agreement is contingent on the assumption of typical
values for the interfacial and bulk spin transport parameters.
However, we find that the extracted spin Hall angle changes

by a factor of almost 4 depending on the growth order of the
multilayer stacks, with a larger spin Hall angle when the Pt
is grown on top of the Ni80Fe20. This suggests that the spin
transport parameters are in actuality highly dependent on the
stack growth order.

II. ONSAGER RELATIONS FOR SPIN-ORBIT TORQUE

Onsager reciprocity relations [13] are well known for cer-
tain pairs of forces and flows. For example, for thermoelectric
effects, applied electric fields or thermal gradients can drive
both charge and heat flow. In this section, we establish Onsager
relations for charge current and magnetic torque as the flows
that are driven by applied electric fields and magnetization
dynamics in a FM/NM multilayer [1].

By analogy to Ohm’s law, J = σE, we can write a gen-
eral matrix equation relating driving forces (magnetization
dynamics ∂m̂/∂t and electric field E) to flows (magnetic torque
density T and charge current density J) [1]:

⎡
⎣

(
2e
h̄

)[ ∫ +dFM

0 T(z)dz
]

[ ∫ +dFM

−dNM
J(z)dz

]
⎤
⎦ = G

[
Gmag sgn(ẑ · n̂)

(−σ F
e + σ SOT

e − σ SOT
o [m̂×]

)
sgn(ẑ · n̂)

(−σ F
e + σ SOT

e − σ SOT
o [m̂×]

) − 1
Zeff

][(
h̄
2e

)
∂m̂
∂t

ẑ × E

]
,

(1)

where m̂ is the magnetization unit vector, h̄ is Planck’s constant
divided by 2π , e is the electron charge, dFM and dNM are the
FM and NM thicknesses. The terms in the 2 × 2 conductivity
matrix are described below. The sign of the off-diagonal terms
are determined by sgn(ẑ · n̂), where n̂ is an interface normal
pointing into the FM. The coordinate unit vector ẑ is defined
by the sample placement on the CPW, as shown in Fig. 1(a),
and z = 0 is defined by the FM/NM interface. G is a 2 × 2
matrix imposing geometrical constraints: (1) magnetic torques
are orthogonal to m̂ and (2) charge currents can flow only in
the x,y plane:

G =
[

[m̂×] 0

0 [ẑ×]

]
. (2)

The diagonal elements of the effective conductivity matrix
describe the Gilbert damping of the FM and charge flow in
the metallic bilayer in response to an applied electric field.
That is,

(
2e

h̄

)[∫ +dFM

0
T(z)dz

]
=

(
h̄

2e

)
Gmag

(
m̂ × ∂m̂

∂t

)
, (3)

[∫ +dFM

−dNM

J(z)dz

]
= − 1

Zeff
ẑ × (ẑ × E), (4)

where Gmag ≡ −dFM(2e/h̄)2(αMs/γ ), α is the Gilbert damp-
ing parameter, and γ is the gyromagnetic ratio, such that Eq. (3)
is the usual Gilbert damping term from the Landau-Lifshitz-
Gilbert equation:

∂m̂

∂t
= −γμ0m̂ × H −

(
γ

MsdFM

) ∫ +dFM

0
T(z)dz. (5)

In Eq. (4), Zeff is the effective frequency-dependent
impedance of the bilayer. Equation (4) reduces to Ohm’s law
in the dc limit (Zeff → R� as f → 0).

The off-diagonal terms describe the electromagnetic reci-
procity between Faraday’s and Ampere’s laws [14,15], as
well as spin-orbit torques (SOT) and their inverse, using the
effective conductivities σ F

e , σ SOT
e , and σ SOT

o :(
2e

h̄

)[∫ +dFM

0
T(z)dz

]

= sgn(ẑ · n̂)m̂ × [(−σ F
e + σ SOT

e − σ SOT
o [m̂×]

)
(ẑ × E)

]
,

(6)[∫ +dFM

−dNM

J(z)dz

]

= sgn(ẑ · n̂)

(
h̄

2e

)
ẑ ×

[(−σ F
e +σ SOT

e − σ SOT
o [m̂×]

)∂m̂

∂t

]
.

(7)

Here, the superscripts indicate the source of the torque or
current as due to the Faraday effect or SOT. The subscripts
indicate “even” or “odd” with respect to time-reversal, which
determines the torque direction or phase of the corresponding
current with respect to the driving electric field or magneti-
zation dynamics. The signs of the effective conductivities are
chosen to comply with the appropriate time-reversal symmetry
of an Oersted torque (or Faraday’s law of induction) for
σ F

e , and of fieldlike and dampinglike SOT (σ SOT
e and σ SOT

o ,
respectively). Furthermore, the sign of the fieldlike SOT terms
are consistent with that used by Emori et al. [16] and Kim
et al. [17], in which a positive, interfacial SOT field points
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FIG. 1. (a) Sample on CPW, showing out-of-plane field H0 and sample length l. The microwave driving field points primarily along ŷ at
the sample. (b) Schematic of the bilayer, with precessing magnetization m(t) at time t0 when m = 〈mx,0,mz〉. Bilayer is insulated from CPW
using photoresist spacer layer (not shown). At this instant in time, J F

e (due to the Faraday effect in the NM) and J SOT
e (e.g., due to inverse

Rashba-Edelstein effect) are maximal along ±x̂, and hy is also at its maximum strength. The corresponding Oersted fields from J F
e and J SOT

e

are superposed. The spin accumulation (with orientation ŝ) and J SOT
e are produced at the FM/NM interface. Interface normal is given by n̂.

(c) Same as (b), except at time t1 when m = 〈0,my,mz〉. Here, odd-symmetry SOT current J SOT
o (e.g., due to inverse spin Hall effect), and the

dynamic fields H SOT
o and Hdipole are at maximum amplitude. Note that the dipolar signal is proportional to ∂t (Hdipole · ŷ), and not simply to

Hdipole. Spin flow direction Q̂ŝ due to spin pumping into the NM is also shown. (d) Amplitude of driving field hy and different signal sources as
a function of time (left), and viewed in the complex plane at time t0 (right). Relative amplitudes not indicated. For further discussion of signal
phases, see Ref. [23].

in the direction ẑ × J. Finally, we use the usual convention
for the direction of SHE and iSHE currents: Qŝ ∝ ŝ × J and
J ∝ Qŝ × ŝ, for spin current flow in the Q direction and spin
orientation ŝ, as in Ref. [18].

First, consider the Faraday conductivity, σ F
e . In the forward

process, an electric field E produces a charge current, which
by Ampere’s law produces a magnetic field. This field exerts a
torque T on the magnetization of the FM layer. In the reverse
process, magnetization dynamics ∂t m̂ produce an ac magnetic
field, which by Faraday’s law induces a charge current J in the
NM layer. In this way, σ F

e quantifies the reciprocity between
Ampere’s and Faraday’s law [see Eq. (31) for an estimate
of the σ F

e magnitude based on material properties]. Inclusion
of the terms in Eq. (1) due to electrodynamic reciprocity is
critical for the proper interpretation of inverse spin-orbit torque
experiments [12].

Also present in the off-diagonal terms are SOT conductiv-
ities due to spin-charge conversion. In Eq. (6), these manifest
as electric-field driven dampinglike torques, which are propor-
tional to m̂ × (m̂ × (ẑ × E)), and fieldlike torques, which are
proportional to m̂ × (ẑ × E). The constants of proportionality
between applied electric field and SOTs are σ SOT

o and σ SOT
e .

In the reverse direction [Eq. (7)], these effects are respon-
sible for spin-to-charge conversion (e.g., inverse spin Hall
effect (iSHE) [19] or inverse Rashba-Edelstein effect (iREE)
[20]).

Reporting effective conductivities, as opposed to spin-
charge conversion parameters like the spin Hall angle, directly
relates the microwave inputs and charge current outputs of an
iSOT device without the need for separate characterization of
spin-mixing conductance or spin diffusion length. Recipro-
cally, in a spin torque experiment with charge current inputs
and magnetization dynamics (or switching) as output, the
effective conductivities provide the ideal figure of merit for de-
termining magnetization oscillation and switching thresholds
of the applied current. To estimate the critical current density
Jc needed to switch the magnetization of a ferromagnetic layer
at 0 K [21,22], one simply needs to equate the Gilbert damping
torque [Eq. (3)] and odd (anti-damping-like ) SOT [Eq. (6)]:

Jc = αMsdFM
ω

γ

2e

h̄

(
σ

σ SOT
o

)
, (8)

where ω is the FMR frequency with no applied fields
(e.g., for in-plane magnetization, ω = μ0γ

√
Hk(Ms + Hk),

with anisotropy field Hk). Using α as determined for these
Ni80Fe20/Pt films (see Ref. [23]), Ms = 700kA/m,Hk =
160kA/m (for thermal stability considerations), bulk Pt re-
sistivity [24], and the measured σ SOT

o (see Table I), we esti-
mate a critical current density of 2 × 1012 A/m2 for a 2-nm
Ni80Fe20film.

While the effective conductivity is the directly measured
quantity, in Sec. V A, we nevertheless derive expressions
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TABLE I. Effective conductivities (in units of 105 	−1 m−1)
for various FM/NM samples. Measured values are calculated from
measured inductances (Fig. 5). Corrected values are calculated by
subtraction of Cu control to remove the Faraday contribution (in the
case of σe) and any contribution from the Ta interfaces, followed by
application of the shunting correction (see Ref. [23]).

Sample
(
σ F

e − σ SOT
e

)
meas

(
σ SOT

o

)
meas

(
σ SOT

e

)
corr

(
σ SOT

o

)
corr

Py/Pt −0.45(3) 1.0(1) −1.48(7) 2.4(3)
Pt/Py −0.69(5) 0.31(6) −1.8(2) 0.6(2)
Py/Cu 0.143(6) 0.07(3)
Cu/Py 0.04(3) 0.06(1)

relating the effective conductivities to microscopic spin-charge
conversion parameters. Extraction of the microscopic param-
eters is necessarily contingent on the details of the model
employed and parameters assumed.

The effective conductivities can also be related to the
often used quantity of effective flux density per unit current
density [25] Beff/J , with units of T m2 A−1 via the equation
Beff/J = σ SOT

e,o h̄/(2MsσdFMe) (where σ is the ordinary charge
conductivity of the NM). However, our definition for the
effective conductivity is more general insofar as it allows one
to calculate the actual SOT without the need to independently
determine the sample magnetization, conductivity, or actual
thickness.

Equation (1) is consistent with the phenomenological for-
mulation presented by Freimuth, Bluegel, and Mokrousov [1],
although it has been expanded to include the purely elec-
trodynamic contributions. Our use of the descriptors “even”
and “odd” are different from that of Freimuth et al., who
use the symmetry of the spin-orbit torques with respect to
magnetization-reversal as the symmetry identifier. We instead
use the symmetry of the torque with respect to time-reversal
because this is the relevant symmetry with regard to the
off-diagonal components in the phenomenological Eq. (1).
Any process for which the torque is odd under time-reversal
qualifies as microscopically nonreversible in the sense of
Onsager reciprocity, where microscopic reversibility pertains
solely to forces that are even functions of velocity, as well
as position [13]. (We also note that all axial vectors such as
magnetic field are odd under time reversal.)

III. EXPERIMENTAL TECHNIQUE

The broadband, phase-sensitive FMR measurements utilize
a coplanar waveguide (CPW) as both the excitation and
detection transducer [see Fig. 1(a)]. Any source of ac magnetic
flux generated by the bilayer is inductively detected in the
CPW. Therefore the inductive load that the sample contributes
to the CPW circuit consists of four terms: (1) the real-valued L0

due to the oscillating magnetic dipolar fields produced by the
resonating FM magnetization; (2) the Faraday-effect currents
induced in the NM layer by the precessing FM magnetization;
(3) currents produced by dampinglike iSOT effects (e.g., spin
pumping + iSHE); and (4) currents produced by fieldlike
iSOT effects (e.g., iREE). The latter three inductances, which
we collectively define as complex-valued LNM, are produced
by currents in the NM which generate Oersted fields that

inductively couple to the CPW. We quantify these currents
with the effective conductivities σ F

e , σ SOT
o , and σ SOT

e , described
above. Importantly, as shown below, while L0 is independent of
frequency, LNM is linear in frequency, as the currents in the NM
are driven by ∂t m̂. Hence frequency-dependent measurements
allow us to disentangle L0 and LNM.

Figures 1(b) and 1(c) show schematics of these four signal
sources at two instants in time: when the dipolar and even
SOT effects are maximal [Fig. 1(b)] and when the odd SOT
effect is maximal [Fig. 1(c)]. Figure 1(d) shows the time
dependence of each of these signal sources, and their distinct
phase relationships to the driving field hy, which we exploit
below to determine their contributions separately.

For our measurements, we place samples onto a coplanar
waveguide (CPW) with the metallic film side facing down
(see Fig. 1). This setup is positioned between the pole pieces
of a room-temperature electromagnet capable of producing
fields up to ≈2.2 T. Using a VNA, we measure the change
in microwave transmission through the CPW loaded with the
bilayer sample as an out-of-plane dc magnetic field (H0 ‖
ẑ) is swept through the FMR condition of the Ni80Fe20

(Permalloy, Py) layer. We acquire the microwave transmission
S parameter S21 ≡ Vin,2/Vout,1, where Vin(out),1(2) is the voltage
input (output) at port 1 (2) of the VNA. Field sweeps were
repeated to average the transmission data until an appropriate
signal-to-noise ratio was obtained.

Typically, VNA-FMR measurements focus on the reso-
nance field and linewidth. Our method additionally makes use
of the signal magnitude and phase in order to directly probe
the ac charge currents produced by iSOT. Previous studies of
ac charge currents in spin pumping experiments have relied
on intricate experimental setups or techniques that suppress or
are insensitive to spurious background signals [12,26,27]. Our
technique remains sensitive to currents induced by the Faraday
effect, but is able to separate them from spin-charge conversion
currents through the combination of phase-sensitive analysis
and comparison to control samples in which the heavy metal
NM (here, Pt) is substituted with a Cu layer of nominally
negligible intrinsic spin-orbit effects. Furthermore, because
the CPW is inductively coupled to the sample, no electrical
connections need to be made directly to the FM/NM sample.

The sample adds a complex inductance L in series with
the impedance of the bare CPW, Z0 (here, 50 	). The change
in microwave transmission 
S21 is therefore that of a simple
voltage divider [28]:


S21 = −1

2

(
iωL

Z0 + iωL

)
≈ −iωL

2Z0
, (9)

for Z0 
 ωL, where ω is the microwave frequency. The factor
of 1/2 is needed because the port 2 voltage measurement is
between the CPW signal and ground (and not between port 2
and port 1).

A. Inductance derivations

In order to extract values for the SOT effects from the
measured 
S21, we derive expressions for each contribution
to L.
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1. Inductance due to dipole field of dynamic magnetization

To derive the inductance due to ac dipolar fields produced
by the precessing FM magnetization, we follow Ref. [28]:

L0 = μ0�

WwgdFMI 2

×
[∫ +∞

−∞
dy

∫ dFM+dwg

dwg

dz[q(y,z) · χ (ω,H0) · h1(y,z,I )]

]

×
[∫ +∞

−∞
dy

∫ dFM+dwg

dwg

dz[q(y,z) · h1(y,z,I )]

]

∼= μ0�

WwgdFMI 2
χyy(ω,H0)h2

y(I,z)d2
FMW 2

wg

∼= μ0�

WwgdFMI 2
χyy(ω,H0)

(
I

2Wwg
η(z,Wwg)

)2

d2
FMW 2

wg

= μ0�dFM

4Wwg
χyy(ω,H0)η2(z,Wwg), (10)

where μ0 is the vacuum permeability, l is the sample length,
dFM is the FM thickness, Wwg is the width of the CPW signal
line (here, 100 μm), and χyy(ω) is the frequency-dependent
magnetic susceptibility. η(z,Wwg) ≡ (2/π ) arctan(Wwg/2z) is
the spacing loss, ranging from 0 to 1, due to a finite distance
z between sample and waveguide. We have assumed the
coordinate system described in Fig. 1 (x̂ along the CPW
signal propagation direction, ẑ along the CPW and sample
normal). The function q(y,z) describes the normalized spatial
amplitude of the FMR mode. For the uniform mode, q(y,z) =
1 over the entire sample. The first set of integrals in brackets
captures the integrated amplitude of the mode as excited
by the driving microwave field h1 = hyŷ, while the second
describes the inductive pickup sensitivity of the CPW. The first
approximation assumes uniform microwave field over the
sample dimensions. The second approximation utilizes the
Karlqvist equation [29] to approximate the microwave field
as hy(I,z) ∼= I/(2Wwg)η(z,Wwg).

2. Inductance due to ac current flow in NM

Following Rosa [30], we model the sample and CPW as two
thin current-carrying sheets of width w = Wwg, separation z,
and length l, so that the mutual inductance is given by

L12 = μ0

4π
2l

[
ln

(
2l

R

)
− 1

]
, (11)

where R is defined as

R ≡
√

w2 + z2

(
z√

w2 + z2

)( z
w )2

×exp

[
2z

w
arctan

(
w

z

)
− 3

2

]
. (12)

Viewing the sample-CPW system as a voltage transformer (two
mutually-coupled inductors), the voltage induced in the CPW
due to current INM in the NM and the mutual inductance L12

is given by V = −L12(∂INM/∂t). If instead we consider the

system to be a single lumped-element inductor, the voltage
due to the self-inductance contributed by the sample LNM and
applied current ICPW is V = LNM(∂ICPW/∂t). Therefore we
can calculate LNM as

LNM = −L12
INM

ICPW
. (13)

The charge current we are interested in is that driven by
the magnetization dynamics of the FM layer, and given by the
off-diagonal term of Eq. (1):

INM = x̂ ·
[∫ +dFM

−dNM

J(z)dz

]
Wwg

= x̂ · [
ẑ × ( − σ F

e + σ SOT
e − σ SOT

o [m̂×]
)
∂t m̂

]
× sgn(ẑ · n̂)

(
h̄

2e

)
Wwg. (14)

Assuming a linear solution to the Landau-Lifshitz-Gilbert
equation of motion for the magnetization, we write a simple
relation between the dynamic component of the magnetization
m and microwave field h1:

∂t m̂ = iω
χ

Ms
h1. (15)

To convert the vector cross products in Eq. (14) to the
complex plane, we use χ in the frequency domain [31]:

χ = γμ0Ms

ω2
res − ω2 + iω
ω

×
[

(1 + α2)ωy − iαω iω

−iω (1 + α2)ωx − iαω

]
, (16)

where ωx,y ≡ γμ0Hx,y , Hx,y is the stiffness field in the x

or y direction (including external, anisotropy, and demag-
netizing fields), ωres ≡ √

ωxωy , and 
ω ≡ α(ωx + ωy). For
compactness in the following derivation, we utilize the tensor
components of the susceptibility as defined in Eq. S1.

Equation (14) has even terms along ẑ × ∂t m̂ and odd terms
along ẑ × (m̂ × ∂t m̂). Using Eq. (15) for ∂t m̂, we can work
out these cross products assuming m̂ ‖ ẑ (small-angle FMR
excitation). The vector components of the even terms are
given by

ẑ × ∂t m̂ = ẑ ×
([

χxx χxy

χyx χyy

][
0

hy

])(
iω

Ms

)

= ẑ × (χxyhyx̂ + χyyhyŷ)

(
iω

Ms

)

= (−χyyhyx̂ + χxyhyŷ)

(
iω

Ms

)
. (17)

Similarly, we find for the odd terms:

ẑ × (m̂ × ∂t m̂) = ẑ × (−χyyhyx̂ + χxyhyŷ)

(
iω

Ms

)

= (−χxyhyx̂ − χyyhyŷ)

(
iω

Ms

)
. (18)

Noting from Eq. (16) that χxy = iχyy (ignoring terms of
order α or α2, and working near resonance such that ωx = ω),
the vector relationships of Eqs. (17) and (18) are substituted
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into Eq. (14). After evaluating the x̂ projection as prescribed
by Eq. (14) and grouping even and odd terms, we find

INM = [(
σ F

e − σ SOT
e

)+iσ SOT
o

]
sgn(ẑ · n̂)

iχyyhy

Ms

(
h̄ω

2e

)
Wwg,

(19)

from which we define σ̃NM = (σ F
e − σ SOT

e ) + iσ SOT
o . On res-

onance, χyy = −iγμ0Ms/(2αeffωres), such that Eq. (19) pro-
duces the current phases depicted in Fig. 1.

Finally, using the Karlqvist equation [29], we approximate
the field of the CPW. With these substitutions into Eq. (13), we
arrive at the final result for the inductance due to all ac currents
in the NM:

LNM = sgn(ẑ · n̂)L12(z,Wwg,l)η(z,Wwg)

× h̄ω

4Mse
iχyy(ω,H0)σ̃NM. (20)

The different frequency dependencies of L0 and LNM is
critical for our analysis. When normalized to χyy(ω,H0), L0

is a frequency-independent inductance. By contrast, LNM has
an extra factor of ω, reflecting the fact that both Faraday
and SOT effects are driven by ∂t m̂, rather than by m(t)
itself.

Careful attention needs to be paid to the signal phase in
order to properly add the inductive effects of L0 and LNM.
As discussed in detail in Ref. [23], it is the current phase in
the CPW that determines the propagating signal phase. Using
the excitation current in the CPW as the phase reference,
we work out the phase of the induced currents due to the
perturbative inductance of the sample-on-CPW, and find that
the inductances add according to L = L0 + iLNM.

After normalizing by the fitted susceptibility L̃ ≡
L/χyy(ω,H0), the real and imaginary normalized inductance
amplitudes are given by

Re(L̃) = μ0l

4

[
dFM

Wwg
η2(z,Wwg) − sgn(ẑ · n̂)η(z,Wwg)

×L12(z,Wwg,l)

μ0lMs

h̄ω

e

(
σ F

e − σ SOT
e

)]
, (21)

Im(L̃) = −μ0l

4

[
sgn(ẑ · n̂)η(z,Wwg)

×L12(z,Wwg,l)

μ0lMs

h̄ω

e
σ SOT

o

]
. (22)

Note that when the stacking order of FM and NM is reversed,
so is the sign of the SOT and Faraday currents (and therefore
their inductance contributions).

3. Magnetization dynamics driven by forward SOT

From the transformer analogy developed above and dis-
cussed in Ref. [23], we see that “image currents” are produced
in the CPW when currents flow in the conducting sample.
Reciprocity requires that the excitation currents in the CPW
drive image currents in the sample. This current will produce
Amperian torque and forward SOT effects according to Eq. (6),
exciting additional magnetization dynamics, which are then
picked up by the CPW. This series of transduction effects is

fully reciprocal with the Faraday and iSOT sequence described
above. In the first case, a drive current in the CPW excites
magnetization dynamics [via the coupling factor, η(z,Wwg)].
Those magnetization dynamics drive charge current in the
NM via σ̃NM. Finally, these charge currents couple into the
CPW via the mutual inductance L12(z,Wwg,l). In the second
case, the order is simply reversed: the CPW currents create
image currents in the NM [via L12(z,Wwg,l)], which drive
magnetization dynamics (via σ̃NM), which are picked up by
the CPW [via η(z,Wwg)]. It can be shown that the induced
signal due to forward Amperian or SOT-driven magnetization
dynamics add together in-phase with their inverse counterparts,
increasing the inductive response from each contribution by a
factor of 2. The inductance in Eq. (20) [and hence (21) and
(22)] is therefore too small by a factor of 2. Therefore, in the
below calculation of σ̃NM based on measured values of L̃NM,
we include this factor.

B. Background correction

To make use of the phase and amplitude information in the
VNA-FMR spectra, we first fit the raw spectra to

S21(ω,H0) = Aeiφχyy(ω,H0) + C0 + C1H0, (23)

where A is the signal amplitude, φ is the raw phase (inclusive of
signal line delay), and C0 and C1 are complex offset and slope
corrections to the background. Utilizing the information in this
complex background is key to our data processing method. The
background-corrected signal can be plotted from the measured
values of S21 as


S21(ω,H0) = S21(ω,H0) − (C0 + C1H0)

C0 + C1H0
. (24)

This corrects the signal phase for the finite length of
the signal line between the VNA source and receiver ports
and the sample, effectively placing the ports at the sample
position. Additionally, it normalizes the signal amplitude by
the frequency-dependent losses due to the complete microwave
circuit (cables + CPW + sample). In Figs. 2(a) and 2(b),
we plot the raw and de-embedded data, respectively. The
large complex offset on top of which the resonance signal is
superimposed in (a) represents C0 and C1.

Comparison of Eqs. (23) and (24) shows that the change in
microwave transmission can be written as


S21(ω,H0) = Aeiφ

C0 + C1H0
χyy(ω,H0). (25)

Using this form for the background-corrected 
S21,
the inductance amplitude L̃(f ) is calculated as
[
S21/χyy(ω,H0)][i2Z0/(2πf )]. When L̃ is plotted versus
frequency as in Fig. 4, we note that there can be a small phase
error that causes Im(L̃)(f → 0) 
= 0. The correction for this
phase error is discussed in Ref. [23].

C. Calculation of σ̃NM from measured L

Using the results for Re(L̃) and Im(L̃) [Eqs. (21) and (22)],
we can isolate the σ̃NM contribution as follows. First, the slope
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FIG. 2. Example S21 spectrum, acquired at f = 20.0 GHz.
(a) Raw data, with fits. Note the different background offsets of the
Re and Im data (left and right axes). (b) De-embedded 
S21 signal.

of L̃ is used to isolate the contribution of L̃NM:

dL̃

df
= −1

2
sgn(ẑ · n̂)η(z,Wwg)

L12(z,Wwg,l)

Ms

× h

e

[(
σ F

e − σ SOT
e

) + iσ SOT
o

]
. (26)

We normalize dL̃/df by L̃0 in order to remove any residual
differences in sample-CPW coupling from sample to sample.
Variation in L̃0 (e.g., as seen in Fig. 4) can be caused
by sample-to-sample variations in magnetization, including
dead layer effects at the various FM/NM interfaces, as well
as measurement-to-measurement variations in the sample-
waveguide spacing, which could be affected by small dust
particles in the measurement environment. Finally, we solve
for the effective conductivity:[(

σ F
e − σ SOT

e

) + iσ SOT
o

]
= − sgn(ẑ · n̂)

(
dL̃
df

2L̃0

)
μ0l

L12(z,Wwg,l)

MsdFM

Wwg
η(z,Wwg)

e

h
.

(27)

We note that in Eq. (27), the inductance quantities dL̃/df

and L̃0 are experimentally measured values as determined from

S21 by application of Eq. (9), while the remaining terms
follow from normalization of the right-hand side of Eq. (26)
with that of Eq. (10).

D. Analysis protocol

Our quantitative VNA-FMR analysis protocol is sum-
marized as follows [32]. (1) Complex VNA-FMR data are
collected and fit with Eq. (23). (2) 
S21 is calculated with
Eq. (25) to de-embed the sample contribution to the inductance.

(3) 
S21 is converted to sample inductance L using Eq. (9). (4)
L is normalized by magnetic susceptibility χyy , yielding the
complex inductance amplitude given by Eqs. (21) and (22)
[Re(L̃) and Im(L̃)]. (5) The phase error of L̃ is corrected
as described in Ref. [23]. (6) Linear fits of L̃(ω) [using
Eqs. (21) and (22)] are used to extract L̃0 and L̃NM(ω). (7) The
effective conductivities σ SOT

o and (σ F
e − σ SOT

e ) are obtained
from (∂L̃/∂f )/L̃0 according to Eq. (27).

IV. DATA AND ANALYSIS

To demonstrate the quantitative VNA-FMR technique,
we measured FMR in metallic stacks consisting of sub-
strate/Ta(1.5)/Py(3.5)/NM/Ta(3) and inverted stacks of sub-
strate/Ta(1.5)/NM/Py(3.5)/Ta(3) (where the numbers in paren-
theses indicate thickness in nanometers). We focus on a Pt(6)
NM layer due to its large intrinsic SOC, and use Cu(3.3) as a
control material with nominally negligible SOC [19,33,34].
We collected room-temperature FMR spectra as a function
of out-of-plane external magnetic field H0 with microwave
frequencies from 5 GHz to 35 GHz and VNA output power
of 0 dBm. Exemplary Re(
S21) spectra are shown in Fig. 3.
Each raw spectrum has been normalized by the complex signal
background (see Sec. III B). In the following discussion, we
use a notation for the bilayers which indicates the sample
growth order as read from left to right. For example, Py/Pt
indicates Py is first deposited onto the substrate, followed
by Pt.

Both Py/Cu and Cu/Py samples exhibit a mostly real
normalized inductance amplitude [symmetric Lorentzian dip
for Re(
S21) in Figs. 3(a) and 3(b)] with a magnitude largely
independent of frequency, in accordance with L̃NM ≈ 0. That
is, the signal is dominated by the dipolar inductance. In
contrast, the lineshape and magnitude of the Py/Pt and Pt/Py
data in Figs. 3(c) and 3(d) exhibit a clear frequency dependence
as expected for L̃NM 
= 0. In particular, the data for Py/Pt
indicate that L̃NM adds constructively with L0, such that
Re(L̃) increases with increasing f . The Pt/Py inductance
evolves in an opposite sense due to the stack inversion,
leading to a decrease and eventual compensation of Re(L̃)
at high f . The increasingly antisymmetric lineshape for both
Py/Pt and Pt/Py reveals that the magnitude of Im(L̃) also
increases with frequency, with a sign given by the stacking
order.

By normalizing the spectra in Fig. 3 to the magnetic
susceptibility χ (ω,H0) defined in Eq. S2, we extract the
complex inductance amplitude L̃. Re(L̃) and Im(L̃) are shown
in Fig. 4 for all investigated bilayers with a length l of 8 mm.
As shown in Eqs. (21) and (22), Re(L̃) provides information
about the dipolar inductance (L̃0, zero-frequency intercept),
and −(σ F

e − σ SOT
e ) (slope). Similarly, the slope of Im(L̃)

reflects −σ SOT
o . Immediately evident is the reversal of the slope

for Py/Pt compared to Pt/Py, which is captured by the sgn
function (where n̂ is the FM/NM interface normal, pointing
into the FM, and ẑ is defined by the coordinate system in
Fig. 1). This sign-reversal is consistent with the phenomenol-
ogy expected for interface-symmetry sensitive effects, e.g.,
combined spin pumping and iSHE, as well as iREE. There
is also a marked difference in the slope magnitude for Py/Pt
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FIG. 3. FMR spectra for FM/NM bilayers. Re(
S21) at several
excitation frequencies for different samples: (a) Py/Cu, (b) Cu/Py,
(c) Py/Pt, and (d) Pt/Py. The change in line shape and amplitude for
Py/Pt and Pt/Py clearly shows the presence of frequency-dependent
inductive terms not present in the Py/Cu and Cu/Py control samples.
The colored circles indicate the value of Re(
S21) ∝ Re(L) when H0

satisfies the out-of-plane FMR condition.

and Pt/Py in panel (b), the implications of which are discussed
below.

Each of the inductance terms has some dependence on
sample length: linear for the dipolar contribution, and slightly
nonlinear for the inductances due to charge flow in the NM [see
Eqs. (10) and (11)]. We therefore repeated the measurements
shown in Fig. 4 for a variety of sample lengths from 4 to
10 mm. Figure 5 shows the measured inductance terms L̃0,

FIG. 4. Frequency dependence of real and imaginary inductances
extracted from S21 spectra (symbols) and fits to Eqs. (21) and (22)
(lines). (a) Re(L̃) for all samples with l = 8 mm. Zero-frequency
intercept indicates the dipolar inductive coupling, while the linear
slope reflects (σ F

e − σ SOT
e ). (b) Im(L̃) for all samples, as a function of

frequency, where the linear slope is governed by σ SOT
o .

∂Re(L̃)/∂f [intercept and slope of curves in Fig. 4(a)], and
∂Im(L̃)/∂f [slope of curves in Fig. 4(b)] as a function of
sample length. Following normalization by its corresponding
L̃0, each data point in Fig. 5(b) provides a value of (σ F

e − σ SOT
e )

[see Eq. (27)]. Similarly, data points in panel (c) provide
values of σ SOT

o . These values are averaged to provide a single
(σ F

e − σ SOT
e ) and σ SOT

o for each sample type. Results are
summarized in Table I. The dashed lines in Figs. 5(b) and
5(c) are calculated curves based on these average values and
the length dependence of L̃.

Because σ SOT
e and σ F

e have the same phase and frequency
dependence, we use control samples where we replace the Pt
with Cu, wherein it is generally accepted that both the SHE
for Cu and the REE at the Py/Cu interface are negligible
[19,33,34]. Furthermore, the Cu thickness is chosen so that
it exhibits the same sheet resistance as the Pt layer, so that the
two samples have identical σ F

e [see Eq. (31)]. Subtraction of the
time-reversal-even conductivity for the Py/Cu control samples
from the time-reversal-even conductivity for the Py/Pt samples
therefore isolates σ SOT

e specifically for the Py/Pt interface.
Likewise, any dampinglike contributions to σ SOT

o due to the
Ta seed layer should also be removed by subtraction of the
Py/Cu inductance data.

Additional data collected for varied NM thickness (to be
presented in a future publication) indicate that the charge

094407-8



INDUCTIVE DETECTION OF FIELDLIKE AND … PHYSICAL REVIEW B 97, 094407 (2018)

FIG. 5. L̃(f = 0) and ∂L̃/∂f extracted from data as in Fig. 4 vs
sample length for all samples. (a) Dipolar inductive coupling L̃0. (b)
From ∂[Re(L̃)]/∂f , we extract (σ F

e − σ SOT
e ). (c) From ∂[Im(L̃)]/∂f ,

we extract σ SOT
o . Dashed lines are guides based on Eqs. (21) and

(22) with values of σ SOT
o and (σ F

e − σ SOT
e ) calculated as described

in Sec. III C. Several measurements were repeated to demonstrate
reproducibility.

currents produced by iSOT effects experience a shunting effect,
whereby some fraction of the interfacial charge current flows
back through the sample thickness, reducing the inductive
signal. This can be modeled as a current divider with some
of the iSOT-generated current coupling to the 50-	 CPW
via image currents, and the remainder shunted by the sheet
conductance of the sample. Final values of the extracted
conductivities reported in Table I have been corrected to
account for current shunting (see Ref. [23] for more de-
tails). Comparison of the shunt-corrected SOT conductivities
makes evident that the fieldlike charge currents are com-
parable to those due to dampinglike spin-charge conversion
processes.

We can compare our measured values of σ SOT
e and σ SOT

o
to measurements made by other groups using different tech-
niques. Garello et al. [9] use the harmonic Hall technique and
Miron et al. [2] investigate domain wall nucleation to quantify
the spin-orbit torque exerted on Co sandwiched between Pt
and AlOx . Converting their measured values of fieldlike SOT

field per unit current density to our metric σ SOT
e , they find

1.1 × 106 and 1.9 × 107 	−1 m−1. Nguyen et al. [25] find
a similar value of ≈1.3 × 106 	−1 m−1 for a Pt/Co bilayer
using harmonic Hall methods. The Garello and Nguyen results
are within an order of magnitude of our findings (−1.48 ±
0.07 × 105 	−1 m−1 for Pt/Py and −1.8 ± 0.2 × 105 	−1 m−1

for Py/Pt).
Garello and Nguyen also report dampinglike values for

their effective SOT fields. Converted to σ SOT
o , they find

5.8 × 105 	−1 m−1 and ≈2.9 × 105 	−1 m−1, respectively,
which are again within an order of magnitude of our
values: 2.4 ± 0.3 × 105 	−1 m−1 (Py/Pt) and 0.6 ± 0.2 ×
105 	−1 m−1 (Pt/Py).

The difference in stacking-order dependence for σ SOT
e and

σ SOT
o may come as a surprise, since some degree of correlation

between the fieldlike and dampinglike torques is suggested
by intuition. However, this need not be the case if the two
effects have different physical origins. As is discussed below,
in the case of the dampinglike torque, the proportionality
between the spin accumulation and the spin current entering
or exiting the FM is given by the real part of the spin-mixing
conductance. By contrast, an interfacial SOC of the Rashba
form can give rise to a spin accumulation (and hence SOT)
that has no dependence on the spin-mixing conductance (see,
for example, the theory in by Kim et al. [17]). Therefore
empirical observation of uncorrelated even and odd effective
conductivities is not unexpected [35].

V. DISCUSSION

For comparison to previous measurements and to theory,
we can relate the effective conductivities σ SOT

e and σ SOT
o

to microscopic spin-charge conversion parameters under the
assumptions that the dampinglike iSOT is due to iSHE only,
and the fieldlike iSOT is from iREE only. We also relate the
Faraday contribution to the ac charge currents in the NM—that
is, σ F

e —to sample properties.

A. Contributions to effective conductivity, σ̃NM

1. Effective Faraday conductivity, σ F
e

To relate the effective Faraday conductivity, σ F
e , to sample

parameters, we isolate the Faraday component of the induced
charge current from Eq. (7):[∫ +dFM

−dNM

JF(z)dz

]
= − sgn(ẑ · n̂)

(
h̄

2e

)
σ F

e (ẑ × ∂t m̂). (28)

The charge current is driven by the induced electromotive force
(e.m.f.), Vx , according to

x̂ ·
[∫ +dFM

−dNM

JF(z)dz

]
= Ix

w

= Vx

Zeff l
. (29)

The induced e.m.f. is derived from inductive reciprocity
[36]

Vx = −∂φ

∂t
= −μ0Ms

∫
VFM

[h(r) · ∂t m̂]d3r, (30)
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where h(r) is the magnetic sensitivity function for a current
of unit amplitude in the NM layer. We assume this field can
be approximated with the Karlqvist equation, and use the
results for ∂t m̂ from Sec. III A. Substituting Eq. (30) into
Eq. (29), and equating the result with Eq. (28) yields the final
expression for σ F

e :

σ F
e = eμ0MsdFM

h̄Zeff
. (31)

2. Rashba parameter and σ SOT
e

We can relate the even spin-orbit torque conductivity σ SOT
e

to the Rashba parameter αR. We start from the fieldlike
interfacial spin torque per spin tfl introduced by Kim et al.
(Eq. (12) in Ref. [17]):

tfl = sgn(ẑ · n̂)kRvs[m̂ × (ĵ × ẑ)]

(
h̄

2

)
, (32)

where kR = 2αRme/h̄
2 is a wave vector corresponding to the

Rashba energy parameterαR,me is the mass of the electron, and
vs = PJintgμB/(2eMs) is the spin velocity, with charge current
density Jint at the FM/NM interface at which the Rashba effect
is present, spin polarization of the charge current P , Landé
g-factor g, and Bohr magneton μB. Note that tfl/(h̄/2) has
units of hertz; that is, the same units as ∂t m̂. We can therefore
relate Eq. (32) to the volume-averaged magnetic torque density
T from Eqs. (5) and (6) through the time rate of change of the
magnetization: tfldintδ(z)/(h̄/2) = ∂t m̂, where we have added
dintδ(z) to account for the interfacial nature of this torque
(where dint is an effective thickness of the interface):

2

h̄

∫ dFM

0
tfldintδ(z)dz = − γ

Ms

∫ dFM

0
T(z)dz, (33)

kRvsm̂ × (ĵ × ẑ)dint = − γ

Ms

h̄

2e
σ SOT

e m̂ × (ẑ × E). (34)

The final line results from substituting Eq. (32) and the even
SOT term from Eq. (6) into Eq. (33). Making the substitutions
for kR and vs, and using E = (Jint/σint)ĵ yields

αR = h̄2

2me

σ SOT
e

σint

1

Pdint
. (35)

Here,σint is the interfacial conductivity of the FM/NM interface
(extracted by measuring resistance versus Py thickness; see
Ref. [23]) and P is the spin polarization at the FM/NM inter-
face. We use P = 0.6 as determined via spin-wave Doppler
measurements in Ref. [37], and assume dint is one Py lattice
constant (0.354 nm) [38]. We therefore find αR = −5.8 ±
0.3 meV nm for the Py/Pt sample, and −7.5 ± 0.7 meV nm
for Pt/Py. These values are smaller than those measured
with angle-resolved photoelectron spectroscopy (ARPES) for
the surface state of Au(111) (33 meV nm) [39], Bi(111)
(56 meV nm) [40], and Ge(111) (24 meV nm) [41], and much
smaller than the Bi/Ag(111) interface (305 meV nm) [42].

We can also compare our results for the Rashba parameter
to a recent theoretical calculation. Kim, Lee, Lee, and Stiles
(KLLS) [17] have shown that SOT and the Dzyaloshinskii-
Moriya interaction (DMI) at a FM/NM interface are both man-
ifestations of an underlying Rashba Hamiltonian, and predict

a straightforward relationship between the Rashba parameter
αR, interfacial DMI strength Dint

DMI, and the interfacial fieldlike
SOT per spin tfl:

αR = h̄2

2me

(
Dint

DMI

2A

)
= h̄

me

(
tfl

vs

)
, (36)

where A is the exchange stiffness.
For the Pt/Py stack, the ratio of interfacial DMI, Dint

DMI, to
bulk exchange A was previously measured via a combination
of Brillouin light scattering (BLS) and superconducting quan-
tum interference device (SQUID) magnetometry for samples
prepared under nearly identical growth conditions, albeit with
a stack geometry that was optimized for optical BLS measure-
ments [43]. The ratio is a constant value of −0.25 ± 0.01 nm−1

over a Py thickness range of 1.3 to 15 nm. As such, this
material system is an ideal candidate to test the quantitative
prediction of the KLLS theory. Using the experimentally
determined value for Dint

DMI/A with Eq. (36) predicts a Rashba
strength of −4.8 ± 0.2 meV nm, which agrees well in sign
and magnitude with the result of our iSOT measurement for
the Pt/Py sample of the same stacking order, as well as the
Py/Pt sample with opposite stacking order. Together, the spin
wave spectroscopy and iSOT measurements clarify the role
of the Rashba spin-orbit interaction as the underlying physical
mechanism for both DMI and fieldlike SOT in the Py/Pt system.

3. Spin Hall angle and σ SOT
o

In order to develop intuition for Eq. (7), we first derive
an approximate relationship between σ SOT

o and the spin Hall
angle, θSH, applicable when the NM thickness is much thicker
than its spin diffusion length. We assume series resistors
1/G↑↓ + 1/Gext (interfacial spin-mixing conductance + spin
conductance of the NM) in a voltage divider model for the spin
accumulation at the FM/NM interface due to spin pumping:

μŝ(z = 0+)ŝ = h̄

2

(
m̂ × ∂m̂

∂t

)(
G↑↓

G↑↓ + Gext

)
, (37)

where μŝ(z = 0+) is the spin accumulation at the FM/NM
interface. Using the result of Eq. (6) from Ref. [44] for the
effective one-dimensional spin conductance of a NM (where
we have set GNM

2 = 0 because we are interested in only a
FM/NM bilayer, not a FM/NM1/NM2 multilayer):

Gext = σ

2λs
tanh

(
dNM

λs

)
, (38)

where λs is the spin diffusion length in the NM. The integrated
charge current in the NM layer driven by the resulting spin
chemical potential gradient −∇μŝ = Qŝ and the inverse spin
Hall effect (J ∝ Qŝ × ŝ) is given by∫ dNM

0
J(z)dz =

∫ dPt

0

[
σSH

−∇μs(z)

e
× ŝ

]
dz (39)

= σSH
μs(z = 0+)

e
(−ẑ × ŝ) (40)

assuming dNM 
 λs. The spin Hall conductivity is related
to the spin Hall angle via the Pt charge conductivity: σSH =
θSHσPt. If we combine Eqs. (37), (38), and (40) and equate the
integrated charge current to that from σ SOT

o in Eq. (7), we arrive
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at the final result:

σ SOT
o = σ

{
θSHRe

[
G↑↓

σ
2λs

tanh
(

dNM
λs

) + G↑↓

]}
ε. (41)

The model also accounts for less-than-unity efficiency ε for
spin transmission into the NM (such that (1 − ε) is the

spin loss fraction, which has been attributed to processes
such as spin memory loss [45] or proximity magnetism
[46]).

A more accurate version of Eq. (41) is obtained by re-
placing the unitless term in curly brackets with Eq. (11) from
Ref. [35]:

σ SOT
o = σ

[
θSH

(1 − e−dNM/λs )2

(1 + e−2dNM/λs )

|G̃↑↓|2 + Re(G̃↑↓) tanh2
(

dNM
λs

)
|G̃↑↓|2 + 2Re(G̃↑↓) tanh2

(
dNM
λs

) + tanh4
(

dNM
λs

)
]
ε, (42)

where G̃↑↓ = G↑↓2λs tanh(dNM/λs)/σ . This properly ac-
counts for the boundary condition that the spin current goes
to zero at the distant surface of the NM.

Equation (42) can be used to calculate θSH if we assume
values for λs, G↑↓, and ε. If these parameters are presumed
identical for the two stacking orders, we would find spin Hall
angles that differ by a factor of 4 depending on whether Pt is
deposited on Py or vice versa. Instead, the large discrepancy
in σ SOT

o for the two stacking orders suggests differences in
the FM/NM interface that affect G↑↓ and ε. Indeed, stacking-
order dependence of dampinglike torque has been observed in
previous works [47,48]. Given the data presented here, it is
possible for us to estimate the efficiency with which spins are
pumped into the Pt layer as follows. The total Gilbert damping
αtot is the sum of intrinsic processes αint, spin pumping into the
Pt and Ta layers αPt(Ta), and possible spin memory loss αSML:

αtot = αint + αPt + αTa + αSML. (43)

We can apply Eq. (43) to each of the stacking orders (Py/Pt
and Pt/Py) and use the damping measurements for Py/Cu and
Cu/Py control samples as a measure of αint + αTa for Py/Pt
and Pt/Py, respectively. We note that that the total Gilbert
damping for the two stacking orders differs by only 8% (see
Table S2), while the odd SOT conductivity differs by a factor of
4. This suggests that the dampinglike processes contributing
to σ SOT

o (i.e., iSHE) add only a small amount of enhanced
damping, while the majority of spin current pumped out of
the FM experiences spin memory loss and is not available for
iSHE conversion [45]. If we therefore assume that αSML is
identical for the two stacking orders, and that the difference
in σ SOT

o for the two stacks is due entirely to a difference in
spin-mixing conductance, such that αPt(Py/Pt) = 4αPt(Pt/Py),
then the resulting system of equations is solvable for αPt(Py/Pt)
and αPt(Pt/Py), as well as αSML (see Ref. [23]). Using the
results, we can estimate the spin pumping efficiency factor
ε ≡ αPt/(αPt + αSML). We find that only 31% or 10% of the
spin current pumped through the Pt interface is available for
iSHE conversion, for Py/Pt and Pt/Py samples, respectively.

A more rigorous calculation can be done to estimate G↑↓,
ε, and θSH by simultaneously fitting Eqs. (42) and (43) for the
two stacking orders [using the corrected values (σ SOT

o )corr from
Table I and total damping values from Table S2]. To perform
this optimization, we use the functional form for the spin
pumping damping contributions as presented in Ref. [44], such
that αPt(Ta) depends on λs, G↑↓, and σ in order to implement the

spin current backflow correction. We obtained a value for the Pt
charge conductivityσ = 4.16 × 106 	−1 m−1 from four-probe
resistance measurement on a series of Py/Pt samples with
varying Pt thickness, to allow isolation of the Pt contribution
to the total conductivity. Using a value of λs = 3.4 nm from
Ref. [45], we obtain a spin Hall angle of θSH = 0.28. This
falls within the range of published values from dc spin Hall
measurements (0.01–0.33) [7,12,49–55]. In good agreement
with the estimate above, we find efficiencies of 34% and
18% for Py/Pt and Pt/Py, respectively. Furthermore, this op-
timization yields G↑↓ = 8.9 × 1014 	−1 m−2 (for Py/Pt) and
2.3 × 1014 	−1 m−2 (for Pt/Py). Both of these values are below
the Sharvin conductance [56] (G↑↓ = 1 × 1015 	−1 m−2),
which serves as the theoretical upper bound for the spin-
mixing conductance. This result demonstrates clearly that
when Py is deposited on Pt, the details of the FM/NM interface
can result in significant SML and a reduced spin-mixing
conductance.

Finally, we note that the contributions of iSHE and iREE
may not separate neatly into dampinglike and fieldlike torques
as was assumed for the above analyses. For example, a more
sophisticated three-dimensional model of the Rashba effect in
FM/NM bilayers has been used to demonstrate that damping-
like torques can be present and comparable to fieldlike torques
[57]. This nevertheless emphasizes the utility of σ SOT

e and σ SOT
o

without reliance on underlying assumptions or models.

VI. CONCLUSION

In summary, we have quantified both field- and dampinglike
inverse spin-orbit torques in Ni80Fe20/Pt bilayers using phase-
sensitive VNA-FMR measurements and an analysis of the sam-
ple’s complex inductance that arises in part from the ac currents
due to spin-charge conversion. The magnitude of these currents
is determined by their respective SOT conductivities, a key
figure of merit for characterizating and optimizing operational
spintronic devices. Because our technique entails straightfor-
ward postmeasurement data processing for an experimental
technique that is well established in the field, it provides
a powerful way to unpick a highly complex experimental
system and represents a broadly applicable tool for studying
strong SOC material systems. The technique could even be
applied to previously-acquired VNA-FMR data sets in which
only spectroscopic analysis was performed. The measurements
presented here demonstrate that both Rashba-Edelstein and
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spin Hall effects must be considered in FM/NM metallic
bilayers. Together with the observation of significant variation
in σ SOT

o with respect to FM/NM stacking order, these results
point to interfacial engineering as an opportunity for enhancing
current-controlled magnetism.
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