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Inspired by the recent theoretical development relevant to the experimental data of TlCuCl3, particularly
those associated with the universal scaling between the Néel temperature TN and the staggered magnetization
density Ms , we carry out a detailed investigation of three-dimensional (3D) dimerized quantum antiferromagnets
using the first-principles quantum Monte Carlo calculations. Through this study we wish to better understand
the microscopic effects on these scaling relations of TN and Ms , hence to shed light on some of the observed
inconsistency between the theoretical and the experimental results. Remarkably, for the considered 3D dimerized
models, we find that the established universal scaling relations are not only valid, but can each be categorized within
its kind by the amount of stronger antiferromagnetic couplings connected to each spin. Convincing numerical
evidence is provided to support the validity of this classification scheme. Based on all the related results known
in the literature, we further argue that the proposed categorization for the universal scaling investigated in our
paper should be applicable for 3D dimerized spin systems with (certain kinds of) quenched disorder and (or) on
lattice geometries other than those considered here. The relevance of the outcomes presented in this investigation
to the experiments of TlCuCl3 is briefly discussed as well.
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I. INTRODUCTION

While, in general, certain intriguing properties related to
the phase transitions of classical models are governed by
the thermal fluctuations, many interesting characteristics of
different phases of quantum systems are triggered by quantum
fluctuations at zero temperature [1–5]. In other words, a great
deal of attractive phenomena of quantum systems are observed
at the low temperature regions where quantum fluctuations
play the dominated roles in determining the properties of
these systems. Still, for quantum systems, thermal fluctuations
and the interplay between the effects from finite temper-
atures and zero temperatures may lead to compelling and
fascinating results. Two noticeable examples are the quantum
critical regime (QCR) associated with two-dimensional (2D)
antiferromagnets, and the universal scaling between the Néel
temperature TN and the staggered magnetization density Ms

of three-dimensional (3D) quantum spin systems.
Theoretically, QCR is characterized by the appearance of

several finite-temperature universal behaviors among some
physical quantities of the underlying 2D spin systems [6–8].
On one hand, based on the relevant analytic calculations, for
the dimerized Heisenberg model, this regime should exist at
any parametric value associated with spatial anisotropy. On
the other hand, several numerical studies imply that the exotic
characteristics of QCR can only be confirmed rigorously at the
finite temperature regions above the related quantum critical
points (QCPs), where a dramatic change in the ground states
occurs due to very strong quantum fluctuations [9–14]. In
other words, the QCR serves as a classical case in which close
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connections between two categories of properties of a system
may exist, despite the fact that they seem to be unrelated to
each other at a first glance.

Another remarkable illustration of surprising connections
between the thermal and the ground-state properties of a
quantum system is the 3D dimerized spin-1/2 Heisenberg
models, which will be investigated in detail here.

Recently, the experimental results of TlCuCl3 have stimu-
lated several theoretical investigations [15–25]. In particular,
the phase diagram of TlCuCl3 under pressure motivates a
few analytic and numerical explorations of three universal
scalings between a thermal and a ground state property of
3D dimerized quantum antiferromagnets. For example, it is
demonstrated that for three different 3D dimerized spin-1/2
Heisenberg models, the data collapse of the physical quantity
TN/T � as functions of Ms leads to a universal curve [19]. In
other words, for these three various dimerized systems, when
the data of TN/T � are treated as functions of Ms , they fall on
top of a smooth curve. Here TN is the Néel temperature, T � is
the temperature where the observable uniform susceptibility
χu reaches its maximum value, and Ms is the staggered
magnetization density. Similar smooth scaling appears as well
if the quantity TN/J is considered instead of TN/J [19].
Here J is the summation of the antiferromagnetic coupling
strength connected to each spin of any of the studied dimerized
models. Later it is shown that these scaling relations emerge
for disordered systems as well [26,27].

Although the agreement between the data of TlCuCl3

and the related analytic and numerical results is impres-
sive, some controversial observations need to be clarified.
For instance, while theoretically the appearance of smooth
curves resulting from data collapse seems to support the
scenario that generic scaling relations between TN and Ms
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do exist, experimental data indicate these universal relations
may depend on the microscopic details of the investigated
models [15,16,21].

To uncover whether there indeed are generic scaling rela-
tions between TN and Ms for 3D dimerized spin-1/2 antiferro-
magnets, in this paper we conduct a large-scale quantum Monte
Carlo (QMC) calculation for several 3D spatially anisotropic
spin-1/2 Heisenberg models. It is interesting to note the models
studied in Ref. [19] that lead to universal data collapse have the
following property: specifically, among the antiferromagnetic
bonds connected to any spin, only one bond is of stronger
coupling strength. Inspired by this observation, the considered
3D dimerized systems in this paper can be classified by the
amount of strong bonds linked to each spin.

As anticipated, based on our numerical results, we find
the established universal scaling relations mentioned above
do appear for the models considered here. While the emer-
gence of such scaling relations is foreseen, it is remarkable,
and unexpected as well, that the data collapse using the
related physical quantities of the models having the same
amount of strong bonds emerged from any spin form their
own smooth universal curves. In particular, the (universal)
curves of the models with different numbers of strong bonds
attached to every spin differ from one another. In other
words, for the studied models, any one of the considered
universal scalings can be individually categorized by the
amount of strong bonds connected to each spin. Later we will
argue that this classification for the universal scaling of TN

and Ms of 3D dimerized spin models should be applicable
even for systems with (certain kinds of) quenched disorder
and (or) on lattice geometries other than those considered
here.

The detailed investigation presented in this paper not only
reinforces the robustness of the known universal scaling be-
tween TN and Ms for 3D dimerized quantum antiferromagnets,
but also takes these relations further by establishing quantita-
tively their classification. We would like to emaphsize the fact
that the outcomes shown here are useful for related experiments
as well. For example, by comparing the theoretical predictions
and the associated data, one can propose the most applicable
model for the targeted material. Moreover, this model can then
be considered to explore some further theoretical properties of
that material.

The rest of this paper is organized as follows. After the
introduction, the studied 3D dimerized spin-1/2 models and
the measured observables are briefly described. Then the
obtained numerical data and the resulting analysis outcomes
are summarized. In particular, the evidence to support the
validity of the classification for the considered universal
scaling relations outlined above is discussed in detail. Finally,
a section is devoted to conclude the investigation presented
here.

II. MICROSCOPIC MODELS AND OBSERVABLES

The 3D dimerized quantum Heisenberg models investigated
here are given by the Hamilton operators

H1 =
∑

〈ij〉
Jij

�Si · �Sj +
∑

〈i ′j ′〉
J ′

i ′j ′ �Si ′ · �Sj ′ , (1)

H2 =
∑

i

J⊥ �Si,1 · �Si,2 +
∑

〈ij〉,α=1,2

Jij,α
�Si,α · �Sj,α

+
∑

〈i ′j ′〉,α=1,2

J ′
i ′j ′,α

�Si ′,α · �Sj ′,α, (2)

where, in Eq. (1), Jij and J ′
i ′j ′ are the antiferromagnetic

couplings (bonds) connecting nearest neighbor spins 〈ij 〉 and
〈i ′j ′〉 located at a 3D cubical lattice, respectively, and �Si is
the spin-1/2 operator at site i. Notice the α in the second
equation, which takes the value of either 1 or 2, stands for the
indices of the considered two copies of 3D cubical lattices. In
addition, the J⊥ appearing above are the couplings connecting
spins that belong to different copies of the two targeted 3D
cubical lattices. Finally, the other parameters and the operators
showing up in Eq. (2) have the same definitions as their
counterparts without the subscript α in Eq. (1). It should
be pointed out that, in this paper, we have set Jij = Jij,1 =
Jij,2 = J = 1.0 and J ′

i ′j ′ = J ′
i ′,j ′,1 = J ′

i ′j ′,2 = J⊥ = J ′ with
J ′ > J = 1.0 for any 〈ij 〉 and 〈i ′j ′〉. Figure 1 demonstrates
the four dimerized spin-1/2 models studied here. Notice for
the models of the top (bottom) two panels in Fig. 1, among
the bonds touching each spin, three (two) of them have larger
magnitude in antiferromagnetic strength than of the others.
For convenience, in this investigation the models in Fig. 1 will
be called 3D cubical model (top left), double-cube-plaquette
model (top right), double-cube-ladder model (bottom left), and
3D plaquette model (bottom right), respectively. Finally, since
the couplings J ′ and J satisfy J ′ > J , each of the investigated
systems will undergo a quantum phase transition when the
corresponding ratio J ′/J exceeds a particular value.

To determine the Néel temperature TN , the staggered
magnetization density Ms , as well as T � of the considered

FIG. 1. The 3D dimerized spin-1/2 Heisenberg models investi-
gated in this study: 3D cubical model (top left), double-cube-plaquette
model (top right), double-cube-ladder model (bottom left), and 3D
plaquette model (bottom right). Notice the antiferromagnetic coupling
strength for the thick bonds and thin bonds are given by J ′ and J ,
respectively.
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dimerized models, the observable staggered structure factor
S(π,π,L1,L2,L3) on a finite lattice with linear sizes L1, L2,
and L3 are measured. In addition, both the spatial and temporal
winding numbers squared (〈W 2

i 〉 for i ∈ {1,2,3} and 〈W 2
t 〉),

spin stiffness ρs , first Binder ratio Q1, and second Binder ratio
Q2 are calculated in our simulations as well. The quantity
S(π,π,L1,L2,L3) takes the form

S(π,π,L1,L2,L3) = 3
〈(
mz

s

)2〉
, (3)

where mz
s = 1

L1L2L3

∑
i(−1)i1+i2+i3Sz

i with Sz
i being the third

component of the spin-1/2 operator �Si at site i. Moreover, the
spin stiffness ρs has the following expression:

ρs = 1

3

∑

i=1,2,3

ρsi = 1

3β

∑

i=1,2,3

〈
W 2

i

〉

Li

, (4)

where β is the inverse temperature. Finally the observables Q1

and Q2 are defined by

Q1 =
〈∣∣mz

s

∣∣〉2
〈(
mz

s

)2〉 (5)
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FIG. 2. The 1/L1 dependence of the staggered structure factors
S(π,π ) for several considered J ′/J of the 3D cubical model (top
panel) and the double-cube-plaquette model (bottom panel). The
dashed lines are added to guide the eye.

and

Q2 =
〈(
mz

s

)2〉2
〈(
mz

s

)4〉 , (6)

respectively. With these observables, the physical quantities
required for our paper, namely TN , Ms , and T �, can be
calculated accurately.

III. THE NUMERICAL RESULTS

To understand the robustness of the scaling relations associ-
ated with TN and Ms , namely to uncover the rules of under what
conditions the data collapse employing results from different
models will lead to the same universal curves, we have carried
out a large-scale QMC simulation using the stochastic series
expansion (SSE) algorithm with a very efficient loop-operator
update [28]. Before presenting the numerical outcomes ob-
tained from the QMC simulations, it should be pointed out that,
in our calculations related to the double-cube-plaquette model
(double-cube-ladder model), due to the spatial arrangement of
its antiferromagnetic bonds, the linear box sizes (size) L1 and
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FIG. 3. The 1/L1 dependence of the staggered structure factors
S(π,π ) for several considered J ′/J of the double-cube-ladder model
(top panel) and the 3D plaquette model (bottom panel). The dashed
lines are added to guide the eye.
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L2 (L1) used in the simulations are twice that of L3 (those
of L2 and L3) for most of the considered J ′/J (J ′/J � 4.4)
[29]. This strategy guarantees the aspect ratios among the three
spatial winding numbers squared are kept within certain range.
Consequently, the 3D features of these models are preserved.
For the 3D cubical model and the 3D plaquette model, the
condition L1 = L2 = L3 is used in the related calculations.

In the following, we will first detail the determination
of Ms .

A. The determination of Ms

The observable considered for the calculations of Ms is
S(π,π )(L1) [30]. Specifically, for a given J ′/J , the associated
Ms is given by

√
S(π,π )(L1 → ∞). We would like to point out

that to determine Ms using this approach, the zero temperature,
namely the ground state values of S(π,π )(L1), are required.
Therefore, the simulations related to the calculations of Ms

are conducted using the condition β = 2L1 [31]. For each
of the considered models, we have additionally carried out
several simulations (for some selected J ′/J ) with β = 4L1.
The results obtained from these trial calculations agree very
well with those determined by employing the relation β = 2L1

in the simulations.
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FIG. 4. Ms as functions of the considered J ′/J for the 3D cubical
model (top panel) and the double-cube-plaquette model (bottom
panel). The dashed lines are added to guide the eye.

For each of the studied models, the corresponding 1/L1-
dependence of the ground state S(π,π ) for some considered
J ′/J is depicted in Figs. 2 and 3. Motivated by the theoretical
predictions in Ref. [32], the determination of Ms is done by
extrapolating the staggered structure factors at finite box sizes
to their bulk results, using the following three Ansätze:

a0 + a2/L
2
1, (7)

b0 + b2/L
2
1 + b3/L

3
1, (8)

c0 + c2/L
2
1 + c3/L

3
1 + c4/L

4
1. (9)

For each good fit (χ2/DOF � 2.0), the corresponding bulk Ms

is calculated by Ms = √
F with F = a0,b0, or c0, depending

on which Ansatz is used for the fit. The numerical values of
Ms determined from the fits employing Ansätze Eqs. (7)–(9)
for all four models are shown in Figs. 4 and 5. The agreement
between the results of Ms determined from different Ansätze
is remarkably good, and the ones obtained with Ansatz Eq. (8)
are used in the following analysis.

We would like to emphasize the fact that since three spatial
dimensions is the upper critical dimension of the quantum
phase transitions investigated in this paper, when approaching
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FIG. 5. Ms as functions of the considered J ′/J for the double-
cube-ladder model (top panel) and the 3D plaquette model (bottom
panel). The dashed lines are added to guide the eye.
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the critical points, one expects to observe logarithmic correc-
tions to Ms (and TN as well). The theoretical calculations
of the critical exponents associated with these logarithmic
corrections are available in Refs. [22,33,34], and the predicted
values are confirmed by careful analyses of Ms and TN/J

conducted in Refs. [22,27]. To perform an analysis associated
with the mentioned logarithmic corrections requires data of
Ms close to the related QCPs. Besides, the motivation of the
investigation presented here is to understand to what extent
the considered scaling relations are universal. Therefore, a de-
tailed exploration of the logarithmic corrections related to the
investigated phase transitions will be left for a future project.

B. The determination of TN

The Néel temperatures TN for various J ′/J of the four stud-
ied models are calculated from the observables ρsL [which is
given by (

∑3
i=1 ρsiLi)/3], Q1, as well as Q2. Notice bootstrap-

type fits using a constrained standard finite-size scaling Ansatz
of the form (1 + b0L

−ω)(b1 + b2tL
1/ν + b3(tL1/ν)2 + ...), up

to second, third, and (or) fourth order in tL1/ν are performed in
the determination of TN . Here bi for i = 0,1,2,... are some con-
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FIG. 6. Top panel: Q2 of the 3D cubical model as functions of
T/J for J ′/J = 5.0 and L1 = 16, 20, 24, 28, 32, 36, 40, 44. Bottom
panel: ρsL of the double-cube-plaquette model as functions of T/J

for J ′/J = 6.5 and L1 = 12, 16, 20, 24, 28, 32, 36, 40. The dashed
lines are added to guide the eye.
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FIG. 7. Top panel: Q1 of the double-cube-ladder model as func-
tions of T/J for J ′/J = 3.5 and L2 = 12, 16, 20, 24, 28, 32, 36, 40.
Bottom panel: ρsL of the 3D plaquette model as functions of T/J for
J ′/J = 3.0 and L1 = 12, 16, 20, 24, 28, 32, 36, 40, 44. The dashed
lines are added to guide the eye.

stants and t = T −TN

TN
. For some J ′/J , Ansatz up to fifth order in

tL1/ν is used. The data of ρsL, Q1, and Q2 of some considered
J ′/J for the investigated models are shown in Figs. 6 and 7.

In our analysis related to the calculations of TN , a fit is
treated as a good fit if the corresponding χ2/DOF satisfies
χ2/DOF � 2.0. For few cases, in particular those associated
with the observables ρsL, the criterion for good fits is slightly
less restricted (χ2/DOF � 2.5 is used for these situations).
For every J ′/J of each studied model, fits are carried out with
Ansätze of various order in tL1/ν . Furthermore, for a given
J ′/J , several sets of data having different minimum box sizes
are considered for the fits as well. The quoted values of TN

in this paper are estimated by averaging the corresponding
results of good fits. In addition, the error bar of each cited
TN is estimated conservatively from the uncertainty of every
individual TN of the associated good fits. The determined TN

from the three used observables, namely ρsL, Q1, and Q2 for
all the studied models are shown in Fig. 8.

C. The determination of T �

For all four investigated models, the corresponding T �,
namely the temperatures at which χu reach their maximum
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FIG. 8. The J ′/J dependence of TN obtained from Q1, Q2, and
ρsL, for the 3D cubical model (top panel), the double-cube-plaquette
model (second panel), the double-cube-ladder model (second to last
panel), and the 3D plaquette model (bottom panel). Notice the TN from
ρsL for J ′/J = 5.1 of the double-cube-ladder model is not included
in the sub-figure.
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FIG. 9. The inverse of T � as functions of J ′/J for the 3D cubical
model (top panel) and the double-cube-plaquette model (bottom
panel).

value, are determined on lattices with moderate large box sizes
such as (L1,L2,L3) = (16,16,16), (24,12,12), and so on. The
obtained estimations of the inverse of T � as functions of J ′/J
are shown in Figs. 9 and 10. For each individual model, several
additional simulations on lattice with larger or smaller box
sizes than those associated with the results demonstrated in
Figs. 9 and 10 are conducted at some selected values of J ′/J .
These trial simulations confirm that for these selected J ′/J ,
the corresponding outcomes presented in Figs. 9 and 10 are
indeed the bulk results. Therefore the used T � in the relevant
analysis should be reliable.

D. The scaling relations between TN/J , TN/T �, and Ms

Having obtained Ms , TN , and T �, we now turn to study
the scaling relation(s) between TN/J (TN/T �) and Ms (Ms).
Figure 11 shows TN/J as functions of Ms for all four consid-
ered models. The results in Fig. 11 indicate there are no any
universal relations for TN/J and Ms among the investigated
dimerized systems. While no obvious connection is observed
among the curves of TN/J (as functions of Ms) shown in
Fig. 11, it is interesting to notice that the deviation from
linearity for those curves becomes more transparent when
Ms � 0.25. In other words, the nonlinear dependence of TN/J
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FIG. 10. The inverse of T � as functions of J ′/J for the double-
cube-ladder model (top panel) and the 3D plaquette model (bottom
panel).

on Ms begins to appear as the associated data are obtained
relatively away from (J ′/J )c. This is consistent with the results
concluded in Ref. [35].
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FIG. 11. TN/J as functions of Ms for all considered 3D dimer-
ized models. The used values of TN in the figure are from the
observable Q1.
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FIG. 12. TN/J as functions of Ms for all considered models in this
paper. The used values of TN in the figure are from the observable
Q1. For comparison purposes, some results of the 3D dimerized
ladder model, which has one strong bond emerged from each spin,
are included here as well [20].

Remarkably, while no obvious scaling relations are ob-
served when TN/J are treated as functions of Ms , such
universal dependence of TN on Ms do emerge if the quantities
TN/J and TN/T � are considered. This can be clearly seen in
Figs. 12 and 13. Specifically, the data of TN/J and TN/T � of
these studied models do fall on top of their individual universal
curves when these two quantities are regarded as functions
of Ms . The most striking result shown in Figs. 12 and 13 is
that these universal scaling curves can be categorized by the
amount of bonds which are connected to each spin and have
stronger antiferromagnetic coupling strength J ′. Indeed, from
the outcomes demonstrated in these figures, one can see that the
universal curves corresponding to the 3D cubical model and the
double-cube-plaquette model, which have three bonds of cou-
pling strength J ′ linked to each spin, are different from those of
the 3D plaquette model and the double-cube-ladder model for
which there are two bonds of coupling strength J ′ surrounding
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FIG. 13. TN/T � as functions of Ms for all considered models
in this paper. The used values of TN in the figure are from the
observable Q1.
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every spin. Notice for comparison purposes, the data of the 3D
dimerized spin-1/2 ladder model [20], which has one strong
bond emerged from any spin, are included in Fig. 12 as well.

To conclude, Figs. 12 and 13 show convincing evidence
that any one of the universal scaling relations investigated here
can be categorized within its type by the amount of stronger
antiferromagnetic bonds connected to each spin, at least for the
models considered in this paper. We will argue later that this
classification scheme regarding the studied universal scaling
relations should be a generic one.

IV. DISCUSSIONS AND CONCLUSIONS

For certain types of 3D dimerized quantum antiferromag-
nets, it is demonstrated that universal scaling relations appear
when the physical quantities TN/J and TN/T � are considered
as functions of Ms [19]. Furthermore, near the associated
QCPs, these mentioned observables scale linearly with Ms .
Similar phenomena are observed for disordered models as
well [26]. Motivated by these findings, in this paper we have
investigated four 3D dimerized spin-1/2 Heisenberg models,
using the first principles nonperturbative QMC simulations.
Notice the models studied in Ref. [19] have the feature that
among the bonds connected to any spin there is only one bond
with stronger antiferromagnetic coupling strength. According
to this observation, for the models considered here and for any
of their spin p, either two or three bonds linked to it possess
stronger antiferromagnetic coupling strength than of the others
touching the same spin p.

Remarkably, universal scaling relations associated with
TN and Ms do emerge for the four models studied here.
In particular, among these four dimerized systems, the data
collapse of TN/J and TN/T � of the models having the same
amount of strong bonds emerged from any spin do form their
own smooth universal curves. Furthermore, the curves of the
models associated with two strong bonds attached to each spin
are different from those of the models possessing three strong
bonds coming out from every spin. In other words, the universal
scaling considered in this paper can be categorized by the
amount of strong bonds connected to each spin. Our findings
considerably generalize those established in the literature.

It will be of great interest to understand the classification
scheme discovered here from a theoretical perspective. This
requires detailed calculations of the relevant field theory and is
beyond the scope of our paper. To gain an intuitive explanation
of the results found in this paper, one first notices that, as the
magnitude of J ′/J increases, the resulting curves of J of the
models with different amounts of strong bonds attached to each
spin diverge farther and farther away from each other, while
those related to the systems having the same number of J ′
coupling connected to any of their spins stay close with one

another. A similar (and much more satisfactory) scenario is
observed for the quantity T � as well. These results indicate that,
for those J ′/J near the associated QCPs, if the corresponding
J (or T �) are considered as the relevant energy scales, models
with the same amount of strong bonds emerged from each spin
have energy scales that take similar numerical values. As a
result, close to the considered QCPs, the classification scheme
found here is not completely unexpected. It is compelling
that the proposed categorization for the universal scaling
studied here is valid for a broad range of Ms , even when one
is deep inside the antiferromagnetic phase. In summary, to
better understand the results reached here, it will be desirable
to obtain the relevant analytic expressions for the universal
scaling relations investigated in this paper.

It is also interesting to notice the outcomes reached here are
consistent with the experimental results of TlCuCl3. Indeed,
the data of TlCuCl3 in Refs. [15,16,21] indicate the curves
associated with the universal scaling of TN/T � and Ms most
likely depend on the microscopic details of the studied systems.
This is in agreement with the main result obtained in our
investigation.

Finally, we would like to point out that in Ref. [27], it
is shown that for both a 3D spin-1/2 antiferromagnet with
the so-called configurational disorder and the 3D regular
dimerized ladder quantum Heisenberg model, data collapse
of TN/J (as functions of Ms) using the results from both
systems leads to a smooth universal curve as well. Notice for a
model with configurational disorder, each spin has exactly one
strong bond connected to it for every disordered realization.
Furthermore, while the number of bonds tied to every spin
of the double-cube-type models considered here is seven, the
other two investigated models have six bonds connected to
any of their spins. Based on these observations, it is likely that
the results obtained here, i.e., the universal scaling relations of
3D dimerized spin-1/2 antiferromagnets investigated in this
paper can be categorized by the amount of strong bonds linked
to every spin, are applicable for systems with (certain kinds
of) quenched disorder and (or) on lattice geometries other than
those considered in this paper. To verify whether this is indeed
the case or not, particularly to examine if microscopic details
have any impact on these explored scaling relations, besides
studying models on the cubic and the double-cubic lattices
with different arrangement of spatial anisotropy from the ones
employed here [36], simulating 3D antiferromagnets on the
honeycomb lattice and other disordered systems will shed light
on justifying this conjecture.
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