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We investigate a bilayer Kitaev model in which two honeycomb layers are coupled by the Heisenberg
interactions to discuss the effects of interlayer coupling on Kitaev quantum spin liquids (QSLs). In this model,
there exists a local conserved quantity which results in no long-range spin correlations in the system. Using the
exact diagonalization, bond-operator mean-field theory, and cluster expansion techniques, we study ground-state
properties in the system. The obtained results suggest the existence of a first-order quantum phase transition
between the Kitaev QSL and dimer-singlet states. We find that a one-triplet excitation from the dimer-singlet
ground state is localized owing to the existence of the local conserved quantity. To examine finite-temperature
properties, we make use of the thermal pure quantum state approach. We clarify that the double-peak structure in
the specific heat inherent in the Kitaev QSL is maintained even above the quantum phase transition. The present
results suggest that the Kitaev QSL is stable against the interlayer interference. Magnetic properties of multilayer
Kitaev models are also addressed.
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I. INTRODUCTION

Exploring quantum spin liquids (QSLs) has been one of the
central subjects in condensed-matter physics since Anderson’s
suggestion [1–4]. Although a lot of theoretical and experi-
mental studies have been devoted to clarifying the nature of
QSLs, the thermodynamic properties and excitation spectra
still remain elusive. Theoretically, it is still hard to reveal
properties of frustrated Heisenberg models, which are regarded
as archetypal models of QSLs, without approximations. On
the other hand, one of the promising models to discuss
QSLs is a quantum spin model on a honeycomb lattice with
bond-dependent Ising interactions, which is known as the
Kitaev model [5–7]. This model is exactly solvable, and its
ground state is a QSL with short-range spin correlations [8,9].
Furthermore, quantum spins are fractionalized into itinerant
Majorana fermions and localized Z2 fluxes. This leads to
gapless elementary excitations in the ground state and a double-
peak structure in the specific heat [5,10–15]. Moreover, Jackeli
and Khaliullin have suggested that the Kitaev model should
be realizable in Mott insulators with strong spin-orbit cou-
pling and specific lattice structure, where localized jeff = 1/2
spins are coupled by the superexchange interactions [16]. As
candidate materials, A2IrO3 (A = Na, Li) [17–20], α-RuCl3

[21–24], and H3LiIr2O6 [25] have been proposed, and many
experimental and theoretical studies have been done in terms of
the Kitaev physics [9,14,15,26–46], including generalizations
of the Kitaev model [47–49].

Nevertheless, it has been revealed that the magnetic prop-
erties at low temperatures in the candidate materials cannot be
fully reproduced by the two-dimensional pure Kitaev model,
while this model should capture the magnetism at higher
temperatures. For instance, the materials exhibit a long-range
magnetic order at low temperatures [17,18,21–24,50], and a
star-shaped low-energy structure has been observed in inelastic
neutron scattering experiments [28,29]. To account for these

features, additional effects beyond the pure Kitaev model,
such as Heisenberg and/or � terms with or without long-range
interactions [51–69] and intermediate spin-orbit coupling [70],
have been theoretically studied recently. On the other hand, the
candidate materials are composed of honeycomb layers, and
the role of the stacking structure in α-RuCl3 and H3LiIr2O6 has
been examined recently [25,71,72]. While interlayer couplings
in the stacked honeycomb compounds also exist, the previous
theoretical studies mainly focused on the additional in-plane
interactions. Therefore, it is highly desired to theoretically
study the stability of the Kitaev QSL in the presence of
interlayer coupling. Furthermore, controlling configurations of
stacked layers in iridium and ruthenium compounds is becom-
ing realistic [73–76], which stimulates further investigations
into the effects of interlayer coupling.

In this paper, we study the bilayer Kitaev model, where two
honeycomb layers are coupled by the Heisenberg interaction,
which is introduced as one of the simplest couplings to
extract the nature of the interlayer effect on the Kitaev QSL
[see Fig. 1(a)]. We first show that this model possesses a
local conserved quantity in each pair of stacked hexagons
(bihexagon), which leads to the absence of the long-range
magnetic order. To study the stability of the Kitaev QSL against
interlayer coupling, we employ the bond-operator mean-field
(MF) approximation [77] and the cluster expansion technique
[78–80]. We also use the exact diagonalization (ED) on finite
clusters to discuss ground-state properties and the excitation
spectrum. The numerical results suggest the existence of a
first-order phase transition between the Kitaev QSL and dimer-
singlet states at zero temperature. Moreover, using the thermal
pure quantum (TPQ) state approach [81,82], we clarify that the
double-peak structure emerges in the small interlayer coupling
region and is retained even above the quantum transition
point expected from the ED calculations. We also extend
the argument based on the presence of the local conserved
quantities to a multilayer Kitaev model and show the absence
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FIG. 1. (a) Bilayer Kitaev model on the honeycomb lattice.
(b) Top view of the bilayer Kitaev model with the definition of dimer
sites pi for the local conserved quantity Xp . (c) Several clusters used
in the ED calculations. The number shown in the plot represents the
number of dimers N in the cluster, which includes 2N spins.

of three-dimensional long-range correlations in the multilayer
Kitaev model with arbitrary stacking numbers.

This paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian on the bilayer honeycomb lattice and
discuss the local conserved quantity and the parity symmetry
in the system. Our methods are briefly summarized in Sec. III.
In Sec. IV, we show the numerical results for the ground-state
properties in the bilayer system, which suggests the existence
of a first-order quantum phase transition between the QSL and
dimer-singlet states. Thermodynamic properties are discussed
in Sec. V. In Sec. VI, we discuss magnetic properties in the
multilayer Kitaev model. A summary is provided in the last
section.

II. THE MODEL AND ITS SYMMETRY

To address the effect of interlayer coupling between Kitaev
models on honeycomb lattices, we introduce the following
simple model, where two Kitaev models are coupled by the
Heisenberg interaction [see Fig. 1(a)]:

H = −JK

∑
〈ij〉α,n

Sα
i,nS

α
j,n + JH

∑
i

Si,1 · Si,2, (1)

where Sα
i,n = 1

2σα
i,n(α = x,y,z) and σα

i,n is the Pauli matrix at
site i of the nth (=1,2) layer. JK (>0) is the ferromagnetic
Kitaev coupling in each layer, and JH (>0) is the antiferro-
magnetic Heisenberg coupling between these two layers. We
assume that each site on layer 1 is located just above that
on layer 2. In each layer, the anisotropy of the Ising-type
interactions depends on the bonds; there are three kinds of
nearest-neighbor (NN) bonds 〈ij 〉α (α = x,y,z), which we

refer to as the α bond, on the honeycomb lattice [see Figs. 1(a)
and 1(b)].

When JH = 0, the system is reduced to two monolayer
Kitaev models. In the model, a local Z2 conserved quantity
Wp,n = σx

p1,n
σ

y
p2,nσ

z
p3,n

σ x
p4,n

σ
y
p5,nσ

z
p6,n

exists on the nth layer,
which results in the QSL ground state with long-range spin
entanglement and the fractionalization of the quantum spins.
This allows us to map the monolayer model onto a free
Majorana fermion system with gapless elementary excitations,
although there exists a gap in the spin excitation. At finite
temperatures, the spin fractionalization emerges as a peculiar
temperature dependence of observables such as the double-
peak structure in the specific heat [14,15]. On the other hand, in
the case of JK = 0, the system is reduced to a system composed
of independent dimers. The ground state is represented by the
direct product of interlayer dimer singlets with the spin gap,
where interdimer wave functions are disentangled. Although
these two nonmagnetic ground states possess a spin gap, their
low-energy properties are different from each other. Then, one
naively expects a phase transition(s) between these two states
by changing the parameter λ = JH /JK .

The striking feature of this model is that a local conserved
quantity exists. In the presence of interlayer coupling JH ,
Wp no longer commutes with the Hamiltonian. Instead, the
product Xp = Wp,1Wp,2 is a local Z2 conserved quantity [see
Fig. 1(b)]. This is because two spin operators with dimer site
i in Xp on plaquette p have the same spin component, and
Xp commutes with Si,1 · Si,2. As X2

p = 1, the eigenstates of
the Hamiltonian given in Eq. (1) are characterized by the
eigenvalue of Xp, ±1, in each bihexagon p. The existence
of the local conserved quantity leads to the absence of spin
correlations except for NN sites in each Kitaev layer and
sites belonging to the same interlayer dimer. Thus, the ground
state remains nonmagnetic even in the presence of interlayer
coupling JH .

To clarify another symmetry of the present bilayer Kitaev
system given in Eq. (1), we adopt the bond-operator represen-
tation [77], which is useful for analyzing spin-dimer systems
[83–85]. In this representation, the four local bases on each
dimer i are described as

|s〉i = s
†
i |0〉 = 1√

2
(|↑↓〉i − |↓↑〉i), (2)

|tx〉i = t
†
xi |0〉 = − 1√

2
(|↑↑〉i − |↓↓〉i), (3)

|ty〉i = t
†
yi |0〉 = i√

2
(|↑↑〉i + |↓↓〉i), (4)

|tz〉i = t
†
zi |0〉 = 1√

2
(|↑↓〉i + |↓↑〉i), (5)

where s
†
i and t

†
αi (α = x,y,z) are the creation operators of the

singlet and triplets on dimer site i, respectively, and |0〉 is their
vacuum. We assume that these bond operators behave as bosons
and impose the local constraint s

†
i si + ∑

α t
†
αi tαi = 1 on each

dimer i to reproduce the commutation relation of an S = 1/2
spin. By means of the bond operators, the Hamiltonian given
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in Eq. (1) is rewritten as

H = − JK

2

∑
〈ij〉α

(
sis

†
j t

†
αi tαj + sisj t

†
αi t

†
αj + H.c.

−
∑

ββ ′γ γ ′
εαβγ εαβ ′γ ′ t

†
βi tγ i t

†
β ′j tγ ′j

)

+ JH

∑
i

(
−3

4
s
†
i si + 1

4

∑
α

t
†
αi tαi

)

−
∑

i

μi

(
s
†
i si +

∑
α

t
†
αi tαi − 1

)
, (6)

where εαβγ stands for the Levi-Civita symbol and μi is
a Lagrange multiplier on each dimer to impose the local
constraint.

We find that the number of each boson is not conserved,
but bosons are created or annihilated as a pair in the boson
sector of each kind. For example, the second line in Eq. (6)
is expanded as t

†
iy tizt

†
jztjy − t

†
iy tizt

†
jy tjz + H.c. when α = x.

Therefore, the parity of the particle number is conserved for
each component of the bosons. In other words, the parity
operators Ps = exp[iπ

∑
i s

†
i si] and Ptα = exp[iπ

∑
i t

†
iαtiα]

(α = x,y,z) commute with the Hamiltonian.
We note that the four local states on a dimer, |s〉i , |tx〉i , |ty〉i ,

and |tz〉i , are the eigenstates of Xp since

σα
i1σ

α
i2|s〉i = −|s〉i , σ α

i1σ
α
i2|tβ〉i = (1 − 2δαβ)|tβ〉i . (7)

In addition, the number operators are given as projectors onto
the singlet and triplet states:

s
†
i si = 1

4 − Si1 · Si2, t
†
αi tαi = 1

4 + Si1 · Si2 − 2Sα
i1S

α
i2, (8)

leading to the fact that each parity operator commutes with
Xp. Therefore, eigenstates of the Hamiltonian are specified
by the eigenvalues of [Ptx ,Pty ,Ptz ,{Xp}], each of which takes
±1. Note that Ps is determined by Ptα due to the constraint
Ps = ∏

α Ptα . For example, for the state |�s〉 = ∏
i s

†
i |0〉,

Ptx = Pty = Ptz = +1, and Xp = +1 for all plaquettes, which
is schematically shown in Fig. 2(a). We also consider a state
|�txi

〉 = t
†
ix

∏
j �=i s

†
j |0〉 = t̃

†
ix |�s〉, where the triplet excitation

(triplon) creation operator from the singlet state is introduced
as t̃

†
iα = t

†
iαsi . This state is also an eigenstate of Xp with an

eigenvalue of −1 for the two plaquettes sharing the x bond
where the triplon is located on one of the edge sites [see
Fig. 1(b)]. In this case, the eigenvalue of Xp′ is +1 for the other
plaquettes p′. From the above discussion, one can determine
the spatial configuration of eigenvalues of Xp, as shown in
Fig. 2(b). The eigenvalues of Xp for the multiple-triplet excited
state can also be discussed in the same manner, as shown in
Fig. 2(c). Note that this is similar to the configuration of Wp

for the state where a spin operator operates on the ground state
in the monolayer Kitaev model. The details of the excitation
spectrum of triplons are given in Sec. IV B.

III. METHODS

To analyze the properties of the ground state in Eq. (1),
we mainly employ the ED method in finite-size clusters up to

+1 +1 +1

+1 +1 +1 +1

+1 +1 +1

(a)

+1 +1 +1

+1 +1 -1 +1

+1 -1 +1

(b)
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+1 -1 -1 -1

+1 +1 +1

(c)

FIG. 2. Configurations of eigenvalues of Xp in (a) state |�s〉,
where all dimers are spin singlets, (b) one-triplon state |�txi

〉, where
an x component of the triplon is excited, and (c) two-triplon state
|�tyi ,tzj 〉, where the y and z components of triplons are excited. Open
circles represent spin singlets, and colored ellipses stand for the three
different components of spin triplets, as shown in the legend. The
shaded hexagons represent the plaquettes with Xp = −1.

N = 24 including 48 spins, where N is the number of dimers
in the cluster. The clusters used in the present calculations are
shown in Fig. 1(c). Note that the monolayer version of the N =
24 cluster has been widely used to obtain the phase diagram
in the Kitaev-Heisenberg(-�) models [51,55,59,86]. In the ED
calculations, we utilize the presence of the conserved quantities
Xp and the parities Ps , Ptx , Ptx , and Ptz to reduce the matrix
dimensions. In addition to the ED calculations, we also make
use of the bond-operator MF theory [77] and cluster expansion
technique [78–80] to perform a comprehensive analysis. In the
bond-operator MF theory, the local constraint is replaced by
the global one by introducing the uniform chemical potential
μ = μi , and the Bose condensation of singlets is assumed
as 〈si〉 = 〈s†i 〉 = s̄ [83–85]. Owing to these assumptions, the
Hamiltonian is reduced to the free-boson system of the triplet
excitations as

HMF =
(

−3

4
JH s̄2 − μs̄2 + μ

)
N +

(
JH

4
− μ

) ∑
i,α

t
†
αi tαi

− JKs̄2

2

∑
〈ij〉α

(t†αi tαj + t
†
αi t

†
αj + H.c.), (9)

where we neglect the scattering terms between triplet exci-
tations given in the second line of Eq. (6) and μ and s̄ are
determined self-consistently.

We also use the cluster expansion technique [78–80], which
is one of the powerful methods to discuss the quantum phase
transitions in frustrated quantum spin systems such as J1−J2

[87,88], orthogonal-dimer [89–93], and Kitaev-Heisenberg
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models [94,95]. In the bilayer model, we begin with interlayer
dimer singlets [96,97]. As discussed before, parity symmetry
for the number of singlets and triplets in our model exists,
and therefore, odd-order coefficients never appear in the
ground-state energy Eλ/N and spin correlations 〈Si,1 · Si,2〉.
We compute the power series up to the 30th order for the above
quantities. Furthermore, exploiting the first-order inhomoge-
neous differential method [98], we deduce the quantities far
from the dimer limit λ → ∞.

To examine thermodynamic quantities at finite tempera-
tures, we employ the TPQ state approach [81,82]. In this
paper, we treat the cluster with N = 12 [see Fig. 1(c)]. We
prepare more than 20 random vectors for the initial states, and
the physical quantities are calculated by averaging the values
generated by these initial states.

IV. NUMERICAL RESULTS

A. Ground-state properties

In this section, we discuss ground-state properties of the
bilayer Kitaev model given in Eq. (1). Figure 3(a) shows the
ground-state energy Eλ/(JK + JH ) as a function of λ/(1 + λ).
We obtain the smooth curve using the ED calculations. We
find that the energy obtained with the bond-operator MF
approximation is lower than that of the ED. This should be
due to its artifacts originating from the fact that triplet-triplet
correlations are not taken into account correctly in the method.
With increasing λ, the difference between the ED and bond-
operator MF results becomes negligible, meaning that the
bond-operator MF approximation is justified in the large-λ
region. We also show the energy obtained with the cluster
expansion method as the solid line in Fig. 3(a). Surprisingly,
this almost coincides with the ED results except for λ � 0.2,
although the method is also an approach from the large-λ
limit. This indicates that the dimer-singlet state, which is
adiabatically connected to the direct product state |�s〉, is
realized in the region.

In the small-λ region, a large size dependence appears in
the ED results, as shown in Fig. 3(b), in contrast to the large-λ
region. With increasing system size, the energy in the limit
of λ = 0 approaches the exact value, while it depends on the
cluster shape. An important point is that the energy curve tends
to have the bend structure around λ ∼ 0.06.

The peculiar λ dependence of the ground-state energy
can be clearly seen by taking its derivative. Figure 3(c)
shows the second derivative of Eλ as a function of λ. It is
found that the peak structure in each cluster develops with
increasing system size while the dependence of the cluster
shape is also observed. This indicates the existence of a
first-order quantum phase transition at λ = λc (∼0.06) in the
thermodynamic limit.

To clarify the nature of two distinct phases around λc, we
also calculate the interlayer spin correlations Cs = 1

N

∑
i〈Si,1 ·

Si,2〉. The results are shown in Fig. 4(a) as a function of
λ/(1 + λ). When λ → ∞, the spin singlet is realized in each
dimer, and Cs = −3/4. In the large-λ region, the strong
interlayer coupling stabilizes the dimer-singlet state with a
short correlation length. Therefore, the ED results depend little
on the cluster size and agree well with those obtained with
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FIG. 3. (a) Ground-state energy Eλ/(JK + JH ) per dimer as a
function of λ/(1 + λ) in the bilayer Kitaev model. The upper axis
shows the corresponding values of λ. The solid and dashed lines
represent the results obtained with the cluster expansion and bond-
operator MF theory. The symbols are obtained with the finite-size
ED calculations. The dash-dotted and dotted lines represent the
energies of the Kitaev QSL and dimer-singlet states, respectively.
(b) Ground-state energy Eλ/JK per dimer in the small-λ region.
(c) Second derivative of the ground-state energy per dimer. Note that
(b) and (c) are shown as a function of λ.

the cluster expansion, implying that the dimer-singlet state is
realized in this region. With decreasing λ, the Ising coupling
JK suppresses interlayer spin correlations, and therefore, the
absolute value of Cs decreases monotonically. Around λ = λc,
a large cluster-size and shape dependence appears in the ED
results, as shown in Fig. 4(b), and it is hard to extrapolate
the quantity in the thermodynamic limit. Nevertheless, the
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FIG. 4. (a) Interlayer dimer spin correlation Cs as a function of
λ/(1 + λ) and (b) the magnified plot of Cs as a function of λ in
the small-λ region. The solid and dashed lines represent the results
obtained by the cluster expansion and bond operator MF theory, and
the symbols are obtained with the finite-size ED calculations.

results for the larger clusters are still consistent with the cluster
expansion, which implies that the dimer-singlet state is realized
when λ > λc.

On the other hand, in the smaller-λ region, the spin correla-
tion suddenly changes and takes a smaller value, suggesting the
realization of the Kitaev QSL expected in the two independent
Kitaev models. To reinforce the above discussion, we calculate
the expectation value of the local Z2 conserved quantity of the
monolayer Kitaev model 〈Wp〉. This takes +1 for all plaquettes
in the Kitaev QSL ground state realized at λ = 0, whereas it is
expected to vanish in the dimer-singlet state. Therefore, 〈Wp〉 is
an appropriate quantity to characterize the Kitaev QSL. The λ

dependence of 〈Wp〉 for theN = 24 cluster is shown in Fig. 5. It
is found that 〈Wp〉 rapidly decreases from +1 around λ ∼ 0.06,
where its derivative has a sharp peak. The results indicate
that the Kitaev QSL is realized in λ � 0.06. Furthermore, the
coincidence of the values of λ, at which 〈Wp〉 and the interlayer
dimer correlation Cs exhibit abrupt changes, suggests the
existence of the first-order phase transition between the Kitaev
QSL and interlayer dimer-singlet states at λ = λc ∼ 0.06. It
is worth noting that λc = JHc/JK ∼ 0.06 is close to the spin
gap of the pure Kitaev model, �K/JK ∼ 0.065. This implies
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FIG. 5. Expectation value of the local conserved quantity of the
monolayer Kitaev model Wp and its first derivative as a function of
λ, which are obtained with the ED on the N = 24 cluster.

that the Kitaev QSL against the interlayer Heisenberg coupling
is maintained by the existence of the spin gap inherent in the
Kitaev model.

B. Excitation spectrum

Next, we discuss the excitation structure of the bilayer
Kitaev model. It is known that in the Kitaev model (λ = 0),
there is a Majorana continuum in the excited states. On the
other hand, in the dimer limit λ → ∞, due to the spin gap
with the excitation energy JH , discrete excited levels appear,
corresponding to the number of triplons. Here, we first analyze
the excitation spectrum by means of the bond operator method.
The MF Hamiltonian (9) indicates that the α component of the
local triplet excitation is hybridized only with that on the same
α bond. Thus, the triplet excitation tα is localized on each α

bond and forms the bonding and antibonding states. Figure 6

∞
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FIG. 6. The λ dependence of the excitation energy �λ. The
symbols and dashed lines represent the results obtained with the ED
method and bond-operator MF theory, respectively. For the N = 12
cluster, excitation energies up to 19th excited state are presented.
For the other clusters, excitation energies are calculated from the
lowest-energy states of the following subspaces: (Ptx ,Pty ,Ptz ) =
(−1,+1,+1), (−1,−1,+1), and (−1,−1,−1). The dash-dotted lines
represent the excitation energies expected from the localized bonding
and antibonding energy levels, 1 ± 1/(2λ), 2 ± 1/λ, 2, 3 ± 1/(2λ),
3 ± 3/(2λ), in the large-λ limit.
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shows the one-body spectrum of the triplet excitation obtained
with the bond-operator MF approximation. The introduction
of the Kitaev interaction splits the excitation energy of the spin
gap into two levels, which corresponds to the formation of the
bonding and antibonding states.

The fact that triplet excitations are localized on the corre-
sponding NN bonds can be confirmed exactly by considering
the spatial configuration of the local conserved quantity Xp.
This is done in a manner similar to the proof for the absence
of the long-range spin correlations in the monolayer Kitaev
model [8]. As shown in Fig. 2(b), in the one-triplon state
|�txi〉 on dimer site i, the two eigenvalues of Xp are flipped
from the ground state. On the other hand, the one-triplon state
|�txj 〉 on another dimer site j possesses a different config-
uration of eigenvalues of Xp, and therefore, 〈�txi |�txj 〉 =
〈�s |t̃xi t̃

†
xj |�s〉 = 0 is expected for the case where i and j are

on the same x bond. As for one-triplon state with a different
component, |�tαj 〉 (α �= x), its parity is different from that of
state |�txj 〉, and these two states are never hybridized. From
the above consideration, localized bonding and antibonding
states for the one-triplon excitation are each (3N/2)-fold
degenerate. The corresponding energies are �±/JH = 1 ±
1/(2λ) + 3/(8λ2) + · · · . In addition, one can consider multi-
triplon excitations, which are shown as the dash-dotted lines in
Fig. 6. Note that a pair of triplons with the α component on an
α bond can be mixed with the singlet state |�s〉, and hence, the
bound state may have a dispersion in the presence of the Kitaev
interaction with O(1/λ2). Furthermore, two triplon states with
different components should form the bound state. Therefore,
two triplon states should be split into some dispersionless
bound states and dispersive bands on the introduction of the
Kitaev coupling JK .

To confirm the above consideration, we calculate the excita-
tion spectrum using the ED method. The results are presented in
Fig. 6. The low-energy spectra obtained by the bond-operator
MF approximation are well reproduced by the finite-size
calculation in the large-λ case because of the existence of
the localized excitations. We have also confirmed that the first
and second excited states in λ � 1.5 are (3N/2)-fold degen-
erate, which is adiabatically connected to 3N -fold degenerate
states coming from local triplet excitations at λ → ∞. These
degeneracies are consistent with those of the bonding and
antibonding states of the triplet excitations discussed above.
At λ ∼ 1.5, excitation energies originating from one-triplon
and two-triplon excited states intersect without mixing. This
is understood from the fact that the parity of the triplon
number is conserved in the present system, which prohibits
mixing between one-triplon and two-triplon excited states.
We wish to note that the lowest excitation energy is always
finite in the case with λ � 0.06. Furthermore, we cannot find
any tendency for closing the gap. This is consistent with
the fact that the dimer-singlet state is realized in the region
λ > λc.

In the Kitaev limit, the excitation spectrum shows a con-
tinuum coming from the Majorana fermions, as mentioned
before. On the other hand, low-energy one-triplon states are
localized, and their excitation energy may be proportional
to the interlayer spin correlation Cs . We expect that, with
decreasing λ, the discrete levels will disappear at the first-order
quantum phase transition point λc and the Majorana continuum
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FIG. 7. The specific heat per dimer C/N as a function of the
temperature for the N = 12 cluster when λ = 0,0.1,0.5, and 1.
Shaded areas are the possible errors estimated by using the standard
deviation of the results obtained from more than 20 initial random
states in the TPQ calculations, and the result for λ = 0 is obtained
with the full diagonalization. The dashed lines represent the peak
temperatures denoted by TL and TH at λ = 0.

might appear below λc. However, larger cluster calculations
are needed to clarify the spectral change around λc, and this
remains for a future work.

V. FINITE-TEMPERATURE PROPERTIES

Finally, we discuss the finite-temperature properties of
the bilayer Kitaev model. Figure 7 shows the temperature
dependence of the specific heat for several values of λ by
using the TPQ state approach for the N = 12 cluster. When
λ = 0, the system is reduced to the decoupled Kitaev models,
and the double-peak structure appears at T = TL ∼ 0.044JK

and TH ∼ 0.38JK in the N = 12 cluster. This is consistent
with the fact that the spin degrees of freedom are split into
itinerant Majorana fermions and localized gauge fluxes in each
monolayer Kitaev model. In comparison with the curves with
λ = 0.2, the lower characteristic temperature TL slightly shifts
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FIG. 8. Density plot of the specific heat in the T -λ plane obtained
with the TPQ method on the L = 12 cluster. The arrows represent the
corresponding temperatures used in Fig. 7. TL and TH stand for the
peak temperatures of the specific heat at λ = 0.
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FIG. 9. Schematic picture of the multilayer Kitaev model with
interlayer Heisenberg couplings. The local conserved quantity X̃p is
depicted.

to higher temperatures, while the other little shifts. With further
increasing λ, these two peaks merge into a single peak, which
is a Schottky-type peak characteristic of the gapped systems.

To clarify how the double-peak structure of the monolayer
Kitaev model is gradually changed by the introduction of the
interlayer coupling, we show in Fig. 8 the density plot of the
specific heat on the plane of λ and temperature. The double
peaks appearing at λ = 0 are clearly seen below λ ∼ 0.2. With
increasing λ, the temperature of the higher-temperature peak
hardly changes, whereas the lower one depends on λ. We find
that these peaks merge into the single peak around λ ∼ 0.6.
This suggests that the proximity effect of the Kitaev QSL
emerges at higher temperatures even above λc. A similar effect
has been discussed in the Kitaev-Heisenberg model, where the
double-peak structure is seen even in the magnetic ordered
phase close to the Kitaev QSL ground state [64].

VI. DISCUSSION

In this section, we briefly discuss the magnetic properties
of multilayer Kitaev systems, where the Kitaev layers are
connected by the Heisenberg couplings, as shown in Fig. 9.
In the system, we can define the local Z2 conserved quantity
X̃p = ∏

n Wp,n (see Fig. 9) by straightforward generalization
of Wp defined in the bilayer system, as discussed in the
previous sections. When the number of layers is large enough,

this system is regarded as one-dimensional Heisenberg chains
coupled with Kitaev interactions. In this case, its spin correla-
tion length shows power-law decay along each chain direction.
However, the existence of the local conserved quantity X̃p

indicates that there are no spin correlations except for NN sites
in each Kitaev layer and sites belonging to the same Heisenberg
chain. This suggests that the ground state of the stacked
Kitaev model with the interlayer Heisenberg couplings shown
Fig. 9 is nonmagnetic as three-dimensional longer-range spin
correlations are absent. However, there is a possibility that
quantum phase transitions between nonmagnetic phases take
place as in the bilayer system. This is an interesting issue but
is beyond the scope of the present study.

VII. SUMMARY

In summary, we have investigated the ground-state and
finite-temperature properties of the bilayer Kitaev model. The
results obtained with the ED, bond-operator MF, and cluster
expansion methods suggest the existence of a first-order quan-
tum phase transition between the Kitaev QSL and dimer-singlet
states in the thermodynamic limit. In the excitation spectrum,
an excited single triplon is localized in the dimer-singlet
phase, which is proved by the existence of a local conserved
quantity. We have also discussed the finite-temperature prop-
erties, where the double-peak structure intrinsic to the Kitaev
QSL appears even in the dimer-singlet phase near the phase
boundary. Furthermore, we have shown that three-dimensional
long-range spin correlations are also absent in the stacked
multilayer Kitaev systems with arbitrary layer numbers. The
present results will stimulate studies for possible extensions
of the layered Kitaev model by introducing, for example,
the magnetic field and the in-plane Heisenberg and/or �

terms. Moreover, the results might provide insight into recent
experimental studies on thin films of iridium and ruthenium
compounds [73–76].
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