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Role of hydrodynamic viscosity on phonon transport in suspended graphene
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When phonon transport is in the hydrodynamic regime, the thermal conductivity exhibits peculiar dependences
on temperatures (T ) and sample widths (W ). These features were used in the past to experimentally confirm
the hydrodynamic phonon transport in three-dimensional bulk materials. Suspended graphene was recently
predicted to exhibit strong hydrodynamic features in thermal transport at much higher temperature than the
three-dimensional bulk materials, but its experimental confirmation requires quantitative guidance by theory
and simulation. Here we quantitatively predict those peculiar dependences using the Monte Carlo solution of
the Peierls-Boltzmann equation with an ab initio full three-phonon scattering matrix. Thermal conductivity is
found to increase as T α where α ranges from 1.89 to 2.49 depending on a sample width at low temperatures,
much larger than 1.68 of the ballistic case. The thermal conductivity has a width dependence of W 1.17 at 100 K,
clearly distinguished from the sublinear dependence of the ballistic-diffusive regime. These peculiar features
are explained with a phonon viscous damping effect of the hydrodynamic regime. We derive an expression for
the phonon hydrodynamic viscosity from the Peierls-Boltzmann equation, and discuss the fact that the phonon
viscous damping explains well those peculiar dependences of thermal conductivity at 100 K. The phonon viscous
damping still causes significant thermal resistance when a temperature is 300 K and a sample width is around
1 µm, even though the hydrodynamic regime is not dominant over other regimes at this condition.
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I. INTRODUCTION

Graphene has extremely high thermal conductivity and thus
has a great potential for thermal management applications. Past
experimental studies [1,2] show that the thermal conductivity
is around 4000 W/m K (up to 5300 W/m K) at room
temperature for suspended graphene, and can still be as high as
600 W/m K when graphene is supported by a substrate. This
high thermal conductivity is explained by graphene’s large
debye temperature resulting from the small atomic mass of
carbon and strong carbon-carbon bonding [3]. The high debye
temperature leads to large group velocity of acoustic phonon
modes. In addition, phonons are predominantly populated near
the center of the first Brillouin zone, leading to weak Umklapp
three-phonon scattering (hereafter U-scattering). As a result,
the mean free path (MFP) for U-scattering is long and even
comparable to a sample size. Thus, this extremely high thermal
conductivity has been discussed in between a diffusive regime
and a ballistic regime [3,4].

The hydrodynamic regime is considered another important
regime of phonon transport in suspended graphene [5,6].
The hydrodynamic regime requires that normal scattering
(hereafter N-scattering), which conserves total momentum, is
stronger than U-scattering. The suspended graphene can satisfy
this condition owing to its extremely large anharmonicity of
flexural acoustic phonon modes at small wave vectors [7] and
high debye temperature. Both features together can cause
strong N-scattering and its rate is larger than that of
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U-scattering by at least one order of magnitude [8]. This
strong N-scattering leads to a new transport regime, called
hydrodynamic phonon transport, much different from the
ballistic and diffusive regimes [5,6]. Similar phenomena were
predicted for other graphitic materials, such as single-wall
carbon nanotubes [9] and graphite [10].

The N-scattering is similar to the intermolecular scattering
in fluid flow in the sense that both scattering processes conserve
total momentum of particles. As a result, the macroscopic
transport phenomena are also similar in hydrodynamic phonon
flow and fluid flow. The equilibrium distribution under strong
N-scattering is the displaced Bose-Einstein distribution [11],
similar to the Maxwell distribution displaced by a drift velocity
in fluid flow. Another representative macroscopic phenomenon
is Poiseuille flow. The Poiseuille flow is a fully developed
steady-state flow of molecules or phonons. The driving force
of molecule flow is a pressure gradient while phonon flow
is driven by temperature gradient. A noteworthy difference
between the phonon Poiseuille flow and the common diffusive
phonon flow governed by Fourier’s law is the mechanism of
thermal resistance. While U-scattering directly causes thermal
resistance in the diffusive flow, the thermal resistance in the
phonon Poiseuille flow is due to viscous effects. The viscous ef-
fects occur when the drift velocity has a spatial gradient due to
boundaries. In the Poiseuille flow, phonons exhibit a maximum
drift velocity at the center of a sample and a minimum drift
velocity at the boundaries due to diffuse boundary scattering.
With the spatial gradient of drift velocity from the center
to the boundaries, the momentum of phonons is transferred
through many N-scattering processes and finally destroyed by
the diffuse boundary scattering, leading to thermal resistance.
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The phonon Poiseuille flow has been theoretically studied
[12,13] and experimentally confirmed by observing a peculiar
temperature dependence of thermal conductivity that increases
faster than the ballistic case [14]. For example, thermal conduc-
tivity of solid He was observed to follow the T 8 trend while the
thermal conductivity of the ballistic limit should follow T 3. For
suspended graphene, it has not been discovered yet if graphene
exhibits a temperature dependence of thermal conductivity
that is significantly different from the ballistic case so that
the Poiseuille flow can be clearly observed in experiment.
Recent studies qualitatively showed thermal conductivity of
graphene that increases faster than the ballistic limit [5,15,16].
However, they relied on a simplified Callaway’s scattering
model [17,18] and some of them [15,16] used an empirical
relation for scattering rates that was developed for three-
dimensional materials [19,20], hindering quantitative guidance
of future experimental efforts from first principles.

Here, we quantitatively discuss the details of the phonon
Poiseuille flow in suspended graphene by solving the Peierls-
Boltzmann equation (PBE). The past theoretical studies of the
phonon Poiseuille flow [12,21,22] used the analytic solutions
of the PBE to the first order, which is not valid when a sample
size is not much larger than the MFP of N-scattering. The
Navier-Stokes equation, based on a similar first-order solution
of the molecular Boltzmann transport equation, requires for
its validity that the width of the channel is larger than the
MFP of intermolecular scattering by at least two orders of
magnitudes (i.e., a molecular Knudesn number smaller than
0.01) [23]. Also, the scattering term is often simplified with
Callaway’s scattering model [10,16,12,21,22], which is not
accurate for a quantitative purpose particularly when neither N-
nor U-scattering is exceedingly larger than the other [18,24]. In
this paper, we implement the deviational Monte Carlo method
to solve the PBE to the higher order [25,26]. The phonon scat-
tering is simulated with a full three-phonon scattering matrix
from first principles without Callaway’s model. Our simulation
shows the peculiar temperature (T ) and width (W ) depen-
dences of thermal conductivity in the hydrodynamic regime.
Then we explain those peculiar dependences of thermal con-
ductivity by introducing a concept of phonon hydrodynamic
viscosity. The phonon hydrodynamic viscosity is derived from
the PBE with Callaway’s scattering model. It is worth pointing
out that a similar effect has been recently discussed elsewhere
as a friction effect induced on the relaxon gas [27] which is the
eigenstates of a symmetrized phonon scattering matrix [28].
Here we use the conventional phonon concepts and formally
derive the phonon hydrodynamic viscosity.

II. METHOD AND APPROACH

A. Monte Carlo simulation of the PBE

The PBE is a governing equation of phonon flow based
on the assumption of phonon gas particles. With a linearized
scattering term and the assumption of steady state, the PBE
can be written as

vqs · ∇rnqs =
∑
q′s ′

Cqs,q′s ′nd
q′s ′ (1)

where nqs is the phonon distribution at the phonon state with
wave vector q and polarization s. The vqs and r are the group

velocity of the phonon and a position vector in real space,
respectively. The Cqs,q′s ′ is a scattering matrix of phonons and
nd

qs is the deviation of the distribution function from the Bose-
Einstein distribution (n0

qs), defined as nqs − n0
qs . This equation

describes the balance of phonon distribution that is subject to
advection (left-hand side) and scattering (right-hand side). The
PBE is an integrodifferential equation with an integral term in
the wave-vector space from the scattering and a differential
term in the real space from the advection, together making this
equation very challenging to solve.

The integral and differential terms in the PBE were often
simplified with several assumptions to make the equation easier
to solve. First, instead of using the full scattering matrix,
C, the off-diagonal terms of C are set to zero, eliminating
the coupling between phonons through the scattering. This
assumption, called the single-mode relaxation-time approxi-
mation (SMRT), describes the independent relaxation process
of each phonon state; the corresponding phonon state exhibits
relaxation from an out-of-equilibrium distribution to the equi-
librium distribution while all other phonon states are kept
at equilibrium. The SMRT eliminates the integration in the
scattering term and is known to provide a reasonably accurate
description for the phonon transport where the momentum-
destroying U-scattering is a dominant scattering mechanism.
However, the SMRT fails when N-scattering is dominant. Since
the phonons in graphene exhibit strong N-scattering, the full
scattering matrix should be used instead of the SMRT in this
paper.

The second common approximation is to replace ∇rnqs

with ∇rn
0
qs where n0

qs is the Bose-Einstein distribution. Further
assuming a constant temperature gradient in the real-space
domain, Eq. (1) can be simplified as

vqs · ∇rT
∂n0

qs

∂T
=

∑
q′s ′

Cqs,q′s ′nd
q′s ′ . (2)

This homogenous approximation eliminates the differenti-
ation in the advection term. With this assumption and the use
of full scattering matrix, Eq. (2) was recently solved using an
iterative method [3,5,8,29,30] or a variational approach [31].
The homogenous approximation is valid when the sample size
is infinitely large or the spatial variation of the distribution
function due to the diffuse boundary scattering is small enough
to be ignored. In order to include the reduction of thermal
conductivity due to the classical size effect, the boundary
scattering rate is often calculated with a simple relation [8,32]:

τ−1
B = 2vy

W
(3)

where vy is the group velocity of the phonon in the normal
direction to the boundary. Then, the calculated boundary
scattering rate is added to the diagonal terms of the scattering
matrix. Although the homogenous boundary scattering model
can qualitatively predict the decreasing thermal conductivity
as a sample size decreases, its assumption is not valid when
phonon distribution significantly varies in space. In the phonon
Poiseuille flow, we expect that the change of the distribution
function along the normal direction to the temperature gradient
is significant. This is because U-scattering, which provides
spatially uniform momentum sink and thus causes a uniform
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distribution function, is weaker than diffuse boundary scatter-
ing. Therefore, the homogenous approximation cannot be used
for the hydrodynamic regime.

We use the deviational Monte Carlo method to solve Eq. (1)
[25,26]. While a typical Monte Carlo method for solving the
PBE samples the distribution function [33–35], the deviational
Monte Carlo method samples the deviation of the distribution
function from the already known equilibrium distribution
[25,26]. As the deviation of distribution is significantly small
compared to the distribution itself, sampling the deviation has
much reduced stochastic uncertainty compared to sampling
the distribution function. In addition, we solve the energy-
based PBE instead of the PBE. The energy-based PBE can
be obtained by multiplying phonon energy, h̄ω, on both sides
of the PBE:

vqs · ∇rfqs =
∑
q′s ′

Bqs,q′s ′f d
q′s ′ (4)

where f is the energy distribution function, a product of
phonon energy (h̄ω) and distribution function (nqs). The
matrix Bqs,q′s ′ describes energy exchange due to scattering
events, defined as Cqs,q′s ′ωqs/ωq′s ′ . An advantage of solving
the energy-based PBE is that the Monte Carlo simulation can
strictly conserve total energy. If each sampling particle carries
the same amount of deviational energy, the energy conservation
can be satisfied by simply conserving the total number of
particles [25].

The detailed algorithm of the deviational Monte Carlo
method using a full scattering matrix can be found elsewhere
[26] and here we briefly explain the algorithm. The deviational
Monte Carlo simulation starts with initializing sample particles
with an initial guess of distribution in both real and reciprocal
spaces. Each particle carries a positive or negative value of unit
deviational energy. The sample particles with a positive energy
contribute to the distribution larger than the equilibrium case,
and those with a negative energy contribute to the distribution
smaller than the equilibrium case. Then, each particle flies with
its group velocity during a given time interval. The occurrence
of three-phonon scattering is stochastically determined with
the full scattering matrix. This advection-scattering step is
repeated until the particle distribution is converged.

As we use the full scattering matrix, our scattering algorithm
differs from that in the case where SMRT is used [25,33–35].
Assuming an exponential decay of the phonon distribution
function to equilibrium distribution (e.g., SMRT), a scattering
probability, Pqs , is calculated based on a relaxation time, τqs :

Pqs = 1 − exp

(
−�t

τqs

)
(5)

where �t is the time interval. Then, a random number R is
generated and compared to Pqs , and phonon scattering occurs if
R is smaller than Pqs . However, with the full scattering matrix,
we describe the change of phonon energy distribution during
the given time interval with a matrix P:

P(�t) = eB�t =
∞∑

k=0

�tk

k!
Bk. (6)

The matrix P is defined such that the phonon energy
distribution in the future time step is related to the distribution

in the current time step as

f d
i (t + �t) =

∑
j

Pij (�t)f d
j (t) (7)

where phonon state qs and q′s ′ are denoted as i and j for the
sake of simplicity. Equation (7) is not adequate to be simulated
using a stochastic method because P is a matrix with elements
that can be negative or larger than unity. Equation (7) can be
rewritten as a power series:

f d
i (t + �t)

=
∑

j

sgn[Pij (�t)]
|Pij (�t)|

pj

[
1+

∞∑
n=1

(
p−

j

pj

)n

2n

]
f d

j (t)

(8)

where sgn is a sign function. The pj and p−
j are defined as

pj =
∑

i

|Pij (�t)|, (9)

p−
j =

∑
i|Pij (�t)<0

|Pij (�t)|. (10)

Note that |Pij (�t)|/pj and p−
j /pj range from zero to one and

the sign of Pij is shown in a separate sign function.
The power series in Eq. (8) can be stochastically simulated

by implementing the following algorithm:
For a sampling particle in phonon state j

(1) Generate a random number R.
(2) Find the phonon state i satisfying

i−1∑
k=1

|Pkj |
Pj

� R <

i∑
k=1

|Pkj |
Pj

. (11)

The phonon state i can be found with a probability of
|Pij (�t)|/pj . Then, change the phonon state from j to i, and
change the sign of energy the particle carries according to
sgn[Pij (�t)].

(3) If sgn[Pij (�t)] is negative in step 2, this occurs with a
probability of p−

j /pj and we simulate the term with the first
order in p−

j /pj in Eq. (8). In this case, we simply generate two
sampling particles in state j . Steps 1–3 are applied for these
two particles. The terms with second and higher order in p−

j /pj

in Eq. (8) can be recursively simulated during this process.
In this Monte Carlo simulation, we discretize time, real-

space, and reciprocal space domains. The real-space domain is
discretized into 20 control volumes along the width direction
and one control volume along the length direction in which
a small temperature gradient is applied. For the boundary
parallel to the temperature gradient, fully diffuse boundary
scattering is applied with an adiabatic boundary condition. For
the boundary normal to the temperature gradient, a periodic
boundary condition of heat flux [25,35] is applied because
we assume the graphene sample is long enough such that the
drift velocity does not change along the length direction, a
so-called fully developed flow. The time interval between each
advection-scattering step is determined from the three-phonon
scattering rate such that the time interval is smaller than the
minimum lifetime of the phonons with frequencies below
kBT/h̄ which contribute most of the heat flux. The reciprocal
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space is sampled using a 40×40 grid. We confirmed that
the calculation results converge well with respect to those
discretization variables.

B. Momentum balance equation of phonons
and phonon hydrodynamic viscosity

The momentum transfer through N-scattering to the bound-
aries combined with the diffuse boundary scattering, i.e., vis-
cous damping effect, is the major source of thermal resistance
in the hydrodynamic regime. Therefore, it would be interesting
to define the phonon hydrodynamic viscosity which represents
the rate of momentum transfer at a given drift velocity gradient.
Here we derive the expression for the phonon hydrodynamic
viscosity and the momentum balance equation from the PBE
with Callaway’s scattering model. We assume that the MFP
of N-scattering is much smaller than the characteristic sample
size. The steady-state PBE with Callaway’s scattering model is

vqs · ∇xnqs = −nqs − n
disp
qs

τNqs

− nqs − n0
qs

τUqs

. (12)

Here n
disp
qs is the displaced Bose-Einstein distribution

defined as

ndisp
qs = 1

exp
[

h̄(ωqs−qαuα)
kB(T0+�T )

]
− 1

(13)

where qα and uα are the wave vector and the drift velocity
along the direction of α, respectively. The �T represents
the deviation of local equilibrium temperature from global
equilibrium temperature T0. Equation (13) can be linearized as

ndisp
qs = n0

qs + n0
qs

(
n0

qs + 1
) h̄ωqs

kBT0
T ′ + n0

qs

(
n0

qs + 1
) h̄qαuα

kBT0

(14)

by assuming qαuα � ω, and T ′ = �T/T0 � 1 where T ′ is the
ratio of temperature difference to the equilibrium temperature.
The momentum balance equation can be derived by multiply-
ing qx on both sides of Eq. (12) and integrating over the first
Brillouin zone. The resulting equation is

d�xx

dx
+ d�xy

dy
= 1

(2π )2

∑
s

∫
qx

(
−nqs − n0

qs

τUqs

)
dq (15)

where

�xx = 1

(2π)2

∑
s

∫
qxvxqsnqsdq, (16)

�xy = 1

(2π )2

∑
s

∫
qxvyqs

nqsdq. (17)

The �xx and �xy represent the flux along x and y directions,
respectively, of x-direction momentum in a two-dimensional
material. Note that the momentum change due to scattering
in the right-hand side includes only U-scattering because N-
scattering conserves total momentum.

The distribution function in �xx and �xy can be found by
solving Eq. (12) with the following approximation:

∇xnqs ≈ ∇xn
disp
qs , (18)

which corresponds to the first order in Chapman-Enskog
expansion of gas kinetics theory [23] and is also called the
mean free time approximation. This approximation is valid if
the phonon MFP is much smaller than the characteristic length
of a sample. Applying the mean free time approximation to
Eq. (12) gives

vqs · ∇xn
disp
qs = −nqs − n

disp
qs

τNqs

− nqs − n0
qs

τUqs

. (19)

Inserting the solution of Eqs. (19) into (15) and assuming
the fully developed flow case dux/dx = 0 gives

dT ′

dx
= μph

∂2ux

∂y2
− βux (20)

where

μph =
[∑

s

∫
q2

xv
2
yqs

n0
qs

(
n0

qs + 1
)
τNqsdq

]
[∑

s

∫
qxvxqsn

0
qs

(
n0

qs + 1
)
ωqsdq

] , (21)

β =
[∑

s

∫
q2

xn
0
qs

(
n0

qs + 1
)
τ−1

Uqsdq
]

[∑
s

∫
qxvxqsn

0
qs

(
n0

qs + 1
)
ωqsdq

] . (22)

Here we assume τ−1
Nqs � τ−1

Uqs . Equation (20) can be un-
derstood as a momentum balance of the phonon system: the
phonon system gains net momentum from the temperature
gradient in the left-hand side and the gained momentum is
either spatially distributed by the viscous effect represented
by phonon viscosity (μph) or destroyed by U-scattering repre-
sented by β. A similar equation was provided elsewhere [5]
without derivation. Note that the momentum balance equation
in the previous work [5] includes |v|2 in the viscosity, but it
should be corrected to v2

y . The thermal conductivity can then be
calculated by solving Eq. (20) with an assumption of zero drift
velocity at the boundary (so-called no-slip boundary condition)
and the assumption of negligible U-scattering [5]:

κdrift = h̄2

48kBπ2

∑
s

∫
ωqsqxvxqsn

0
qs

(
n0

qs + 1
)
dq

μphT
2

0

W 2. (23)

III. RESULTS AND DISCUSSION

A. Temperature dependence of thermal conductivity

The temperature dependence of thermal conductivity is
different for all three regimes of phonon transport. The thermal
conductivity in the diffusive regime decreases with temperature
due to the increased rates of U-scattering. In the ballistic
regime, thermal conductivity follows the trend of the ballistic
thermal conductance, CVv, where CV is the volumetric specific
heat and v is the phonon group velocity. The ballistic thermal
conductance of three-dimensional debye crystal increases as
T 3, since the phonon group velocity is a constant and the
specific heat increases with T 3 at temperatures below the debye
temperature. However, in the hydrodynamic regime, thermal
conductivity was found to increase with temperature faster than
the ballistic case [12–14]. This unique temperature dependence
in the hydrodynamic regime was used to experimentally
confirm the steady-state hydrodynamic flow of phonons. In
a past study, the thermal conductivity of solid He increases as
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FIG. 1. Temperature dependence of thermal conductivity for
different sample widths. The dashed lines represent the exponential fit
of the results. Thermal conductivity increases faster than the ballistic
case as temperature increases, indicating phonon Poiseuille flow. The
exponent of temperature is obtained by fitting the data from 50 to
80 K (5 and 10 µm) and from 50 to 60 K (50 µm).

T 8 at low temperature, much different from the T 3 trend of the
ballistic case [14]. For the experimental confirmation of the
phonon Poiseuille flow in graphene, it would be important to
see if the thermal conductivity of graphene exhibits a peculiar
temperature dependence that is clearly distinguished from the
ballistic case.

In Fig. 1, we show the temperature dependence of thermal
conductivity in suspended graphene from the Monte Carlo sim-
ulation. Note that the ballistic thermal conductance in graphene
increases as T 1.68, different from the three-dimensional debye
crystal case [4]. This is because graphene has a flexural acoustic
phonon branch that has a quadratic dispersion relation in a
two-dimensional space. In Fig. 1, it is observed that thermal
conductivity increases with temperature faster than that of
the ballistic transport in the temperature range from 50 to
100 K. The temperature dependence of thermal conductivity in
this temperature range varies from T 1.89 to T 2.49 for different
widths, which is clearly distinguished from the trend of T 1.68

of the ballistic case. When a temperature is larger than 100 K,
the thermal conductivity decreases with temperature due to the
increased U-scattering rate.

The fact that thermal conductivity increases with tempera-
ture faster than the ballistic case can be understood using the
kinetic theory combined with a simple random-walk theory
[12,13]. According to the kinetic theory, thermal conductivity
is proportional to CVvLeff , where Leff is the effective MFP of
phonons, i.e., the total travel distance until a phonon particle
encounters a momentum-destroying scattering process. In
purely ballistic transport with fully diffuse boundary scattering,
there is no internal phonon scattering and Leff is fixed at
the characteristic size of a sample. Therefore, the thermal
conductivity in this case follows the same trend of the ballistic
thermal conductance that increases as T 1.68. When the trans-
port is in the ideal hydrodynamic regime, i.e., N-scattering
is significantly strong and U-scattering is negligibly weak
compared to the diffuse boundary scattering, the boundary
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FIG. 2. Temperature dependence of phonon viscosity and ther-
mal conductivity. The phonon viscosity decreases with temperature,
resulting in thermal conductivity increasing with temperature faster
than the ballistic case. The exponent of temperature is obtained by
fitting the data in the temperature range from 50 to 100 K.

cannot be seen directly by phonon particles, but screened
by many N-scattering processes. This circumstance can be
roughly described by a random walk of phonon particles expe-
riencing N-scattering processes. Then, Leff is W 2/�N, where
�N is the MFP for N-scattering. As temperature increases, �N

decreases due to the increased N-scattering, making Leff larger,
while Leff is a constant in the ballistic transport. Therefore, the
thermal conductivity in the hydrodynamic regime changes with
T α where α is larger than 1.68 of the ballistic case.

This temperature dependence can also be explained by the
momentum balance equation [Eq. (20)] and the concept of
phonon hydrodynamic viscosity. The phonon hydrodynamic
viscosity is inversely proportional to the N-scattering rate
according to Eq. (21), meaning that a momentum transfer rate
decreases as N-scattering becomes stronger. This observation
agrees with the aforementioned random-walk picture. With
higher N-scattering rate, the boundary can be more effectively
screened and the momentum transfer rate to the boundary
becomes less. Therefore, if the viscous damping effect is the
major contributor to thermal resistance, strong N-scattering
can decrease thermal resistance. In Fig. 2, we present the
phonon hydrodynamic viscosity of suspended graphene that
is calculated with phonon dispersion and scattering rates from
the first-principles calculation. The phonon hydrodynamic
viscosity decreases with temperature because N-scattering rate
is increased. Thus, the thermal conductivity should exhibit a
steep increase with temperature if the viscous damping effect
significantly contributes to the total thermal resistance. We
show the temperature dependence of thermal conductivity
[Eq. (23)] in Fig. 2. The calculated thermal conductivity from
the momentum balance equation increases approximately as
T 2, similar to our Monte Carlo results shown in Fig. 1.

It should be noted from Eq. (23) that thermal conductivity is
inversely proportional to hydrodynamic viscosity. As viscosity
decreases, viscous damping becomes smaller and thermal
conductivity can be larger, as shown in Fig. 2. Equation (23)
also indicates that thermal conductivity should have the same
exponent value of temperature regardless of widths. This
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FIG. 3. Normalized heat flux profile at 50 K, for sample widths
of 5, 10, and 50 µm. The displacements near the boundaries are not
zero and increase as a width decreases. The nonzero displacements
indicate slip boundary condition.

contradicts to our results from the Monte Carlo solution shown
in Fig. 1. It is observed in Fig. 1 that different widths result in
different values of exponent; the exponent value increases with
a width. The exponent value from our Monte Carlo simulation
depends on a width because the no-slip boundary condition
assumed in Eq. (23) is not completely satisfied in the actual
cases. The normalized heat flux profile in Fig. 3 shows nonzero
heat flux near the boundaries. The heat flux near the boundaries
becomes larger as a width becomes smaller.

This slip boundary condition occurs due to a ballistic effect.
In the limit of very strong N-scattering and very short MFP
of N-scattering, the displacement near the boundary should
approach zero. However, if MFP of N-scattering is not much
smaller than the width, the displacement can be larger than
zero, due to the contributions of phonons travelled without
scattering from the center of a sample where the displacement
is large. The slip displacement reduces the viscous damping
effect by flattening the heat flux profile. This can lead to a
smaller exponent value of temperature in the thermal conduc-
tivity shown in Fig. 1.

The role of viscous damping effect in thermal resistance
can also be found from the shape of the heat flux profile. The
heat flux profile shape is almost uniform when U-scattering is
the major source for the thermal resistance as U-scattering can
occur at any place of a sample. However, when the viscous
damping by N-scattering is important, the heat flux profile
varies in space and the momentum transfer along the drift
velocity gradient can occur. In Fig. 4(a), we present the profiles
of local thermal conductivity, i.e., heat flux per temperature
gradient, at 100 and 300 K. At 300 K, the local thermal conduc-
tivity is almost constant in the entire cross-section, indicating
that the direct destruction of momentum by U-scattering is the
largest contributor to the total thermal resistance. At 100 K,
the local thermal conductivity nearly follows the parabolic
shape that is observed in molecular Poiseuille flow. Due to
the drift velocity gradient, momentum can be transferred to
the wall through many N-scattering events. In this case, the
thermal resistance is mostly due to the viscous damping effect,
as also can be seen from the peculiar temperature dependence
of thermal conductivity shown in Fig. 1.
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FIG. 4. Local thermal conductivity profile from the Monte Carlo
simulation under different conditions: (a) 100 and 300 K for a
10 µm-wide sample, (b) sample widths of 10 and 50 µm at 100 K, and
(c) sample widths of 0.1, 1, and 10 µm at 300 K.

B. Sample width dependence of thermal conductivity

All three transport regimes exhibit different behavior of
thermal conductivity changes as a sample width changes. In the
ballistic regime, phonon MFP is limited to the characteristic
sample size, thus thermal conductivity increases linearly with
a width. In the diffusive regime, thermal conductivity does not
change with a width. In contrast, thermal conductivity in the
hydrodynamic regime increases superlinearly with a sample
width [4,5,15,16]. In the ideal hydrodynamic regime where
there is no U-scattering and a sample size is much larger
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FIG. 5. Sample width dependence of thermal conductivity at 100
and 300 K. The dashed lines represent the thermal conductivities
for an infinitely large sample. The black solid line represents the
ballistic case, where thermal conductivity is linearly proportional to
a width. The thermal conductivity at 100 K superlinearly increases
with a width, indicating the significant hydrodynamic regime.

than the MFP of N-scattering, thermal conductivity should
increase as W 2 [5]. This can be easily shown from the random-
walk picture or the momentum balance equation [Eq. (20)],
assuming there is no U-scattering. However, with the existence
of U-scattering, thermal conductivity would follow the trend
of Wα where α is less than 2.

In Fig. 5, we present the dependence of thermal conductivity
on sample widths from our Monte Carlo simulation. At 300 K,
thermal conductivity depends on sample widths very weakly;
the width dependence is W 0.17 in the range of width from 1 to
5 µm. For widths larger than 5 µm, the thermal conductivity
is almost the same as the thermal conductivity of an infinitely
large sample. This suggests that the momentum destruction
by U-scattering is stronger than the viscous damping effect
at 300 K.

In contrast, the thermal conductivity at 100 K clearly shows
a superlinear increase with a width; the dependence is W 1.17

in the range of widths from 1 to 10 µm. As a width is further
increased, the width dependence is weaker, showing a sublinear
dependence. The transition from the strong dependence W 1.17

to the weak dependence W 0.56 at 100 K can be explained by
the relative strength of viscous damping and U-scattering. At a
fixed temperature, the thermal resistance by U-scattering is
constant regardless of widths. However, the viscous damp-
ing effect varies with sample widths. From the momentum
balance equation, the momentum transfer rate is proportional
to hydrodynamic phonon viscosity and the gradient of drift
velocity. As a width increases, the gradient of drift velocity
is decreased, making the viscous damping effect smaller.
When a width is between 1 and 10 µm, the viscous damping
effect is relatively stronger than the momentum destruction
by U-scattering, giving the superlinear dependence of thermal
conductivity on widths. However, as a width further increases,
the viscous damping effect decreases, and the transport regime
becomes closer to the diffusive limit. This behavior can be
also seen in the local thermal conductivity profile shown in
Fig. 4(b). When a width is 10 µm, the local thermal conductivity
has nearly parabolic profile shape, indicating that the viscous
damping is the major source of thermal resistance. However,
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FIG. 6. Comparison of MFPs of N- and U-scatterings at 300 K.
The filled circles are for U-scattering and the void circles are for
N-scattering.

when a width is 50 µm, the local thermal conductivity profile
is flattened and the momentum transfer to the wall is relatively
insignificant compared to the 10-µm case.

C. Transition from hydrodynamic to diffusive regimes

We have focused on the peculiar behaviors of thermal
conductivity at 100 K where the hydrodynamic regime is
dominant over other regimes. Although the 300 K case does
not exhibit the peculiar behaviors of temperature- and width-
dependent thermal conductivity of the hydrodynamic regime,
the MFP of N-scattering is still significantly smaller than
those of U-scattering as shown in Fig. 6. This suggests that
N-scattering and the resulting viscous damping may still play
an important role in the thermal transport.

In Fig. 7, we compare the thermal conductivity values from
two different methods. One is from our Monte Carlo solution
where we consider the spatial variation of phonon distribution
and solve the PBE in both real and reciprocal spaces (hereafter
κMC represents the thermal conductivity values from the Monte
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FIG. 7. Comparison of thermal conductivity values with different
boundary scattering models: spatially nonhomogenous boundary
scattering by Monte Carlo simulation of the PBE (solid line) and
spatially homogenous boundary scattering (dashed line). The differ-
ence between them shows the significance of the viscous damping
effect.
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Carlo solution). The other is from the iterative solution where
we ignore the spatial variation of phonon distribution and as-
sume a simple homogenous boundary scattering [8] (hereafter
κhomo represents the thermal conductivity values from the ho-
mogenous boundary scattering). This comparison was reported
in two recent papers [16,27] and the difference between the
two methods was used to explain the friction effects in the
relaxon framework [28]. Here we use the conventional phonon
concept to explain the difference. In the homogenous boundary
scattering model [Eq. (3)], the boundary scattering acts like a
momentum sink that is homogenously distributed in space,
and its rate is based on the assumption of ballistic transport to
the boundary. Therefore, the homogenous boundary scattering
model cannot capture the viscous damping effect that occurs
due to many N-scattering events and the gradient of drift
velocity. As the homogenous boundary scattering assumes that
the phonon particles directly see the boundary, it overestimates
thermal resistance compared to the actual case where the
boundary is screened by many N-scattering events.

It is found in Fig. 7 that κMC is significantly larger than
κhomo at 100 K where we predicted the hydrodynamic regime is
dominant over other regimes. In this case, the viscous damping
is the major contributor to the thermal resistance, and therefore
the homogenous boundary scattering model cannot accurately
predict the thermal conductivity values. When a width is very
small (0.1 µm) or exceedingly large (>50 µm) representing
the cases that are close to the ballistic or diffusive limits,
respectively, the difference between κMC and κhomo is small.
It is noteworthy that κMC is larger than κhomo by 40% even at
300 K where the peculiar temperature and width dependences
of thermal conductivity in the hydrodynamic regime do not
exist. This indicates that the viscous damping effect can still
play an important role at 300 K, even though the transport is
not clearly in the hydrodynamic regime but in between the
hydrodynamic and diffusive limits.

The phonon distribution and heat flux profile also support
that the viscous damping effect is still important at 300 K. For
the hydrodynamic viscosity to be well defined, a collective
motion of phonon particles with the same drift velocity is
necessary. We show in Fig. 8 that the phonon particles at 300
K form a clear collective motion. The slope in Fig. 8 represents
the drift velocity of each phonon state. It is clear that all phonon
modes in the phonon states with small wave vectors which
contribute most of the heat flux, exhibit the same drift velocity
regardless of phonon wave vector and polarization. In addition,
the local thermal conductivity profile in Fig. 4(c) also indicates
that viscous damping effect can be significant at 300 K when
a width is around 1 µm. The local thermal conductivity profile
in this case exhibits a large gradient along the width direction,
indicating that the viscous damping effect can be significant.
However, when a width is 0.1 or 10 µm, the local thermal
conductivity profile is almost uniform and the viscous damping
effect is almost negligible.

IV. SUMMARY AND CONCLUSIONS

We have discussed the hydrodynamic phonon transport
in suspended graphene using the Monte Carlo solution of
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FIG. 8. Deviation of phonon distribution from the equilibrium
case from Monte Carlo simulation of the PBE. The phonon distribu-
tion is sampled at the center of a 1-µm-wide sample at 300 K. The
slope between two adjacent phonon states (circles) represents the drift
velocity at the phonon state.

the PBE in both real and reciprocal spaces. Our solution of
the PBE is based on the deviational Monte Carlo method
using the full scattering matrices from first-principles lattice
dynamics calculation, and thus holds the predictive power
of the first-principles calculations. We focus on the peculiar
temperature and width dependences of thermal conductivity
when the hydrodynamic regime is dominant over the diffusive
and ballistic regimes. The calculation shows that thermal
conductivity values follow the trends of T α where α ranges
from 1.89 to 2.49, and W 1.17 when a temperature is around
100 K and widths are from 1 to 10 µm. These behaviors are
clearly distinguishable from those of the ballistic and diffusive
limits, and thus can serve as an indicator of the hydrodynamic
regime. Our calculation results can be used to guide future
experimental studies to confirm the phonon Poiseuille flow.

The peculiar behaviors of thermal conductivity are qualita-
tively explained with the concept of phonon hydrodynamic
viscosity. We derived a momentum balance equation from
the PBE using Callaway’s scattering model to separate N-
and U-scatterings, and defined the phonon hydrodynamic
viscosity. It is found that the hydrodynamic viscous damping is
a significant contributor to thermal resistance at 100 K where
the hydrodynamic regime is dominant. The viscous damping
effect still plays an important role in thermal transport when
a temperature is 300 K and a width is around 1 µm, even
though the transport regime in this condition is not clearly
hydrodynamic but in a transition between the hydrodynamic
and diffusive regimes.

ACKNOWLEDGMENTS

We acknowledge support from NSF Grants No. 1705756
and No. 1709307. This paper was also supported by the Central
Research Development Fund of University of Pittsburgh (Grant
No. 9012883). This paper used the clusters of Extreme Science
and Engineering Discovery Environment through Allocation
No. TG-PHY170010 and clusters of Center for Research
Computing at University of Pittsburgh.

094309-8



ROLE OF HYDRODYNAMIC VISCOSITY ON PHONON … PHYSICAL REVIEW B 97, 094309 (2018)

[1] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan,
F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

[2] J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T.
Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S.
Ruoff, and L. Shi, Science 328, 213 (2010).

[3] L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B 80, 125407
(2009).

[4] M.-H. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z.-Y.
Ong, I. Knezevic, and E. Pop, Nat. Commun. 4, 1734 (2013).

[5] S. Lee, D. Broido, K. Esfarjani, and G. Chen, Nat. Commun. 6,
6290 (2015).

[6] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, and
N. Marzari, Nat. Commun. 6, 6400 (2015).

[7] P. K. Schelling and P. Keblinski, Phys. Rev. B 68, 035425 (2003).
[8] L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B 82, 115427

(2010).
[9] S. Lee and L. Lindsay, Phys. Rev. B 95, 184304 (2017).

[10] Z. Ding, J. Zhou, B. Song, V. Chiloyan, M. Li, T.-H. Liu, and G.
Chen, Nano Lett. 18, 638 (2018).

[11] J. M. Ziman, Electrons and Phonons: The Theory of Transport
Phenomena in Solids (Oxford University Press, London, 1960).

[12] R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 778 (1966).
[13] R. N. Gurzhi, J. Exp. Theor. Phys. 46, 719 (1964).
[14] L. P. Mezhov-Deglin, J. Exp. Theor. Phys. 49, 66 (1965).
[15] A. K. Majee and Z. Aksamija, Phys. Rev. B 93, 235423 (2016).
[16] Y. Guo and M. Wang, Phys. Rev. B 96, 134312 (2017).
[17] J. Callaway, Phys. Rev. 113, 1046 (1959).

[18] P. B. Allen, Phys. Rev. B 88, 144302 (2013).
[19] D. T. Morelli, J. P. Heremans, and G. A. Slack, Phys. Rev. B 66,

195304 (2002).
[20] G. A. Slack and S. Galginaitis, Phys. Rev. 133, A253 (1964).
[21] R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 766 (1966).
[22] J. A. Sussmann and A. Thellung, Proc. Phys. Soc. 81, 1122

(1963).
[23] W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas

Dynamics (Wiley, New York, 1965).
[24] J. Ma, W. Li, and X. Luo, Phys. Rev. B 90, 035203 (2014).
[25] J. P. M. Péraud and N. G. Hadjiconstantinou, Phys. Rev. B 84,

205331 (2011).
[26] C. D. Landon and N. G. Hadjiconstantinou, J. Appl. Phys. 116,

163502 (2014).
[27] A. Cepellotti and N. Marzari, Nano Lett. 17, 4675 (2017).
[28] A. Cepellotti and N. Marzari, Phys. Rev. X 6, 041013 (2016).
[29] A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer,

Phys. Rev. B 80, 125203 (2009).
[30] M. Omini and A. Sparavigna, Phys. Rev. B 53, 9064 (1996).
[31] G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Phys. Rev. B

88, 045430 (2013).
[32] P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).
[33] R. B. Peterson, J. Heat Transfer 116, 815 (1994).
[34] S. Mazumder and A. Majumdar, J. Heat Transfer 123, 749

(2001).
[35] Q. Hao, G. Chen, and M. S. Jeng, J. Appl. Phys. 106, 114321

(2009).

094309-9

https://doi.org/10.1021/nl0731872
https://doi.org/10.1021/nl0731872
https://doi.org/10.1021/nl0731872
https://doi.org/10.1021/nl0731872
https://doi.org/10.1126/science.1184014
https://doi.org/10.1126/science.1184014
https://doi.org/10.1126/science.1184014
https://doi.org/10.1126/science.1184014
https://doi.org/10.1103/PhysRevB.80.125407
https://doi.org/10.1103/PhysRevB.80.125407
https://doi.org/10.1103/PhysRevB.80.125407
https://doi.org/10.1103/PhysRevB.80.125407
https://doi.org/10.1038/ncomms2755
https://doi.org/10.1038/ncomms2755
https://doi.org/10.1038/ncomms2755
https://doi.org/10.1038/ncomms2755
https://doi.org/10.1038/ncomms7290
https://doi.org/10.1038/ncomms7290
https://doi.org/10.1038/ncomms7290
https://doi.org/10.1038/ncomms7290
https://doi.org/10.1038/ncomms7400
https://doi.org/10.1038/ncomms7400
https://doi.org/10.1038/ncomms7400
https://doi.org/10.1038/ncomms7400
https://doi.org/10.1103/PhysRevB.68.035425
https://doi.org/10.1103/PhysRevB.68.035425
https://doi.org/10.1103/PhysRevB.68.035425
https://doi.org/10.1103/PhysRevB.68.035425
https://doi.org/10.1103/PhysRevB.82.115427
https://doi.org/10.1103/PhysRevB.82.115427
https://doi.org/10.1103/PhysRevB.82.115427
https://doi.org/10.1103/PhysRevB.82.115427
https://doi.org/10.1103/PhysRevB.95.184304
https://doi.org/10.1103/PhysRevB.95.184304
https://doi.org/10.1103/PhysRevB.95.184304
https://doi.org/10.1103/PhysRevB.95.184304
https://doi.org/10.1021/acs.nanolett.7b04932
https://doi.org/10.1021/acs.nanolett.7b04932
https://doi.org/10.1021/acs.nanolett.7b04932
https://doi.org/10.1021/acs.nanolett.7b04932
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1103/PhysRev.148.778
https://doi.org/10.1103/PhysRevB.93.235423
https://doi.org/10.1103/PhysRevB.93.235423
https://doi.org/10.1103/PhysRevB.93.235423
https://doi.org/10.1103/PhysRevB.93.235423
https://doi.org/10.1103/PhysRevB.96.134312
https://doi.org/10.1103/PhysRevB.96.134312
https://doi.org/10.1103/PhysRevB.96.134312
https://doi.org/10.1103/PhysRevB.96.134312
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRevB.88.144302
https://doi.org/10.1103/PhysRevB.88.144302
https://doi.org/10.1103/PhysRevB.88.144302
https://doi.org/10.1103/PhysRevB.88.144302
https://doi.org/10.1103/PhysRevB.66.195304
https://doi.org/10.1103/PhysRevB.66.195304
https://doi.org/10.1103/PhysRevB.66.195304
https://doi.org/10.1103/PhysRevB.66.195304
https://doi.org/10.1103/PhysRev.133.A253
https://doi.org/10.1103/PhysRev.133.A253
https://doi.org/10.1103/PhysRev.133.A253
https://doi.org/10.1103/PhysRev.133.A253
https://doi.org/10.1103/PhysRev.148.766
https://doi.org/10.1103/PhysRev.148.766
https://doi.org/10.1103/PhysRev.148.766
https://doi.org/10.1103/PhysRev.148.766
https://doi.org/10.1088/0370-1328/81/6/318
https://doi.org/10.1088/0370-1328/81/6/318
https://doi.org/10.1088/0370-1328/81/6/318
https://doi.org/10.1088/0370-1328/81/6/318
https://doi.org/10.1103/PhysRevB.90.035203
https://doi.org/10.1103/PhysRevB.90.035203
https://doi.org/10.1103/PhysRevB.90.035203
https://doi.org/10.1103/PhysRevB.90.035203
https://doi.org/10.1103/PhysRevB.84.205331
https://doi.org/10.1103/PhysRevB.84.205331
https://doi.org/10.1103/PhysRevB.84.205331
https://doi.org/10.1103/PhysRevB.84.205331
https://doi.org/10.1063/1.4898090
https://doi.org/10.1063/1.4898090
https://doi.org/10.1063/1.4898090
https://doi.org/10.1063/1.4898090
https://doi.org/10.1021/acs.nanolett.7b01202
https://doi.org/10.1021/acs.nanolett.7b01202
https://doi.org/10.1021/acs.nanolett.7b01202
https://doi.org/10.1021/acs.nanolett.7b01202
https://doi.org/10.1103/PhysRevX.6.041013
https://doi.org/10.1103/PhysRevX.6.041013
https://doi.org/10.1103/PhysRevX.6.041013
https://doi.org/10.1103/PhysRevX.6.041013
https://doi.org/10.1103/PhysRevB.80.125203
https://doi.org/10.1103/PhysRevB.80.125203
https://doi.org/10.1103/PhysRevB.80.125203
https://doi.org/10.1103/PhysRevB.80.125203
https://doi.org/10.1103/PhysRevB.53.9064
https://doi.org/10.1103/PhysRevB.53.9064
https://doi.org/10.1103/PhysRevB.53.9064
https://doi.org/10.1103/PhysRevB.53.9064
https://doi.org/10.1103/PhysRevB.88.045430
https://doi.org/10.1103/PhysRevB.88.045430
https://doi.org/10.1103/PhysRevB.88.045430
https://doi.org/10.1103/PhysRevB.88.045430
https://doi.org/10.1103/RevModPhys.33.92
https://doi.org/10.1103/RevModPhys.33.92
https://doi.org/10.1103/RevModPhys.33.92
https://doi.org/10.1103/RevModPhys.33.92
https://doi.org/10.1115/1.2911452
https://doi.org/10.1115/1.2911452
https://doi.org/10.1115/1.2911452
https://doi.org/10.1115/1.2911452
https://doi.org/10.1115/1.1377018
https://doi.org/10.1115/1.1377018
https://doi.org/10.1115/1.1377018
https://doi.org/10.1115/1.1377018
https://doi.org/10.1063/1.3266169
https://doi.org/10.1063/1.3266169
https://doi.org/10.1063/1.3266169
https://doi.org/10.1063/1.3266169



