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Theory of many-body radiative heat transfer without the constraint of reciprocity
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Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact
formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas
allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle
exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal
equilibrium and directional heat transfer when the system is away from thermal equilibrium.
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I. INTRODUCTION

It has been theoretically shown [1–5] and experimentally
verified [6–17] that near-field radiative heat transfer between
bodies supporting surface waves can greatly exceed the black-
body limit. These results indicate the fundamental impor-
tance for the study of thermal electromagnetic fluctuation at
nanoscale, and may lead to opportunities for applications such
as imaging [18,19], thermophotovoltaics [20–26], electrolumi-
nescent cooling [27,28], thermal rectifier [29–34], and thermal
transistor [35].

Near-field radiative heat transfer is strongly geometry de-
pendent. A variety of photonic structures such as gratings
[36–47], metamaterials [48–51], and thin films [11,52,53] have
been used to tailor near-field radiative heat transfer. Therefore,
there are significant efforts in developing the theoretical for-
malisms to treat near-field heat transfer in various geometries
[1–5,35,54–62]. The vast majority of these works have focused
on heat transfer between two bodies. Moreover, the electro-
magnetic properties of these bodies are typically assumed
to be reciprocal, where the permittivity and permeability are
described by scalars or symmetric tensors [63].

On the other hand, it has been recently noted that new
physics effects can arise when one considers many-body heat
transfer [35,58]. Also, for heat transfer between nonreciprocal
bodies, novel effects, such as a thermal Hall effect [64], or
a persistent heat current at equilibrium [65], can arise. These
effects, moreover, exist only in systems consisting of at least
three bodies. More specifically, for two bodies 1 and 2 in a
many-body system, we denote the spectral heat transfer to body
2 due to thermal noise sources in body 1 as S1→2(ω) and the
spectral heat transfer to body 1 due to thermal noise sources
in body 2 as S2→1(ω). If such many-body system consists of
materials that violate Lorentz reciprocity, when bodies 1 and 2
have the same temperature, the radiative heat transfer between
bodies 1 and 2 are nonreciprocal, i.e., S1→2(ω) �= S2→1(ω). In
light of these recent developments, there is therefore a need for
developing a theoretical formalism that treats many-body heat
transfer without the constraint of reciprocity.
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In this paper, we develop compact formulas for radiative
heat transfer in both reciprocal and nonreciprocal arbitrarily
shaped many-body systems. Our development uses a self-
consistent scattered field approach within the framework of
fluctuational electrodynamics, and is in principle exact. The
formulas can be used for efficient numerical calculation for
a system containing a large number of bodies, without any
constraint on whether the electromagnetic response of these
bodies is reciprocal or not. As a demonstration, we show that
the effect of persistent equilibrium heat current, which was pre-
viously observed in a system consisting of three nonreciprocal
bodies [65], also exists as one further increases the number
of bodies. Moreover, such a heat current has signatures in
nonequilibrium situations. Our work should prove useful in
exploring new opportunities of controlling near-field radiative
heat transfer by using complex nonreciprocal or reciprocal
many-body systems.

Related to our works, there have been several other efforts in
developing a theory for many-body heat transfer. And here we
briefly contrast our works with these efforts. A formalism for
reciprocal many-body heat transfer was provided in Ref. [57].
But, the formalism requires knowing beforehand the collective
scattering effect (i.e., the T matrix) for a composite consisting
of multiple bodies. Obtaining the T matrix of a composite con-
taining a large number of bodies is nontrivial and, therefore, it
requires substantial further work in order to directly implement
the formalism of Ref. [57] to compute many-body heat transfer.
In contrast, in this paper, we describe the many-body heat
transfer in terms of the scattering effect (i.e., the T matrix) of
individual objects. We show that our formula can be efficiently
implemented numerically. We also note that nonreciprocal heat
transfer in a three-body system is studied in Ref. [65] using
a scattering approach, but Ref. [65] does not allow treating
many-body systems consisting of a large number of bodies. Our
formalism also differs from the dipole approximation approach
[64,66–69] for many-body heat transfer in that our approach
takes into account all the modes. The dipole approximation is
most accurate when the particles are smaller than the thermal
wavelength, and the spacing between the particles is relatively
large as compared to the size of the particles. Our formalism is
not restricted to this regime and can be used to treat situations
where higher-order modes may contribute significantly to the
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radiative heat transfer. Finally, we note that a thermal discrete
dipole approximation (T-DDA) method has been used to study
radiative heat transfer between magneto-optical materials [61].
In T-DDA, each body needs to be discretized into a large
number of volume elements and hence requires one to solve
linear systems with a large number of unknowns. In contrast,
the use of a scattering method such as ours typically results
in linear systems with a far smaller number of unknowns
and thus is much faster than methods that require spatial
discretization [70]. The relatively modest computational costs
of our scattering approach further allow for studying many-
body radiative heat transfer in a system consisting of a large
number of bodies.

The rest of the paper is organized as follows. In Sec. II,
we discuss the mathematical background. In Sec. III, we
summarize the main results. In Sec. IV, we derive formulas
for many-body radiative heat transfer for an arbitrary number
of bodies without the constraint of reciprocity. In Sec. V, based
on the formulas we derived in Sec. IV, we study nonreciprocal
many-body radiative heat transfer at both equilibrium and
nonequilibrium situations. We conclude in Sec. VI.

II. MATHEMATICAL BACKGROUND

A. Assumptions

We start by briefly summarizing the assumptions that
underlie our approach. We consider a many-body system that
consists of linear materials. Our approach applies independent
of whether the materials satisfy Lorentz reciprocity or not.

The multiple bodies in the system may have different
temperatures. We assume that the temperature inside each
body is homogeneous. We note that in certain scenarios
there may be non-negligible temperature inhomogeneity even
in nanoscale bodies. In particular, a volumetric-fluctuating
current formalism has been used to study effects of temperature
inhomogeneity on radiative heat transfer and thermal radiation
[71,72]. We do not consider such inhomogeneity in our
approach even though our approach may be generalized for
such situations.

We use a scattering formalism and expand fields using a
complete basis. Specifically, in order to use the spherical wave
basis as the complete basis, the bodies can have arbitrary
shapes, however, each body must be able to be enclosed by
nonoverlapping spheres.

B. Notation

Throughout the paper, we use the SI units and the e−iωt

convention. All time-dependent physical fields, e.g., A(t), are
real. The convention for Fourier transform is

A(t) = Re
∫ ∞

0
dω A(ω)e−iωt . (1)

For thermal calculation, the relevant physical quantities are
typically in the form of 〈A(t)B(t)〉, where 〈. . .〉 denotes an
ensemble average. The thermal processes we consider in the
paper are stationary random processes, where 〈A(t)B(t)〉 is
time independent. Therefore, 〈A(ω)B∗(ω′)〉 must be propor-
tional to δ(ω − ω′), i.e.,

〈A(ω)B∗(ω′)〉 = 〈AB∗〉ωδ(ω − ω′). (2)

Using Eqs. (1) and (2), we have

〈A(t)B(t)〉 =
∫ ∞

0
dω

1

2
Re〈AB∗〉ω.

In particular, the Poynting vector

S = 〈E(t) × H(t)〉 =
∫ ∞

0
dω S(ω)

≡
∫ ∞

0
dω

1

2
Re〈E × H∗〉ω,

where E and H are electric and magnetic fields, respectively.

C. Electromagnetic scattering theory

We briefly summarize the relevant aspect of the elec-
tromagnetic scattering theory, and highlight those aspects
unique to nonreciprocal systems. Assuming a permittivity and
permeability distribution ε(r), μ(r), in the presence of an
electric current source J at a frequency ω, the resulting electric
field E satisfies(

Ĥ0 − V̂ − ω2

c2
Î

)
E = iωμ0J, (3)

where

Ĥ0 = ∇ × ∇ × ,

V̂ = ω2

c2
(ε̂ − Î ) + ∇ ×

(
Î − 1

μ̂

)
∇ × .

Here, μ0 is the permeability of vacuum. ε̂ and μ̂ are the operator
forms for ε(r) and μ(r). Equation (3) can be formally solved
as

E = iωμ0ĜJ,

where

Ĝ =
(

Ĥ0 − V̂ − ω2

c2
Î − iη

)−1

(4)

is the Green’s function operator. Here, η is an infinitesimal
positive number. We denote the free-space Green’s function as
Ĝ0. Ĝ0 is symmetric, i.e., Ĝ0(r,r′) = ĜT

0 (r′,r).
Consider a body surrounded by vacuum. In the presence

of an incident wave in vacuum E0, the resulting total field E
satisfies the Lippmann-Schwinger equation [73]

E = E0 + Ĝ0V̂ E. (5)

Define the T̂ operator such that T̂ E0 = V̂ E, we then have also

E = E0 + Ĝ0T̂ E0. (6)

The scattering property of the body is therefore entirely
described by the T̂ operator. Using Eqs. (5) and (6), the T̂

operator can be solved as

T̂ = V̂ (Î − Ĝ0V̂ )−1. (7)

For most previous works in near-field heat transfer, both ε

and μ are assumed to be either scalar or symmetric tensors, in
which cases the system satisfies Lorentz reciprocity. And from
Eqs. (4) and (7), both Ĝ and T̂ are symmetric, i.e., Ĝ(r,r′) =
ĜT (r′,r) and T̂ (r,r′) = T̂ T (r′,r). On the other hand, in this
paper we will be considering systems without reciprocity
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constraint. In these systems, ε and μ may no longer be
symmetric, such as in magneto-optical materials as we will
simulate in Sec. V. For these systems, in general Ĝ and T̂ are
not symmetric operators.

In this paper, we make extensive use of various solutions of
the free-space Maxwell’s equations, which can be written as(

Ĥ0 − ω2

c2
Î

)
E = 0. (8)

The set of nonsingular solutions of this equation for all frequen-
cies, which we denote as Ereg

ν , forms a complete basis, with ν

denoting the labels. In the spherical coordinate system, for
example, ν ≡ {l,m,P }, where l, m, and P are the total angular
momentum, and the angular momentum component along the
z direction, and the polarization index, respectively. We also
denote the solutions of this equation, with an outgoing wave
boundary condition, as Eout

ν . In the spherical or cylindrical
coordinate system centered around an origin, the outgoing
waves are singular at the origin.

For arbitrary wave basis, the regular and outgoing wave
basis functions satisfy the following orthonormal relations:

−Im
∮ [

Eout
ν × (∇ × Eout∗

ν ′
)
g + Eout

ν ′

× (∇ × Eout∗
ν

)
g∗] · dA = 2 Re(g) δνν ′δν,pr , (9)

−Im
∮ [

Eout
ν × (∇ × Ereg∗

ν ′
)
g + Ereg

ν

× (∇ × Eout∗
ν ′

)
g∗] · dA = Re(e−iφν g) δνν ′ , (10)

−Im
∮ [

Ereg
ν × (∇ × Ereg∗

ν ′
)
g + Ereg

ν ′

× (∇ × Ereg∗
ν

)
g∗] · dA = 0, (11)

where g is an arbitrary complex number. Here, the integration
is taken on a closed surface surrounding the origin, and dA
denotes outward-pointing surface area element. In Eq. (9),
δν,pr = 1 for a basis function ν that is propagating, and is zero
otherwise. In Eq. (10),φν is zero for propagating basis function,
and is generally a nonzero real number for evanescent basis
function. Identities equivalent to Eqs. (9)–(11) in cylindrical
wave basis for the subset of propagating basis functions were
used in Ref. [74].

Spherical wave basis only consists of propagating waves.
Thus, in spherical wave basis, Eqs. (9) and (10) simplify to

−Im
∮ [

Eout
ν × (∇ × Eout∗

ν ′
)
g + Eout

ν ′

× (∇ × Eout∗
ν

)
g∗] · dA = 2 Re(g) δνν ′ , (12)

−Im
∮ [

Eout
ν × (∇ × Ereg∗

ν ′
)
g + Ereg

ν ′

× (∇ × Eout∗
ν

)
g∗] · dA = Re(g) δνν ′ . (13)

The free-space Green’s function can be expanded using
outgoing- and regular-wave basis functions:

Ĝ0(r,r′) = i
∑

ν

Eout
ν (r) ⊗ Ereg

σ (ν)(r
′), (14)

when |r| > |r′|. We note that Eq. (14) is the representation
of the free-space Green’s function in scattering wave basis,
while Eq. (4) is the general Green’s function operator. Here,
σ (ν) denotes a permutation of the mode index ν. σ ({l,m,P }) =
{l,−m,P } for the spherical wave basis function. We note that
Eq. (14) is “on shell”: for the free-space Green’s function at
a frequency ω, the right-hand side of Eq. (14) involves only
the solutions of Eq. (8) at the frequency ω. The imaginary
part of the free-space Green’s function can be expanded using
propagating regular wave basis functions:

ImĜ0(r,r′) =
∑
ν∈pr

Ereg
ν (r) ⊗ Ereg

σ (ν)(r
′), (15)

where again the right-hand side involves solutions only at the
frequency ω.

In arbitrary wave basis, the matrix element for the T̂

operator of a scatterer is defined as [57]

Tνν ′ = i

∫
dr

∫
dr′[Ereg

σ (ν)(r)
]T

T̂ (r,r′)Ereg
ν ′ (r′). (16)

D. Fluctuation dissipation theorem

Thermal radiation is sourced by fluctuating current sources.
For a medium without magnetic loss (i.e., μ̂ = μ̂†), at a
temperature T , the current-current correlation function has the
form

〈J(ω,r)J†(ω′,r ′)〉 = 4

π
ω
(ω,T )ε0δ(r − r′)

× ε̂(r,ω) − ε̂†(r,ω)

2i
δ(ω − ω′), (17)

where 
(ω,T ) = h̄ω/[exp( h̄ω
kBT

) − 1]. This form is applicable
to both reciprocal and nonreciprocal media [75,76].

For a system that is at equilibrium, e.g., a many-body system
where all bodies are at the same temperature, the electric field
correlation function has the form 〈E(r,ω)E†(r′,ω′)〉 = δ(ω −
ω′)〈E(r)E†(r′)〉ω, where

〈E(r)E†(r′)〉ω = 4

π
ω
(ω,T )μ0

Ĝ(r,r′) − Ĝ†(r′,r)

2i
. (18)

This can be seen as a manifestation of the fluctuation dissi-
pation theorem [77] since the Green’s function is the linear
response function of the electromagnetic system with respect to
J. Alternatively, this relation can also be derived using Eqs. (4)
and (17).

III. SUMMARY OF MAIN RESULTS

Having reviewed the mathematical background in the pre-
vious section, in this section we summarize the main results
of the paper regarding the major properties of heat transfer
in many-body systems without the constraint of reciprocity.
We also contrast these properties with those in reciprocal
systems. We consider a many-body system including n bodies,
as schematically shown in Fig. 1. These bodies may have dif-
ferent temperatures. Without loss of generality, we specifically
discuss radiative heat transfer between bodies 1 and 2 in the
many-body system. Using scattering theory, in this paper, we
will show that the spectral heat flux to body 2 due to thermal
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FIG. 1. Schematic of a system consisting of multiple bodies in
electromagnetic heat transfer with each other. For this specific case,
spherical wave basis can be used, as the bodies can be surrounded by
nonoverlapping spheres.

noise sources in body 1, which is maintained at a temperature
T1, can be expressed as

S1→2(ω) = 2

π

(ω,T1)Tr[A2W21R1W

†
21], (19)

where

Aj = −(e−i�jTj + T †
j ei�j )/2 − T †

j �prTj (20)

is related to the absorption process of the j th body,

Rj = −(Tj e
−i�j + ei�jT †

j )/2 − Tj�
prT †

j (21)

is related to the emission process of the j th body. Here, Tj is
the T matrix of the j th body and is related to its scattering
matrix Sj by Tj = (Sj − I)/2 where I is identity matrix. �pr

is an operator that projects to the subspace of propagating
waves. �j is a diagonal matrix. Its diagonal element is zero
for propagating waves, and nonzero for evanescent waves.
In Eq. (19), W21 describes the scattering of outgoing waves
from body 1 into regular waves impinging on body 2, taking
into account of the scattering by all bodies in the many-body
system. Generally, Wjk is the (j,k)th block element of W ≡
U (I − T U )−1, where

T ≡

⎡
⎢⎣
T1 0 . . . 0
0 T2 . . . . . .

. . . . . . . . . 0
0 . . . 0 Tn

⎤
⎥⎦,

U ≡

⎡
⎢⎢⎣

0 U12 . . . U1n

U21 0 . . . . . .

. . . . . . . . . U (n−1)n

Un1 . . . Un(n−1) 0

⎤
⎥⎥⎦.

Here, U jk represents the translation matrix connecting the
wave basis for body j and k.

Also, the emission from the source body 1 to the environ-
ment in the presence of other bodies is

S1→env(ω) = 2

π

(ω,T1)Re

×
n∑

j=1

Tr[Qj1R1(�prQj1 + ei�jWj1)†]. (22)

In Eq. (22), Qjk is the (j,k)th block element of Q ≡ (I −
T U)−1.

The results above are for an arbitrary scattering wave basis.
In a spherical wave basis, all basis functions are propagating
waves. We have

Aj = −(Tj + T †
j )/2 − T †

j Tj , (23)

Rj = −(Tj + T †
j )/2 − TjT †

j . (24)

The properties for A and R strongly depend on whether
the system is reciprocal or not. In a system consisting only
of materials satisfying Lorentz reciprocity, the T̂ operator is
symmetric, hence by the definition of T matrix in Eq. (16),
we have Tνν ′ = Tσ (ν ′)σ (ν). It follows that, for a reciprocal
system, Aνν ′ = Rσ (ν ′)σ (ν). Also, for a reciprocal system, one
has W21,νν ′ = W12,σ (ν ′)σ (ν). Then, by using Eq. (19), it is
straightforward to show that the radiative heat transfer between
bodies 1 and 2 is reciprocal, i.e., S1→2(ω) = S2→1(ω), when
bodies 1 and 2 have the same temperature T1 = T2.

In contrast, in a system consisting of materials that break
Lorentz reciprocity, T̂ is generally nonsymmetric. And, hence,
in general Aνν ′ �= Rσ (ν ′)σ (ν). The breaking of Lorentz reci-
procity also leads to W21,νν ′ �= W12,σ (ν ′)σ (ν). It follows that the
radiative heat transfer is generally no longer reciprocal, i.e.,
S1→2(ω) �= S2→1(ω), even when bodies 1 and 2 are at the same
temperature. Since any pair of bodies in the many-body system
can be selected as bodies 1 and 2, the arguments here apply to
any pair of bodies in a many-body system. In summary, for a
nonreciprocal system, the absorption and emission processes
can no longer be directly related, leading to nonreciprocal
radiative heat transfer.

Nonreciprocal heat transfer does not violate the sec-
ond law of thermodynamics. At thermal equilibrium, the
net heat flux into each body remains zero. When all the
bodies and the environment have the same temperature
T , if we denote Si→j (ω) ≡ 
(ω,T )

2π
Fi→j (ω), Si→env(ω) ≡


(ω,T )
2π

Fi→env(ω), and Senv→i(ω) ≡ 
(ω,T )
2π

Fenv→i(ω), energy
conservation requires that the total heat flux into body j must
be balanced by the total heat flux out of body j :∑

i �=j

∫
dω


(ω,T )

2π
Fi→j (ω) +

∫
dω


(ω,T )

2π
Fenv→j (ω)

=
∑
i �=j

∫
dω


(ω,T )

2π
Fj→i(ω)

+
∫

dω

(ω,T )

2π
Fj→env(ω), (25)

where the subscript env denotes the environment. For linear
systems which do not involve frequency conversion, Eq. (25)
leads to∑

i �=j

Fi→j (ω) + Fenv→j (ω) =
∑
i �=j

Fj→i(ω) + Fj→env(ω).

(26)

IV. FORMALISM FOR NONRECIPROCAL MANY-BODY
RADIATIVE HEAT TRANSFER

A. Spherical basis

We now provide a derivation of the main results as dis-
cussed in Sec. III by introducing a formulation for calculating
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near-field radiative heat transfer in nonreciprocal many-body
systems. For simplicity, we consider the spherical scattering
wave basis first, and the modification from using an arbi-
trary scattering wave basis is discussed later in Sec. IV B.
We consider a many-body system consisting of n bodies in
radiative exchange with each other, labeled as body 1, 2, . . . , n,
respectively. In order to use the spherical wave basis, the bodies
can have arbitrary shapes, however, each body must be able to
be enclosed by nonoverlapping spheres as illustrated in Fig. 1.
We refer to such a sphere that encloses only the j th body as
the j th sphere.

Consider first a body k by itself, i.e., in the absence of all
other bodies. Suppose further that body k is in local thermal
equilibrium of temperature Tk . Using Eq. (18), Lippmann-
Schwinger equations [57,73], and expansion on the scattering
wave basis [57,78], we have (see Appendix for a derivation)

〈E(r)E†(r′)〉iso
k,ω = 4

π
ω
(ω,T )μ0

×
∑
ν,ν ′

Eout
k,ν(r)(Rk)ν,ν ′Eout†

k,ν ′ (r′), (27)

where

Rk = −(Tk + T †
k )/2 − TkT †

k . (28)

Here, Tk denotes the T matrix for body k, and Eout
k,ν denotes

the νth normalized outgoing wave basis function with respect
to body k. For subsequent use we also use Ereg

k,ν to denote the
νth normalized regular wave basis function with respect to
body k. Equation (27) describes correlations of the emitted
fields sourced by fluctuations in the kth body only. We can
also expand the field emitted by the isolated kth body, Eiso, in
terms of the outgoing wave basis function with respect to the
kth body as

Eiso =
∑

ν

d0
k,νEout

k,ν, (29)

where d0
k,ν is the expansion coefficient. From Eqs. (27) and

(29), we have

〈
d0

k d
0†
k

〉 = 4

π
ω
(ω,T )μ0Rk, (30)

where d0
k denotes a column vector of the coefficients d0

k,ν .
In the many-body system, the emitted fields sourced by body

k as described by Eqs. (27) and (29) will be scattered by all
the other bodies in the system. In order to evaluate the heat
transfer from body k to body j , we need to calculate the field
on body j that results from the thermal noise sources in body
k, taking into account the scattering from all the bodies.

In the presence of the emitted field from the kth body, the
total field E in the many-body system in the free-space regions
outside all the bodies can be expanded in the outgoing wave
basis defined with respect to all the individual bodies, i.e.,

E =
∑
ν,m

dmk,νEout
m,ν, (31)

where dmk,ν denotes the expansion coefficient.
Consider first the field in the free-space region that is outside

the j th body, but lies in the j th sphere that encloses only the

j th body. In this region, we can rewrite Eq. (31) as

E =
∑

ν

djk,νEout
j,ν +

∑
ν,m�=j

dmk,νEout
m,ν. (32)

In the case where j �= k, we can interpret the second term in
Eq. (32) as the wave that is incident on the j th body, and the
first term as the scattered wave by the j th body in response
to such incident wave. Therefore, we can derive a relation
between these two terms by applying the Lippmann-Schwinger
formalism [73] to the field inside the j th sphere. We define an
incident field that exists in the entire j th sphere

E0 =
∑

ν,m�=j

dmk,νEout
m,ν. (33)

Inside the j th sphere, such incident field can be expanded in
the regular-wave basis with respect to the j th body:

E0 =
∑

ν

cjk,νEreg
j,ν, (34)

where cjk,ν is the expansion coefficient. In this region, outgoing
wave basis functions with respect to the mth body where m �=
j can be expanded using regular wave basis functions with
respect to the j th body [79,80]:

Eout
m,ν =

∑
ν ′

U jm

ν ′ν Ereg
j,ν ′ , (35)

where U jm represents the translation matrix. From Eqs. (33)
and (35), we have

E0 =
∑

m�=j,ν

Ereg
j,ν

( ∑
ν ′

U jm

νν ′ dmk,ν ′

)
. (36)

Then, by comparing Eq. (36) with (34), we have

cjk ≡
∑
m�=j

U jmdmk. (37)

By applying the Lippmann-Schwinger equation [73] to
calculate the field in the region that is inside the j th sphere
but outside the j th body, we then have

E = E0 + Ĝ0T̂j E0. (38)

From Eq. (34) and the relation Ĝ0T̂j Ereg
j,ν ≡ ∑

ν ′ Eout
j,ν ′Tj,ν ′ν , we

have

E =
∑

ν

cjk,νEreg
j,ν +

∑
ν ′

Eout
j,ν ′

∑
ν

Tj,ν ′νcjk,ν . (39)

Then, by comparing Eqs. (32) and (39), we have

djk,ν = dscat
jk,ν ≡

∑
ν ′

Tj,νν ′cjk,ν ′ . (40)

In the case where j = k, the field in the region that is inside
the kth sphere but outside the kth body can also be written
in the form of Eq. (32). The outgoing wave, however, has
contributions both from the source inside the kth body and
from the scattering of the incident waves as represented by the
first term, i.e.,

dkk,ν = d0
k,ν + dscat

kk,ν, (41)
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where the scattering part can be derived in the same wave as
above. Equations (40) and (41) can be grouped as

djk = δjkd
0
k + Tj cjk, (42)

where δjk is the Kronecker delta function.
Equations (37) and (42) describe a full set of self-consistent

equations. Plugging Eq. (37) into (42), we have⎡
⎢⎢⎢⎢⎢⎢⎣

d1k

...
dkk

...
dnk

⎤
⎥⎥⎥⎥⎥⎥⎦

= (I − T U )−1

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

d0
k
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(43)

for k = 1, . . . , n, with

T ≡

⎡
⎢⎣
T1 0 . . . 0
0 T2 . . . . . .

. . . . . . . . . 0
0 . . . 0 Tn

⎤
⎥⎦,

U ≡

⎡
⎢⎢⎣

0 U12 . . . U1n

U21 0 . . . . . .

. . . . . . . . . U (n−1)n

Un1 . . . Un(n−1) 0

⎤
⎥⎥⎦.

Thus, the (j,k)th block element of Q ≡ (I − T U )−1, which
we denote as Qjk , describes the relation between the outgoing
waves from body j and the emitted outgoing waves from the
isolated body k, i.e., djk = Qjkd

0
k . Also, from Eqs. (37) and

(43), we have⎡
⎢⎢⎢⎢⎢⎢⎣

c1k

...
ckk

...
cnk

⎤
⎥⎥⎥⎥⎥⎥⎦

= U

⎡
⎢⎢⎢⎢⎢⎢⎣

d1k

...
dkk

...
dnk

⎤
⎥⎥⎥⎥⎥⎥⎦

= U (I − T U)−1

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

d0
k
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (44)

Thus, the (j,k)th block element ofW ≡ U (I − T U )−1, which
we denote as Wjk , describes the relation between the regular
waves on body j and the emitted outgoing waves from the
isolated body k, i.e., cjk = Wjkd

0
k .

Based on the computation above, in the presence of all the
other bodies, the resulting field, in the j th sphere outside the
j th body, can be written as

E =
∑

ν

[
djk,νEout

j,ν + cjk,νEreg
j,ν

]
. (45)

The heat flux into body j is

Sj =
∫ ∞

0
Sj (ω)dω, (46)

where Sj (ω) = − ∮
dA · 1

2 Re〈E × H∗〉ω, with the integration
taken on the surface of the j th sphere. Using Eqs. (45) and
(30), as well as the orthonormal relations of the regular and
outgoing waves in Eqs. (11)–(13), we obtain

Sj (ω) = − 2

π

(ω,Tk)Tr Re[QjkRk(Qjk + Wjk)†], (47)

where j = 1,2, . . . ,n.

In the case where j �= k, Eq. (47) describes the spectral heat
transfer to the j th body due to thermal noise in the kth body, i.e.,
Sk→j (ω) = Sj (ω). Using identity Q = I + T W and hence
Qjk = TjWjk when j �= k, Eq. (47) can be rewritten as

Sk→j (ω) = 2

π

(ω,Tk)Tr[AjWjkRk(Wjk)†], (48)

where

Aj ≡ −(Tj + T †
j )/2 − T †

j Tj . (49)

In the case where j = k, by negating Eq. (47), the power
spectral density of the total emission out of body k is

S tot
k (ω) = 2

π

(ω,Tk)Re Tr[QkkRk(Qkk + Wkk)†]. (50)

From energy balance, the energy flux out of the source body
should equal the sum of the energy transfer to other bodies
and the emission to the environment. Then, from Eqs. (50) and
(47) when j �= k, the emission from the source body k to the
environment in the presence of other bodies is

Sk→env(ω) = 2

π

(ω,Tk)Re

n∑
j=1

Tr[QjkRk(Qjk + Wjk)†],

(51)
where n is the number of bodies in the system.

Equations (47), (48), (50), and (51) are the major results of
this study. They allow for evaluating heat transfer and thermal
emission in reciprocal and nonreciprocal many-body systems
using compact formulas. Here, we briefly comment on the
numerical cost for implementing these formulas. Consider the
heat transfer among n bodies, and in the expansion of Eq. (45)
we keep a total of N modes per body. Tj and U j l are then
N × N matrices, whereas T , U , and W are (Nn) × (Nn)
matrices. The main computation step, which is Eq. (43),
involves the inversion of an Nn × Nn matrix. When using the
spherical wave basis, if we specify l as the cutoff in total angular
momentum included in the expansion, then N = 2l(l + 2).

B. Arbitrary basis

In the derivation above, we use spherical wave basis,
which consists of only propagating waves. In the following,
we discuss arbitrary wave basis, which generally contains
propagating as well as evanescent waves. An example of such
an arbitrary basis is the plane wave basis used to describe heat
transfer between extended bodies, where the basis can be either
propagating or evanescent depending on the magnitude of the
parallel wave vectors.

The derivation above can be straightforwardly generalized
with the arbitrary basis. Below, we highlight the main differ-
ences. With the arbitrary wave basis, the matrix R in Eq. (28)
is modified as

R = −(T e−i� + ei�T †)/2 − T �prT †. (52)

The derivations then follow unchanged to Eq. (46). Equation
(47) is modified to

Sj (ω) = − 2

π

(ω,Tk)Tr Re[QjkRk(�prQjk + ei�jWjk)†],

(53)
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where j = 1,2, . . . ,n. In Eq. (48), the matrix A is modified to

A = −(e−i�T + T †ei�)/2 − T †�prT . (54)

Equation (50) is modified to

S tot
k (ω) = 2

π

(ω,Tk)Re Tr[QkkRk(�prQkk + ei�kWkk)†].

(55)

Equation (51) is modified to

Sk→env(ω) = 2

π

(ω,Tk)Re

×
n∑

j=1

Tr[QjkRk(�prQjk + ei�jWjk)†]. (56)

V. NUMERICAL STUDIES

A. Material properties and dielectric tensor
of magneto-optical materials

We now present numerical examples of nonreciprocal near-
field radiative heat transfer. We consider multiple spheres with
their centers lying on the x-y plane. The spheres are made of
n-doped InSb. An external B field is applied in the z direction to
break the Lorentz reciprocity. The relative permittivity tensor
of n-InSb in the presence of an external B field in the z direction
is

¯̄ε = εb
¯̄I − ω2

p

(ω + i)2 − ω2
c

⎡
⎢⎣1 + i 

ω
−i ωc

ω
0

i ωc

ω
1 + i 

ω
0

0 0 (ω+i)2−ω2
c

ω(ω+i)

⎤
⎥⎦.

Here, the first term is the permittivity as taken from Ref. [81].
This permittivity includes contributions from both interband
transition and lattice vibration. The second term takes into
account free-carrier contribution, which is sensitive to external
magnetic field.  is the free-carrier relaxation rate, ωc =
eB/m∗ is the cyclotron frequency, and ωp =

√
nee2/(m∗ε0)

is the plasma frequency. We use a doping concentration ne =
1.36 × 1019 cm−3, for which the experimentally characterized
relaxation rate [82] is  = 1012 s−1 and the effective electron
mass [82,83] is m∗ = 0.08me.

We use vector spherical wave functions as the wave basis.
We calculate the T matrix for the sphere by constructing the
eigenmodes inside the sphere using vector spherical wave
functions, and then matching the boundary conditions [84].
We use a computationally efficient recursive formalism to
compute the conversion matrix U using vector translation
addition theorem [79,80].

B. Persistent heat current at thermal equilibrium

In Ref. [65], it was noted that there can be a persistent heat
current in nonreciprocal many-body heat transfer. Reference
[65] considered heat transfer among three bodies. Here, as
an application of the formalism presented above, we consider
heat transfer for larger numbers of bodies. We show that
such persistent heat current can persist for larger numbers
of bodies. Moreover, the directionality of heat transfer has
a nonmonotonic dependency on the strength of the magnetic
field.
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j
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,T
)
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j
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)
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1
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FIG. 2. (a) Geometry of a many-body system consisting of six
spheres. The centers of the spheres are placed at the vertices of a
regular hexagon on x-y plane with a side length of 320 nm. Each
sphere has a radius of 100 nm. A magnetic field is applied in the
z direction. The spheres consist of n-doped InSb, with the same
doping level. (b), (c) The heat transfer spectra of S2→1 and S1→2,
from fluctuational electrodynamics. The system is at equilibrium.
(b) Nonreciprocal case with B = 1 T. (c) Reciprocal case with B =
0 T. (d) The spectra for thermal transfer from sphere 1 to other spheres
and to the background environment, with B = 1 T.

The configuration used in our calculation is illustrated in
Fig. 2(a). We consider a total of n InSb spheres. Each sphere
has a radius of 100 nm. The centers of the spheres are placed on
the vertices of an n-sided regular polygon with a side length of
320 nm. A magnetic field is applied perpendicular to the plane
of the polygon. Figure 2(a) shows the case of n = 6.
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The strength of the persistent heat current between two
bodies i and j can be characterized by the directionality of
the heat flow between the two bodies, defined as

ηi→j = (Si→j − Sj→i)/min(Si→j ,Sj→i).

For the structure shown in Fig. 2(a), Fig. 2(b) shows the
normalized heat flux spectra for S2→1 and S1→2 at the same
temperature. We observe that the spectra S2→1 and S1→2 are
different at B = 1 T, demonstrating a directional heat flow. At
the free-space wavelength λ = 10.88 μm, the directionality
η1→2 is as large as 247%. After spectral integration over
the entire thermal wavelength range when the temperature
of the spheres are at T = 300 K, the directionality for the
heat transfer between bodies 1 and 2 is still as large as
32%, with S1→2 > S2→1. In thermal equilibrium, from the
rotational symmetry of the system, we then can see that there
is strong persistent heat current in counterclockwise direction.
In contrast, for the scenario with B = 0 T shown in Fig. 2(c),
the heat transfer spectra S2→1 = S1→2 when the spheres are
at the same temperature, indicating the lack of persistent heat
current.

In Fig. 2(d), we plot the radiative heat transfer from body
1 to all other bodies in the structure, and also the far-field
radiation to the environment from body 1. We observe that
the heat transfer between the spheres is much larger compared
to far-field radiation, indicating the near-field nature of heat
transfer in this system. Also, the near-field heat transfer to
nearest-neighbor spheres is much larger than those to the
farther spheres, in consistency with the near-field nature of
the heat transfer.

The existence of the persistent heat current can be related
to the nature of the electromagnetic states supported in the
spheres. In the absence of external magnetic fields, an individ-
ual sphere supports counter-rotating states that are degenerate
to each other. In the presence of the field, the degeneracy is
split, and the directionality arises from the interference effects
from these states. To maximize the directionality, there is an
optimum in the split of resonance frequencies, which in turn
indicates the existence of an optimal external magnetic field.
In Fig. 3, we study the directionality as a function of external
magnetic field. We consider structures with the number of
spheres ranging from n = 3 to 10. In all these cases, the
directionality shows a nonmonotonic dependency as a function
of the magnetic field strength, in consistency with the physical
picture discussed above.

In general, the details of the persistent heat current show
intricate dependency of both the number of the spheres and
the strength of the magnetic field. For example, at B = 4 T, a
persistent heat current is supported in the clockwise direction in
the case of n = 3 (blue curve, Fig. 3), whereas a persistent heat
current flowing in the counterclockwise direction can occur
when n � 4. For the cases of n = 3 and 4, the persistent heat
current can have opposite directions by varying the magnitude
of the external magnetic field, while keeping the direction of
the magnetic field fixed.

In the examples above, we have applied a magnetic field
along the z direction. Such a choice of the direction of magnetic
field is important. In Fig. 4, we instead apply an external B field
along the x direction, for the case where n = 6. We observe
that in this scenario the heat transfer is reciprocal. We have

B (T)
0 2 4 6 8 10

-0.2

0

0.2

0.4
n=3
n=4
n=5
n=6
n=8
n=10

D
ire

ct
io

na
lit

y 
 η

1→
2

FIG. 3. Directionality between bodies 1 and 2 as a function of
external B field, in a system consisting of n InSb spheres. Each sphere
has a radius of 100 nm. The centers of the spheres are placed on the
vertices of n-sided regular polygon with a side length of 320 nm on
x-y plane. The external magnetic field is applied in z direction. The
example with n = 6 is shown in Fig. 2(a). The system is at thermal
equilibrium of 300 K.

also numerically verified that for all the systems consisting of
spheres forming regular polygons, applying the external B field
in any direction inside the plane of the spheres always leads
to reciprocal heat transfer. This observation is consistent with
the discussions above relating the persistent heat current to
degeneracy splitting of collective counter-rotating states. The

10.3 10.5 10.7 10.9
0

0.5

1

S2→1
S1→2

λ (µm)
11.1

S
(ω
)

Θ
(ω

,T
)

2π
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(b)

23

4

65
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z
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FIG. 4. (a) Geometry of a many-body system consisting of six
spheres. The centers of the spheres are placed at the vertices of a
regular hexagon on x-y plane with a side length of 320 nm. Each
sphere has a radius of 100 nm. An external magnetic field B = 1 T is
applied in x direction. (b) The heat transfer spectra of S2→1 and S1→2.
The system is at thermal equilibrium of 300 K.
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FIG. 5. Net heat flux from body 1 to body 2. The geometry is the
same as in Fig. 2(a). T2 is fixed at 300 K, while T1 varies.

collective rotating states reside in the plane of the spheres.
Thus, in order to break the reciprocity of those states, the
external magnetic field must have a nonzero out-of-plane
component.

We end this section by providing some numerical details.
For the case where n = 10, we have used a cutoff in the total
angular momentum of lmax = 9. For the cases we tested, further
increasing lmax to 10 changes the results by a fraction that is
less than 10−7. For each frequency obtaining all the Si→j for all
instances of i and j takes about 4 s on a single-core machine.
The results here indicate that our formalism can be used to
simulate heat transfer among a substantial number of objects
with relatively modest computational costs.

C. Directional heat flow at thermal nonequilibrium

The formalism as developed in Sec. IV is generally ap-
plicable for nonequilibrium situations where the bodies have
different temperatures. In this section, we will use this formal-
ism to consider nonreciprocal heat transfer away from thermal
equilibrium. Figure 5 shows the case where we use the same
n = 6 geometry in Fig. 2(a), but we vary the temperature T1 of
body 1 while keeping the temperature of all the other bodies
fixed at 300 K. When the applied magnetic field is at B = 1
T, there is a directional flow from body 1 to body 2 at the
equilibrium situation. Consequently, S1→2 > S2→1, even when
T1 < T2. We emphasize that such a result does not violate the
second law of thermodynamics since when T1 < T2, there is
always a net heat flow into body 1 from the composite of all
the bodies except body 1, thus the net total heat flow points
from the hot to the cold, which is consistent with the second
law. In contrast, with B = 0 T, the system is reciprocal, and
S1→2 > S2→1 only when T1 > T2.

The directional heat transfer as discussed above has unique
signature in the dynamics of the system away from thermal
equilibrium. The dynamics of the temperatures for the bodies
is described by

Ci

d

dt
Ti =

∫ ∞

0
dω

{ ∑
j �=i

[Sj→i(ω) − Si→j (ω)]

+ Senv→i(ω) − Si→env(ω)

}
, (57)

where Ci denotes the heat capacity of body i.
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FIG. 6. Transient behavior involving nonreciprocal many-body
heat transfer in thermal nonequilibrium. The geometry parameters
are the same as in Fig. 2(a). An external magnetic field as B = 1 T
is applied in z direction. Sphere 1 is fixed at 300 K, and the other
spheres are initially at 200 K. Plotted here are the temperatures of all
the spheres as a function of time.

We consider again the case of n = 6 in the configuration as
shown in Fig. 2(a), but now studying the transient behavior of
the system using Eq. (57). We maintain sphere 1 at a constant
temperature of 300 K by assuming it to be in contact with
a large reservoir. The other five spheres are assumed to be
initially at 200 K. They are assumed to be isolated except
through radiative heat contact with other spheres in the system.
Consequently, due to the near-field radiative heat exchange,
the temperatures of these five spheres will increase with time
and eventually approach 300 K. We compute the temperature
as a function of time for each of the spheres using Eq. (57),
where we determine Ci from the specific heat of n-InSb which
is 200 J/(kg K). We also assume that the dielectric property
of the material does not vary as a function of temperature.
In Fig. 6, we show the temperatures of the spheres as a
function of time. Sphere 2 which is in the counterclockwise
direction of sphere 1 is preferentially heated up, compared
with sphere 6 which is the clockwise direction of sphere 1, in
consistency with the existence of a persistent heat current along
the counterclockwise direction. The preferential direction for
heating can be reversed by flipping the direction of the external
magnetic field. On the other hand, if B = 0, spheres 2 and 6
will have the exact same temperature. Therefore, the persistent
heat current as we predicted for the equilibrium situation can
be probed in nonequilibrium experiments.

VI. CONCLUSION

In summary, we have developed compact formulas to
calculate near-field radiative heat transfer in both reciprocal
and nonreciprocal many-body systems. Such formulas allow
efficient calculation of radiative heat transfer in systems con-
sisting of a large number of particles, and take into account of
all the modes. As a demonstration, we study nonreciprocal
many-body near-field radiative heat transfer in and out of
thermal equilibrium. In equilibrium, we show that persistent
heat current has intricate dependence on the number of particles
in the system and the external magnetic field. Out of thermal
equilibrium, we show that nonreciprocal heat transfer points
to directional heat exchange, with the direction set by the
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persistent heat current in equilibrium. Our work points to
the opportunity of exploring novel effects of radiative heat
transfer that can arise in complex reciprocal and nonreciprocal
many-body systems.
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APPENDIX: DERIVATION OF EQ. (27)

Equation (27) describes the field correlation solely due to
thermal noise sources of an isolated body k. Equation (27) has
been provided in Ref. [57]. For completeness, we derive it here.
We consider a single body k in thermal equilibrium with the
environment. As the thermal noise sources in the body k and
the environment (with infinitesimal loss) are uncorrelated, the
field correlation at equilibrium can be divided according to the
thermal noise sources:

〈E(r)E†(r′)〉eq = 〈E(r)E†(r′)〉iso
k + 〈E(r)E†(r′)〉env,

where 〈E(r)E†(r′)〉iso
k is the contribution due to sources in the

kth body, and 〈E(r)E†(r′)〉env is the contribution due to sources
in the environment. Thus,

〈E(r)E†(r′)〉iso
k = 〈E(r)E†(r′)〉eq − 〈E(r)E†(r′)〉env. (A1)

On one hand, the field correlation at equilibrium is set by
Eq. (18) as reproduced below:

〈E(r)E†(r′)〉eq = 4

π
ω
(ω,T )μ0

Ĝ(r,r′) − Ĝ†(r′,r)

2i
. (A2)

For the system consisting of the body k and the environment,
from the Lippmann-Schwinger equation [73],

Ĝ = Ĝ0 + Ĝ0T̂kĜ0. (A3)

On the other hand, 〈E(r)E†(r′)〉env results from the scattering by
body k of the field emitted by the environment. From Eq. (A2),
the field emitted by a free-space environment is described by

〈E(r)E†(r′)〉free = 4

π
ω
(ω,T )μ0ImĜ0.

Using the Lippmann-Schwinger equation [73] and treating
such free-space field Efree as an incident field, the total field
after scattering by body k is Eenv = (1 + Ĝ0T̂k)Efree. Thus,

〈E(r)E†(r′)〉env

= (1 + Ĝ0T̂k)〈E(r)E†(r′)〉free(1 + Ĝ0T̂k)†

= 4

π
ω
(ω,T )μ0(1 + Ĝ0T̂k)ImĜ0(1 + Ĝ0T̂k)†. (A4)

Then, from Eqs. (A1)–(A4), we have

〈E(r)E†(r′)〉iso
k = 4

π
ω
(ω,T )μ0

Ĝ − Ĝ†

2i
− 4

π
ω
(ω,T )μ0

× (1 + Ĝ0T̂k)ImĜ0(1 + Ĝ0T̂k)†

= 4

π
ω
(ω,T )μ0R̂k, (A5)

where

R̂k = Ĝ0

[
T̂k − T̂

†
k

2i
− T̂kImĜ0T̂

†
k

]
Ĝ

†
0.

Further, by using Eqs. (14)–(16), we have

〈E(r)E†(r′)〉iso
k = 4

π
ω
(ω,T )μ0

×
∑
ν,ν ′

Eout
k,ν(r)(Rk)ν,ν ′Eout†

k,ν ′ (r′), (A6)

where in spherical wave basis

Rk = −(Tk + T †
k )/2 − TkT †

k .
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