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We construct almost conserved local operators, that possess a minimal commutator with the Hamiltonian of
the system, near the many-body localization transition of a one-dimensional disordered spin chain. We collect
statistics of these slow operators for different support sizes and disorder strengths, both using exact diagonalization
and tensor networks. Our results show that the scaling of the average of the smallest commutators with the support
size is sensitive to Griffiths effects in the thermal phase and the onset of many-body localization. Furthermore,
we demonstrate that the probability distributions of the commutators can be analyzed using extreme value theory
and that their tails reveal the difference between diffusive and subdiffusive dynamics in the thermal phase.
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I. INTRODUCTION

Isolated interacting quantum systems can undergo an un-
conventional transition from an ergodic thermal phase in which
the system approaches thermal equilibrium irrespective of the
initial conditions to a many-body localized (MBL) phase in
which it does not [1-4]. There exists firm evidence, from
numerical [5,6], rigorous mathematical [7], and experimental
work [8-15], that the MBL phase is realized in strongly
disordered and interacting quantum systems. Recently, the
MBL transition between the thermal and the MBL phase has
started to be investigated using general arguments [16-22],
mean-field theory [23], and renormalization-group schemes
[24-26]. Since the MBL transition is inherently dynamical and
can occur at arbitrary energy density, it is beyond the scope of
a conventional thermodynamic description.

A possible strategy to explore MBL is to directly study
properties of the Hamiltonian. In particular, a phenomenolog-
ical description of the Hamiltonian in the MBL phase using
an extensive set of local integrals of motion (LIOMs) has
been proposed [27,28]. This approach explains, for instance,
the dephasing [29-31] and entanglement dynamics [6,32] in
the localized phase. Moreover, LIOMs have been constructed
explicitly for some models using analytical techniques [33],
exact diagonalization [34-39], stochastic methods [40], and
tensor networks [41-44]. Upon reducing the disorder, LIOMs
become more and more extended in space and eventually cease
to exist at the MBL transition.

Here, we take another route and study the dynamics of
a disordered and interacting Heisenberg spin chain by con-
structing almost conserved local operators with finite support,
which minimize the commutator with the system Hamiltonian
[45]. Deep in the MBL phase the slow operators resemble
LIOMs. However, our procedure can be directly extended to
the thermal phase as well. The slow operators can potentially
be used to study dynamical properties, because the value of the
commutator gives a lower bound on the thermalization times
of the corresponding operator [45]. We compute the slowest
operators for different support sizes and disorder strengths,
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using both exact diagonalization and tensor networks [46,47].
Our paper, rather than focusing on the phase transition, aims to
characterize the subdiffusive region in its vicinity. Specifically,
we collect statistics from numerous disorder realizations and
show that not only the mean value of the smallest commutator
but also the probability distributions are sensitive to the
underlying phase. The tails of the distributions are affected
by the appearance of rare Griffiths regions [17,21], which
act as bottlenecks for transport and are argued to provide
a simple description for the slow subdiffusive dynamics in
the thermal phase near the MBL transition [17,48,49]. We
use extreme value theory (EVT) to analyze the tails of the
distribution and find that it is well described by the generalized
extreme value distribution [50]. Moreover, we discuss how the
presence of rare regions may affect the asymptotic behavior
of such distributions. Our results demonstrate that finding
slow operators provides access to dynamical quantities without
resorting to the time evolution of a particular state.

The paper is organized as follows. In Sec. I we specify
our model. Section III describes the slow operator method,
and presents the fundamental ideas of EVT employed in our
analysis. The results for the structure of the slow operators are
presented in Sec. IV, the average values of their commutators
in the different phases are shown in Sec. V, and the statistical
analysis of the probability distributions using EVT is presented
in Sec. III B. Finally, in Sec. VII we summarize our findings
and discuss potential extensions of our paper.

II. MODEL

‘We consider the nonintegrable spin-1/2 Heisenberg Hamil-
tonian with random magnetic field,

H=2 J(S; S} + S + Si8i,) +hisi, (D

where S7 are spin-1/2 operators, and the values of the
transverse field h; are randomly chosen from the uniform
distribution in the interval [—h,h], where h is the disorder
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strength. In the following, we set J = 1. This model exhibits
a phase transition from a thermal to a MBL phase at k. ~ 4
[5,51].

In the MBL phase the system can be described by LIOMs,
which lead to an emergent integrability. The corresponding
effective Hamiltonian can be expressed as [27,28]

_ z 2.2 n) _z_z Z .z
H=) g+ Jytic+) ) Koo -1, 7
i ij

i, 1k)
(2)

The LIOMs, rf, commute with each other and with the
Hamiltonian. They are exponentially localized when written
in terms of the physical spins {S;}. Moreover, the coefficients
Jij and K i(?k)} ; decay exponentially with their spatial range.

III. METHODS

A. Slow operator technique

Almost conserved quasilocal operators can identify long
thermalization time scales. A way to compute such time scales
is to search for slow operators that minimize the commutator
with the Hamiltonian [45] (see also Refs. [52—-54]). In partic-
ular, we may restrict the search to operators O,; with finite
support on M consecutive sites. Defining £(Oy,) to be the
squared norm of the commutator between the Hamiltonian and
the (normalized) operator, the problem reduces to solving the
variational minimization

ILH, Omllz

2
10m I

where ||A||% = tr(ATA) is the Frobenius norm, and Oy is
restricted to be traceless [55]. The operator that minimizes (3)
is the one evolving the slowest in the Heisenberg picture at time
t = 0. Moreover, for a slightly perturbed infinite temperature
state of the form p(Oy) =1/Z 4+ €0y, the thermalization
time is lower bounded as ty, > 1/4/Ay [45].

If the system has a conserved extensive quantity, such as
the total energy, it naturally gives rise to slow operators. For a
translationally invariant system, the Hamiltonian commutes
with the sum of all translations of the corresponding local
operator, but not with translations restricted to a finite window
M . Nevertheless, the norm of the latter commutator seems to
decrease polynomially with M [45].

In our particular case of Hamiltonian (1), the total polar-
ization in the z direction, Zi ol.z, is conserved for any value
of the disorder strength. The restriction of the sum to M
sites, Zy = Z,ﬁi 0 sin(”ﬁk)af, is thus a natural slow operator
for any given support M. It is easy to check that as the
support increases, the corresponding commutator decays as
L(Zy) ~ 1/M? [45]. This sets areference for comparison with
the commutators found by numerically solving the variational
problem, Eq. (3) [56].

For small support size M the optimization can be solved
via exact diagonalization. This has been used to show that for
model (1) there exists an extensive number of exponentially
localized LIOMs in the MBL phase which are not present in
the thermal phase [36]. To reach larger supports the search can
be restricted to operators Oy, of the form of a matrix product
operator (MPO). Then standard tensor network techniques can

L(Oy) = min
OpitrOy=0

)

Ay = min
M trOy=0

be applied to solve this optimization, and the bond dimension
can then be systematically increased until convergence is
achieved.

In this paper, we use exact and approximate MPO solutions
in order to collect information on the minimal commutators and
the corresponding operators. For different values of the support
M and the disorder strength 4, we compute Ay for several
configurations of the random magnetic field ranging from 2 x
103 for M = 12 to 10° for M = 4. In order to simplify the
statistical analysis, we choose independent configurations over
M + 2 sites. This is equivalent to choosing nonoverlapping
windows over an infinite chain.

To solve the problem numerically, the minimization Eq. (3)
can be interpreted as an eigenvalue problem. For fixed support
size M and disorder strength . and for a particular disorder
realization, there is an effective operator H(elg) acting on the
d*™ -dimensional space with support on the chosen window,
such that the (vectorized) operator that minimizes Eq. (3)
corresponds to its eigenvector with lowest eigenvalue. Since
the optimization is restricted to operators supported on a certain
window of size M, only terms in the Hamiltonian that overlap
with that region will contribute to the commutator. For our
nearest-neighbor Hamiltonian this means that M + 2 sites of
the Hamiltonian contribute, which we denote by Hys,. The
matrix representation of the corresponding commutator, acting
on vectorized operators, can be written as Cy1o = Hy12 ®
1-1® H], 42> and the effective operator can be constructed
as

(OnHSG 10m) == tt((Hyry2, Ol [Hirs2, On])
= (Om|Cur+2Cly 121 Om), 4)

where Oy = 1 ® Oy ® 1 and the trace is taken over the space
of all M + 2 sites.

B. Extreme value theory

The statistical analysis of the smallest commutator contains
relevant information about the phases of the model and the
critical region, both in the average scaling of A, with the
support size M and in the probability distributions. In par-
ticular, the probability density function (PDF) p(X,,) and the
corresponding cumulative density function (CDF), F(Ay) =

f;”o p(x)dx, will be sensitive to the presence of rare regions
of atypically large disorder which emerge in the proximity of
the critical point.

As we show in this paper, these PDFs can be described and
analyzed within the mathematical framework of EVT, a branch
of statistics concerned with the description of rare events [50],
which is applied to floods, earthquakes, or risk in finance and
insurance, as well as to several branches of physics, including
statistical mechanics and critical phenomena [57-59].

In particular, EVT deals with the asymptotic behavior of
the extreme values of a sample, i.e., with the tails of the
distributions. Let us consider a random variable x governed by
a CDF F(x). Then EVT ensures that the maxima (equivalently
the minima) of samples of F(x), properly normalized and
centered, will be governed by a CDF [50]

Ge(y)=exp(=(1+¢y)™5, A+ ™ >0 (5
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fory =ax + b witha, b € R and a > 0. The Fisher-Tippett-
Gnedenko theorem (Theorem 1.1.3 in Ref. [50]) states that this
single-parameter family, called generalized extreme value dis-
tribution (GEV), includes all possible limiting distributions for
the extreme values of a sample of i.i.d. random variables. The
family contains three subclasses which exhibit quite different
behavior: the Gumbel (¢ = 0), Fréchet (¢ > 0), and Weibull
(¢ < 0) distributions. Qualitatively, the deciding criterion for
a PDF to belong to the basin of attraction of one family or
another (i.e., for the extrema of the samples to be described by
the corresponding family) is the form of its tails [50].

In our particular problem, as we try to find the minimum
Ay for a certain configuration, we are effectively sampling
from the left tail of p(Aj), which is the distribution of
eigenvalues A ; of HSX) Typically the eigenvalues of a matrix
are not uncorrelated, and thus GEV is a priori not expected to
describe the probability distribution of extreme eigenvalues
[58,60]. Nevertheless, our results indicate that the distribution
(5) provides indeed a very good description for our data, with
the particular form depending only on the asymptotic behavior
of p(Ayy) for small Ajy,.

IV. STRUCTURE OF THE SLOW OPERATORS

We will first study the structure of the slowest operators. In
the strong disorder regime, we expect that the slow operators
correspond to some LIOMs, or more precisely to a truncated
version of them since our support size is fixed. It is worth
noticing here that although the slow operator method does
not directly target the (truncated) LIOMs, as was done in
Refs. [39,61], in the localized regime, truncated LIOMs and
their combinations are good candidates to attain (exponen-
tially) small commutators.

To address this question, we can analyze to which extent the
slowest operators are local by examining their spatial structure
in different regimes. This can be done by studying their decom-
position as a sum of tensor products of single-site Pauli matri-
ces, Oy = 27 M/2 Z?a/}:o Coy..0ny0y" ..oy Inprinciple, for
an operator Oy, found by the minimization, either exactly or as
a MPO approximation, we can efficiently evaluate any single
coefficient Cy, 4, = 27 M/2tr(0)" ... 03" Oy). Nevertheless,
due to the exponential growth of the basis dimension with the
support, already for moderate values of M it is unfeasible to
inspect all the individual coefficients. Instead, a more physical
quantity for exploring the localized nature of the operators is
the combined weight of all terms with a fixed range which are
supported on a certain subregion. We define a range-k operator

as a product of Pauli matrices that act nontrivially on sites i to
i + k. Formally, this corresponds to the operator @if’{am} =
o)...0 080l .. ol ol 0l .. on, where abe
1,2,3 to ensure Pauli matrices at the edges (thus imposing that
the support is strictly i — i + k) and {«,,} € 0,1,2,3.

The weight of these range-k terms can be written as

3

1 3
e = 57 - Y (@ o). ©
a,b=1

{am}=0

We thus solve the optimization (3) and compute the weights,
|ex (i )|2, along the chain of terms with fixed range k. Even if
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FIG. 1. Local structure of the slowest operator with support
M = 40. The weight of single-site |c,(i)|* contribution is shown as
a function of the position i for various disorder strengths for a single
disorder realization. At weak disorder, the local contributions are
spread over the whole support and have the shape of a sine as expected
from diffusive dynamics. For strong disorder, the operator becomes
increasingly localized and exhibits exponential tails. The optimization
has been performed for MPO bond dimension D = 100. Inset: For
larger support contributions such as |c; (i )|2, we observe similar tails
with considerably smaller values.

the support is large, as Oy, is written as an MPO, this quantity
can be computed efficiently, i.e., with a cost that only scales
polynomially in the range k and the support M [62].

We find clear differences in the structure of the operator
depending on the disorder strength. This is illustrated in
Fig. 1 for the MPO, that minimizes Eq. (3) for a particular
disorder realization h; = h - r;, where r; are fixed random
numbers for each value of hA. We have chosen a support
of M =40 sites and a relatively large bond dimension of
D = 100, in order to ensure that truncation errors are negli-
gible compared to the effects we observe. The figure shows
the different spatial profile of the single-site contributions
lco@)|> =2~M Zzzl [Tr(c/ Ow)|? and two-site contributions
ler(i )|2 [Eq. (6) with k = 1] for different values of the disorder
strength. For strong disorder, where the LIOMs are expo-
nentially localized, at least one of the |co(i )2 s expected to
be dominant. Indeed, we observe that for large disorder the
operator is well localized around a single site, with weights
that decay exponentially around this point. As the disorder
strength decreases, the weights decay slower with distance,
and the tails are no longer exponential. Finally for very small
h the profile becomes flat and has the shape of a sine as
expected in the diffusive regime. The single-site terms shown
in the figure always accumulate most of the weight. We found
that higher-order terms (Fig. 1, inset), which have smaller
contributions, exhibit a similar spatial decay. The observed
profile at strong disorder is in good agreement with what one
could expect from the decomposition of the LIOMs in the
canonical operator basis, which would in principle allow the
extraction of a localization length scale of the LIOM.

V. AVERAGE COMMUTATOR

The precise value of the minimum X, for fixed support M
and disorder strength 4 will depend on the disorder realization.
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FIG. 2. Disorder average of the smallest commutator [E(1,,). (a) Decay of (X)) at weak disorder. We observe that the average of Xy,
scales polynomially as M~ with an exponent that increases as the transition is approached. Inset: The inverse exponent 1/« as a function of
the disorder strength 4 is shown. (b) Decay of E(A,,) at strong disorder. For strong disorder, the decay of A, is compatible with an exponential
form, e~™/% Inset: The inverse length scale 1/& decays as the transition point is approached.

Hence, the average over realizations [E(X) will provide
information about the underlying phase and also indirectly
about transport.

In the following, we will optimize Eq. (3) over the family
of MPOs with finite bond dimension D = 10. This allows us
to reach large support sizes M and collect a significant amount
of statistics. The average of the smallest commutator E(X /)
is shown as a function of the support size M for different
disorder strength £ in Fig. 2. At very weak disorder & < 0.4 our
data recover the diffusive scaling E(),;) ~ M~2 of conserved
quantities.

When increasing the disorder strength, the decay remains
a power law E(Ay) ~ M~ however, with an increasing
exponent « indicating that the transport becomes slower due
to the presence of disorder [see the inset of Fig. 2(a), which
shows the inverse exponent 1/«]. This is consistent with the
observation of subdiffusive transport on the thermal side of the
MBL transition [17,48,49]. The longer relaxation times in this
regime can be interpreted as follows: rare insulating regions
with larger than typical disorder act as bottlenecks for the
conventional diffusive transport [17,24,25]. Upon approaching
the MBL transition at & ~ 4 [51], we expect the exponent
to diverge. Our data indeed show that the power-law decay
becomes very steep. Due to the finite support sizes M and due
to the slow convergence of the algorithm for large disorder,
we, however, find that the exponent levels off at a finite value.
For practical purposes, we adopt the strategy of limiting the
maximum computational effort for each search. Therefore, the
result of the algorithm provides an upper bound for the true
minimum Ay (h), and the corresponding « is biased towards
smaller values.

When crossing the MBL transition, an extensive number of
exponentially localized conserved quantities, corresponding to
the LIOMs 7 in Eq. (2), emerges [63]. Therefore, provided
the window M is sufficiently large to capture most of the
support of any LIOM, the smallest commutator should decay
exponentially as Ay ~ e~™/5. Such an exponential decay is
supported by our numerical simulations for strong disorder [see
Fig. 2(b)]. The length scale & is related (in a possibly nontrivial
way) to the localization length of the LIOMs. In the inset, we

show that with increasing disorder & the inverse length scale
1/& increases monotonically. The decays of ' and £~!
the transition is approached are both compatible with previous
estimates of the critical region (see, e.g., Refs. [51,61]).

VI. EXTREME VALUE THEORY

A. Numerical results

We now study the probability distributions of the slow
commutators Ay, which can be sensitive to rare events. In
particular, we show that EVT provides useful mathematical
tools to characterize the tails of the probability density and cu-
mulative distribution functions. We first illustrate in Fig. 3, that
the GEV distribution, obtained from differentiating Eq. (5),
provides a very good fit to the collected data over a range of
disorder strengths. Moreover, we find that the shape of the
distribution strongly depends on the disorder value and that
the peak of the distribution shifts from a finite, relatively large
value for weak disorder, toward zero as & increases. In between

— GEVfit

100 =03

 h=1.0

80 = h=20
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FIG. 3. Probability density function of A . Using the maximum
likelihood method we fit the numerical data for A, with the GEV
distribution (5). The shape of the distribution function is strongly
influenced by the presence of disorder.
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FIG. 4. Survival function of 7y, = {/1/A,. We fit the survival function of t), to the GEV, Eq. (5), which decays superexponentially for
weak disorder and polynomially for large disorder. The form of these tails is sensitive to rare Griffiths effects.

those limits, in a regime where one expects subdiffusive
dynamics, the distribution broadens considerably.

In the following we will analyze the tails of this distri-
bution quantitatively. To this end, we introduce a variable,
with dimensions of time, as Ty = (Ay)~'/%. The minimal
eigenvalue Ay, thus corresponds to the maximum of T),, that
we call 1y, and has the physical interpretation of bounding
the thermalization time of the operator p(O,) from below.
This transformation of variables moves the left tails of p(A )
that arise due to rare events, to right tails of p(t,s). The corre-
sponding survival functions S(ty;) = 1 — F () are shown in
Fig. 4 on logarithmic scale. We observe that for small disorder
the survival function approaches zero superexponentially fast
describing weak tails, due to the small probability of large 7j,.
As the disorder increases, the survival function decays with
a power-law tail. The value of the disorder at which the tails
change is in agreement with the crossover from diffusive to
subdiffusive dynamics.

To make this observation more quantitative, we study the
variation of the shape parameter ¢ from the fitted GEV,
defined in Eq. (5), with the disorder strength. Our data show
that ¢ shifts from values close to zero for weak disorder to
clearly positive values as the MBL phase is approached. The ¢
parameter determines the type of distribution. In particular, the
deviation of ¢ from zero describes the crossover from a peaked
distribution to one with polynomial tails. In terms of the GEV
families, this corresponds to a change from a Gumbel (¢ = 0)
to a Fréchet (¢ > 0) distribution. The observed qualitative
change can be explained by an intermediate regime in which
atypically slow operators appear for any given support M,
leading to strong tails in the probability density function of
Ty . The value of the disorder strength at which the shape
parameter ¢ starts being clearly positive is again consistent
with the expected subdiffusive regime of the thermal phase
[49].

B. Interpretation in terms of Griffiths effects

Although the eigenvalues of the effective operators in our
paper are not expected to be uncorrelated, the results in the
previous section show that GEV does indeed describe our find-
ings accurately. Hence, in this section we use EVT arguments

to show how the observed distributions can be qualitatively
explained in terms of the existence of rare Griffiths regions.

We first consider the effect of rare localized regions in
the thermal phase but close enough to the transition. In
this situation, given a support size M, the typical values of
Ay will be polynomial in M. Nevertheless, if rare regions
are present that (partly) support an exponentially localized
operator, they can give rise to exponentially small values of
Ay. More concretely, within a fixed window M, such a rare
configuration of size £ < M will occur with an exponentially
small probability p(£) ~ ¢, for some ¢ < 1. This patch can
support a localized operator, with localization length &, with a
correspondingly small commutator A ~ e~/ (or equivalently
[59] T ~ ¢'/%). Strictly speaking, this will be detected as
the slowest operator only if this commutator is smaller than
the (polynomial) typical commutator for the complementary
region of size M — £. Since we are interested in the probability
for very small commutators, and there is an exponential
separation between the scaling of both terms, we may assume
that small enough commutators will always come from such
rare patches. Evidently, this can only be true for commutators
below a certain (M and & dependent) threshold. With this
assumption, the probability of some very small value of A is
determined by the probability of finding a rare patch such that
A ~ e7t% and thus we can identify p(€)|d¢| = p(T)|dT|.
From that we find that, for the range of T that correspond to
rare regions of length £ < M, the probability for the largest T
values is polynomial:

p(T) ~ 26T~ @)

For PDFs with polynomial tails, EVT predicts that the extreme
values will be governed by a Fréchet distribution with ¢ > 0
(see the Appendix).

For very weak disorder, instead, the same rare configura-
tions of the field will not support an exponentially localized
operator, so that, even if a large effective disorder on some
region may give rise to commutators that are below the typical
one, they still decay at most polynomially. Consequently, the
argument above does not apply and we expect the probability of
the smallest values to decay faster (even exponentially). For a
PDF with such properties, EVT predicts a Gumbel distribution
with ¢ = 0 (see the Appendix). This is in agreement with the
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FIG. 5. Shape parameter ¢ of the generalized extreme value
distribution as a function of the disorder strength. We observe that
for small disorders the values of the shape parameter ¢ are very close
to zero (consistent with a Gumbel distribution). As the disorder 4 is
increased, the values of ¢ approach 1/2, corresponding to a Fréchet
distribution.

shape parameter ¢ shown in Fig. 5 where, for weak disorder,
we obtain values of ¢ very close to zero which correspond to
a Gumbel distribution [64].

Beyond the localization transition we expect the typical
regions to (partly) support localized operators, and thus give
rise to exponentially small values of A, (correspondingly
exponentially large values of 7)), as we explicitly observed
in the average values shown in Sec. V. In our data for strong
disorder, we have also found broad tails of the PDF p(T') which
are consistent with a power law. Thus, the function describing
our data resembles the Fréchet distribution. This might be
explained by the fact that matrix elements in the MBL phase
have been found to exhibit broad tails [18,65].

As we approach the transition from the MBL side by
lowering the disorder, rare thermal inclusions can appear that
potentially correspond to larger than typical commutators.
Yet, our method only looks for the smallest commutator in
each given window. Thus, if a support M encloses one such
thermal subregion, a competition arises between the values of
the commutator for the inclusion and that of the (typically)
exponentially localized complement. Because we expect that
a thermal inclusion gives rise to only polynomially decaying
commutators, their value can only be the smallest one when
the inclusion is sufficiently large in relation to the size M of
the support. This causes our method to be less sensitive to rare
thermal regions in the localized side of the transition.

In contrast to other numerical studies, where the presence
of Griffiths effects was inferred from averaged observables
[17,48,49], with our method we may directly locate rare
regions. In particular, we can obtain the disorder potential for
the eigenvalues A, that contribute to the tail of the distribution
and analyze the microscopic configuration of the random
field {A;} in real space. Following this procedure, we could,
however, not unambiguously determine an obvious correlation
between strong fluctuations of the field in real space and small
commutators. [t remains an open question whether it is possible
to predict the location of the rare regions from the disorder
landscape using a more direct method than the optimization.

VII. DISCUSSION

We have constructed slow operators with finite support
by minimizing their commutator with the Hamiltonian of the
system using both exact diagonalization and tensor network
techniques. In particular, we have considered the Heisenberg
spin chain with random magnetic field, which displays a dy-
namical transition from the thermal to the many-body localized
phase. The scaling of the minimal commutator with support
size provides information on the localization transition as well
as on transport in the system without resorting to a specific
initial state.

Furthermore, we have demonstrated that the tails of the
probability distributions are sensitive to rare insulating regions
in the thermal phase near the many-body localization transi-
tion. We have shown that the statistics of the smallest commu-
tators can be analyzed within the mathematical framework of
extreme value theory [50]. In particular, we have found that the
distributions are well described by generalized extreme value
functions the shape of which depends on the disorder strength.
By extreme value theory arguments, the observed behavior in
the tails can be connected to the appearance of rare, strongly
disordered regions, that give rise to atypically small minimal
commutators. In particular, the disorder strength at which the
distribution functions obtain power-law tails is consistent with
the appearance of subdiffusive transport [17,48,49].

We conclude that the slow operator technique combined
with extreme value theory constitutes a valuable tool for
exploring microscopic mechanisms of the MBL transition.
Further developments may include tailoring the optimization
technique to target explicitly the rare thermal regions on the
localized side, which could provide new insights into this less
explored aspect of MBL physics. Another intriguing question
would be how coupling an MBL system to an external bath
[66—70] would change the structure of slow operators.
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APPENDIX: EXTREME VALUE THEORY

A given PDF is said to belong to the basin of attraction
of one of the extreme values distributions, namely, Gumbel,
Fréchet, or Weibull, when the extrema are distributed according
to the corresponding function. The von Mises conditions [50]
establish simple criteria to determine whether p(x) belongs to
one of them. In this Appendix we show how the conditions
apply to the particular cases of the distributions discussed in
Sec. VIB.

1. Strong disorder implies a Fréchet distribution

Rare regions in the thermal phase near the MBL transition
may support localized operators. As shown in Eq. (7), the
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corresponding probability distribution is expected to decay as
p(T) ~ 2£T—2IInel=1 A sufficient condition [50] for a PDF
p(T) to belong to the basin of attraction of the Fréchet distri-

bution is that the corresponding CDF F(T) = f_TOO p(THdT’
satisfies the condition

TF(T) 1

lim ——— = —, (A1)
T 1= F(T) ¢
with ¢ > 0.
From Eq. (7) we obtain
T T 281
p(r)  _ cX)P( ) _ SIHCI’ (A2)
I—F(T)  [Fpwdt T
so that
T 281
p(1)_ _ 2%lnc| w3
1— F(T) T
and, asymptotically,
Tp(T
fim — 2D oeimel =0, (A4)
T—oo 1 — F(T)

which ensures the condition above with ¢ ! = 2&|Inc |, and
thus implies a limiting Fréchet distribution.

2. Exponentially decaying tails imply a Gumbel distribution

In order to prove that a PDF belongs to the basin of attraction
of the Gumbel distribution it is sufficient to check the following

condition [50]:
. d (1—-F(T)
Iim —|—— ] =0
THTma AT F'(T)

We assume the simplest exponential decay for the right
tail of the distribution p(T) ~ ¢~*T. From the corresponding
cumulative function we get the survival probability,

(A5)

Oo 1 r
1—-F(T)= / p)dt <« —e "7, (A6)
T k
so that
1— F(T) N 1 A7
pT) &k AP

Thus, the derivative vanishes, which ensures Eq. (AS).
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