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The paper theoretically studies the possibility of using the effects of phonon interference between paths through
different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the
design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to
be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-
dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes
are described. It is shown that due to destructive interference in the two or more phonon paths, the internal
crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or
completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective
thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-
path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect
crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the
emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of
the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon
transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like
defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances
in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict
the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in
resonance with the vibrations of rare host atoms, periodically distributed in the crystal plane almost completely
filled with heavy-isotope defects. We show that the phonon-interference-induced transparency can be produced by
the defect nanolayer with the non-nearest-neighbor interactions, filled with two types of isotopes with relatively
small difference in masses or binding force constants. In this case, relatively broad transmission antiresonance is
accompanied by the narrow transmission peak close to the antiresonance frequency. We describe the softening of
the flexural surface acoustic wave, localized at the embedded defect nanolayer, caused by negative surface stress
in the layer. The surface wave softening results in spatially periodic static bending deformation of the embedded
nanolayer with the definite wave number. The latter effect is estimated for graphene monolayer embedded in a
strained matrix of polyethylene. We analyze the effect of nonlinearity in the dynamics of defect atoms on the one-
and two-path phonon interference and show that the interference transmission resonances and antiresonances are
shifted in frequencies but not completely suppressed by rather strong anharmonicity of interatomic bonds. The
reduction of the Kapitza thermal interface conductance caused by the destructive phonon interference in a defect
monolayer is described. We show that the additional relatively weak non-nearest-neighbor interactions through
the defect crystal plane filled with heavy isotopes substantially reduces the interface thermal conductance, and this
effect is stronger in the three-dimensional system than in the quasi-one-dimensional systems studied previously.
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I. INTRODUCTION

The Kapitza thermal interface resistance was discovered at a
solid-liquid helium contact in 1941 [1] and later at solid-solid
interfaces [2]. It results in the enhancement of the total heat
resistance, which is a sum of the bulk thermal resistance and
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the boundary thermal one. The studies of the thermal interface
resistance and thermal interface conductance are in the focus of
both experimental and theoretical studies since then and they
have become very active in the last years because it was realized
that the thermal interface conductance is especially important
in nanoscale systems with relatively high ratio of surface
and bulk atoms [3–8], in nanostructures such as superlattices,
nanowires, and nanoribbons [9–16], and in metamaterials [17].
During the last decade, phonon transport across interfaces
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between crystals has been studied in a considerable number
of papers with the use of molecular dynamics simulations
(see, e.g., Refs. [18–30]). The thermal transport has also been
investigated using the nonequilibrium Green function method
[31,32]. However, numerical computations do not undermine
the importance of analytically solvable models. Such models
permit one to highlight visually the physical effects controlling
the phonon transport that can be verified subsequently in more
realistic models with the help of numerical methods.

The first modeling of the thermal interface conductance of
a solid-liquid helium interface has been carried out in Ref. [33]
(see also [34]). The theory is based on the idea that the phonon
transmission is equivalent to the transmission of ordinary
dispersionless acoustic waves. In addition, it was assumed in
this model that the interface is perfectly flat and the contact
is perfectly rigid. The transmission coefficient is obtained
by solving the acoustic transmission/reflection problem at
the interface between two media with very different acoustic
properties and, respectively, with strongly mismatched acous-
tic impedances [the acoustic mismatch model (AMM)]. The
AMM was later developed and applied to various cases with
the account of the specific features, which were not taken into
account initially, such as the contribution of transverse phonons
in solids, anisotropy of elastic properties, and phonon focusing
(see, e.g, Refs. [35–42]). The influence of the dispersion of
group velocity on the transmission of phonons across the solid-
solid interfaces was investigated within the frame of the lattice
dynamics in one-dimensional (1D) [43–46], two-dimensional
(2D) [47], and three-dimensional (3D) [48–51] systems. It is
worth noting that a special model, commonly referred to as
the diffuse mismatch model, has been developed in order to
describe the phonon transmission under the condition of strong
surface diffuse scattering [52–55].

The influence of anharmonic effects on the phonon trans-
mission was studied within the frame of lattice dynamics ap-
proach [56,57], as well as on the basis of the continuum descrip-
tion of phonon dynamics [58]. For example, according to [58],
the interface eigenmodes, which can be present at the interface
between two crystals with strongly different elastic properties
and phonon spectra, can substantially affect the phonon trans-
mission through the interface. Namely, the acoustic phonons,
incident from the crystal with higher phonon frequencies, can
enter the other crystal at the subharmonics (one-half or one-
third harmonics) of the incident phonon frequency. While the
acoustic phonons, incident from the crystal with lower phonon
frequencies, can enter the other crystal at the multiple (second
or third) harmonics (see also [59]). These processes can sig-
nificantly contribute to the thermal interface conductance and
to the nonreciprocity of the heat transfer through the nonlinear
and strongly mismatched (asymmetric) interfaces [58].

When two solids are brought into contact by pressing
them to each other, due to surface roughness the contact
actually occurs only within multiple isolated very narrow
(pointlike) areas. The theory of the ballistic phonon transport
in such contacts and the relevant experimental results are
comprehensively reviewed in [60].

An interesting situation can occur when a homogeneous
crystal is broken into two parts by an ultrathin interface
layer. At first glance, such a boundary should only weakly
perturb the propagation of ballistic phonons and the thermal

boundary resistance will be negligible. But, the analysis reveals
that this is not necessarily the case. In Refs. [58,61–66] the
phonon transmission across the interface between two solids,
stipulated by vibrational eigenmodes in the defect layer, was
investigated. In these works, the bulk phonon characteristics
are described with the linear theory of elasticity and low-
frequency dynamical properties of the interface layer are
described with the use of macroscopic “capillary parameters,”
which take into account the interaction of bulk acoustic waves
with the ultrathin interface layer via the additional boundary
(interface) conditions for the elastic stresses and displacements
(see a review paper [66]). It was shown that the transmission of
obliquely incident long-wavelength bulk phonon can drop to
zero through the ultrathin layer inserted into a homogeneous
crystal [61,62,67–70]. This effect occurs either because the
transverse bulk wave cannot propagate along the ultrathin layer
in which the local speed of the acoustic wave of corresponding
polarization is different from the bulk one [61,62] or because
of resonance excitation of the leaky interface wave caused
by the presence of the ultrathin defect layer embedded in a
crystal [67–71]. Thus, it appears that under certain conditions
an ultrathin interface layer with atomic-scale thickness can
play the role of a perfect mirror for bulk phonons.

Destructive interference effects in 2D (planar) defect for
acoustic phonons (elastic waves) were first described in
Ref. [66], in which the resonance of total reflection (trans-
mission antiresonance) and the resonance of total absorption
of long acoustic waves in a crystal with an embedded ultrathin
defect layer were revealed. These resonances were related with
the destructive interference between the two possible phonon
paths: through the nearest-neighbor defect-host interatomic
bonds and through the non-nearest-neighbor bonds which
couple directly the host crystal planes adjacent to the defect
atomic plane. The later works [72,73] considered within the
frame of lattice dynamics the phonon multichannel scattering
by the defect atoms inserted in the quasi-1D atomic chain,
which effectively models normal incidence of bulk phonons on
2D defect in 3D crystal. The existence of several propagation
paths results in the interference of phonons, similar to the
celebrated two-slit interference of light. It was shown that the
destructive interference reduces phonon transmission through
the defect layer up to zero at certain frequencies (transmission
antiresonances), which are determined by the frequencies
of the defect vibrational eigenmodes. The occurrence of
the phonon-interference-induced transmission antiresonances,
described in [66,72], was confirmed by numerical studies
within the frame of molecular dynamics of the atomic-scale
metamaterial made of the internal crystal plane, fully or
partially filled with heavy-isotope atomic defects [74–77].
Essentially, the transmission spectra obtained in [74,75,77]
were reproduced by the relevant quasi-1D models proposed
in [72]. We emphasize that the two-path destructive phonon
interference yielding the vanishing transmission is similar to
the total cancellation of the photon output due to the coales-
cence of the two single photons which interfere destructively
upon propagation through two different photon paths [78–82].

We also emphasize that the presence of two or more
phonon paths is decisive in the emergence of the transmission
antiresonances in phonon scattering at the 2D defect crys-
tal plane, which cannot be properly described by the Fano
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resonance. This can be confirmed by studying phonon trans-
mission through the atomic chain, which contains an embedded
weakly bound or heavy-isotope impurity atom, when the
transmission spectral line shows either single resonance trans-
mission peak [see Figs. 8(a) and 9(a) below] or monotonous
decay with frequency [see lines 2 in Figs. 5(d) and 5(e) and
line 3 in Fig. 17(c) below], without any zero-transmission dip.
Similar features have the phonon transmission spectra through
the internal crystal plane (planar defect) fully filled with weakly
bound or heavy-isotope impurity atoms (see Sec. V below).
The presence of the weakly bound or heavy-isotope defects
embedded in an atomic chain or in a crystal plane fully satisfies
the Fano-resonance condition [83] of the local state resonating
with the continuum of phonon eigenstates in the system,
but zero-transmission antiresonances and total absorption of
long acoustic waves do not occur because of the absence
of the two different phonon paths in the system [64,66,72].
The line shape of the anomalous interface absorption, which
is caused by the two-path phonon interference under the
double-resonance conditions [see Fig. 4(a) below] also does
not have the asymmetric Lorentzian shape, which is usually
related with the shape of the absorption line produced by the
Fano resonance [83]. The transmission and reflection spectra,
presented in Figs. 9(a) and 9(b) below, show that the additional
phonon path through the non-nearest-neighbor interatomic
bonds across the defect layer can drastically change phonon
transmittance of the system with almost no change in the
eigenfrequency and polarization of the local vibrational mode
resonating with the continuum of phonon eigenstates in the
system, in contrast to the concept of the Fano resonance. The
transmission peak produced by the weakly bound impurity
atoms, like the peaks shown in Figs. 8(a) and 9(a) below, can
be considered as phonon analog of the Fabry-Pérot resonance
in optics, which occurs due to constructive interference and
requires only a single path for photons or phonons. These
examples of the atomic-scale defects, inserted in an atomic
chain or in a crystal plane, clearly demonstrate the two-path
or multipath destructive-interference nature of the considered
antiresonances in the phonon transmission spectra (see also
[74,75]).

This paper studies the phonon resonance transmission, re-
flection, and anomalous absorption in 3D lattices, caused by the
two-path and multipath phonon interference in embedded im-
purity monolayers. Actual structures conforming these models
can be created by complete filling of the internal crystal plane
with atomic impurities with long-range interatomic bonds or
by partial filling of a crystal plane with heavy-isotope or
weakly bound atomic impurities. Our main interest is focused
on the acoustic phonon transmission and absorption features,
which are directly related with the two-path and multipath
phonon interference and which do not show up in the case
of the one-path constructive phonon interference which results
in the Fabry-Pérot–type resonance transmission enhancement
[25,64,65].

We demonstrate that the crystal plane, partially filled with
the atomic impurities, can become a strong obstacle for bulk
phonons, which means that within certain frequency ranges the
defect layers of atomic-scale thicknesses are able to operate as
perfect phonon metamirrors or meta-absorbers in realistic 3D
crystal structures. We show the occurrence of two transmission

antiresonances at the defect plane filled with two types of
impurities and long-range interatomic bonds, produced by
three different phonon paths through such two-dimensional
defect. We show that due to the cooperative superradiant effect,
the spectral widths of the two-path interference antiresonances
for the plane waves are given by the square of surface density
or partial filling fraction of atomic defects in the crystal
plane.

We describe the anomalous interface absorption with the
total nontransmission and nonreflection of the incident phonon
at the double-resonant nanolayer with two equal frequencies
of the defects eigenmodes and two phonon paths through
the defect plane. We predict the extraordinary phonon trans-
mission induced by the two-path constructive interference of
lattice waves interacting with resonance oscillations of rare
host atoms, periodically distributed in the crystal plane almost
fully filled with heavy isotopes. We show that the phonon-
interference-induced transparency can be produced by the
defect monolayer with the non-nearest-neighbor interactions,
filled with two types of isotopes with relatively small difference
in vibrational eigenfrequencies. In this case, relatively broad
transmission antiresonance is accompanied by the narrow
transmission peak close to the antiresonance frequency.

We describe within the analytical model the change from
the total transmission to total reflection of the grazing-incident
waves at the defect monolayer, the anomalous resonance
surface absorption, when 50% of the energy of the oblique-
incident long acoustic wave is absorbed at the monolayer
defect, and the softening of the flexural surface acoustic wave,
localized at the monolayer defect plane, caused by negative
(compressive) surface stress gxx and finite bending stiffness
Ds of the 2D elastic layer. Softening of the flexural surface
acoustic wave results in spatially periodic static bending
deformation (modulation) with the definite wave number kx0

of the nanolayer, embedded in a strained matrix. This effect
can be triggered, e.g., by the compression of the solid along
the x axis, which results in the compressive strain and negative
surface stressgxx in the embedded 2D elastic layer. We estimate
the necessary compressive strain εxx , in fact very small, and the
resulting modulation wavelength λ0 = 2π/kx0, in fact rather
big, for the graphene monolayer, embedded in a strained matrix
of low-density polyethylene: εxx = −2.5 × 10−3, λ0 = 48 Å.

We analyze the effect of nonlinearity on the one-path and
two-path phonon interference and show that the interference
transmission antiresonances and resonances are shifted in
frequencies but are not fully suppressed by rather strong
anharmonicity of interatomic bonds. We analyze how de-
structive phonon interference in a defect monolayer reduces
the Kapitza thermal interface conductance and show that,
counterintuitively, the additional relatively weak non-nearest-
neighbor coupling through the defect crystal plane with heavy-
isotope atoms substantially decreases the interface thermal
conductance, and that this effect is more pronounced in 3D
system than in the quasi-1D systems, studied previously [77].
The latter occurs because of higher density of phonon states in
the high-frequency domain in the 3D system, in which the
transmission is most strongly suppressed by the additional
phonon paths.

The paper is organized as follows. In Sec. II we describe a
general model with three types of the atoms with the mass
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and interatomic bond defects, distributed along the crystal
plane in a cubic lattice. This model predicts the existence
of two transmission antiresonances provided that there are
three paths for phonons to cross the atomic-scale defect
layer. In Sec. III we describe the anomalous total interface
energy absorption in phonon scattering at the double-resonant
internal monolayer with two equal frequencies of the defect
eigenmodes and with two phonon paths through the defect
plane. In Sec. IV, phonon scattering at the crystal plane,
50% filled in the chessboard order by atoms with the mass
and/or interatomic force constants defects, is investigated.
Phonon-interference-induced transparency, produced by the
defect monolayer with the non-nearest-neighbor interactions,
filled with two types of isotopes with relatively small difference
in masses or interatomic force constants, is described in this
section. Here, we also describe the extraordinary phonon
transmission induced by the two-path constructive interference
of lattice waves interacting with resonance oscillations of rare
host atoms, periodically distributed in the crystal plane almost
completely filled with heavy-isotope defects. In Sec. V we
describe phonon scattering at homogeneous embedded mono-
layer. Here, the appearance of the transmission antiresonance
caused by the non-nearest-neighbor interactions through the
defect crystal plane, completely filled with defect atoms, is
described. We also describe here the change from the total
transmission to total reflection of the grazing-incident waves
at the monolayer defect, anomalous surface absorption of the
incident long acoustic wave at the monolayer defect, and the
softening of the flexural surface acoustic wave, localized at
the monolayer defect plane, caused by the negative surface
stress in the 2D elastic layer. In Sec. VI we describe the
effects of nonlinearity in the dynamics of defect atoms on
the two-path phonon interference. In Sec. VII we analyze
how destructive phonon interference in a defect monolayer
decreases the Kapitza thermal interface conductance. In the
Conclusions we summarize the main results presented in the
paper.

II. PHONON SCATTERING BY TRIPLE DEFECT LAYER

We consider the bcc lattice which fragment is shown in
Fig. 1. The mass of host atoms (black circles) is m. There
are three sorts of impurities with masses m1 (crossed circles),
m∗

1 (gray circles), and m2 (empty circles), respectively. The
atom position is specified by three integers pi , i = 1,2,3. The
indices p1,2 and p3 are counted off, respectively, horizontally
and vertically. It is expedient to ascribe even integers to cell
sites and odd integers to cell centers.

Impurities m1 lie in the plane p3 = 0 at cell sites. We
mark their positions by (2n1 + 2,2n2,0) assuming that a pair
(n1,n2) labels the corresponding column of cells (Fig. 1).
Impurities m∗

1 are labeled by (2n1,2n2,0) since they are also at
cell sites in the plane n3 = 0. Impurities m2 take positions
(2n1 + 1,2n2 + 1,±1). Host atoms are indexed by triplets
(2n1,2n2,2n3), where n3 �= 0, and (2n1 + 1,2n2 + 1,2n3 + 1),
where n3 �= 0, − 1. Summing up, the defect region comprises
three atomic planes p3 = 0,±1 [the triple-layer (TL) model].

In our model, displacements of atoms are one component.
We denote the displacement of an atom in position (p1,p2,p3)
by u

p2,p3
p1 . All three pi in each triplet of indices occur to be

FIG. 1. General model. Lines interconnecting nodes indicate cell
borders. Circles at the centers and sites of the cells are different sorts
of atoms. Lines drawn between centers and sites as well as between
two centers symbolize nearest-neighbor and next-to-nearest-neighbor
bonds.

either even or odd, i.e., either pi = 2ni or pi = 2ni + 1 for i =
1,2,3. Below, when considering the propagation of phonons,
for the sake of definiteness and consistency with the form of
interatomic interactions, we assume that the displacement is
always directed normally to the defect planes.

Basically, we take into account only the nearest-neighbor
interaction, that is, the interaction between an atom at the cell
center and its nearest eight neighbors at lattice nodes. The next-
to-nearest-neighbor interaction is allowed for only between
impurity atoms m2 (see Fig. 1). The force constant γ character-
izes the interaction between host atoms. The symbols γ1 and γ ∗

1
stand for the force constants of nearest-neighbor interactions
between impurities m1 ↔ m2 and m∗

1 ↔ m2, respectively. The
constant of the next-to-nearest-neighbor interaction between
impurities m2 is denoted by γ3.

The lattice Hamiltonian H = Ekin + U involves the kinetic
energy Ekin and potential energy U of atoms:

Ekin = 1

2

⎡
⎣m

∑
pi ,|p3|�2

(
u̇p2,p3

p1

)2 +
2∑

m=1

∑
n1,n2

E(m)
n1,n2

⎤
⎦, (1)

where in the first term the summation runs over the triplets of
even integers p1,2,3 and odd integers p1,2,3, except for those
with p3 = 0,±1:

E(1)
n1,n2

= m1
(
u̇

2n2,0
2n1+2

)2 + m∗
1

(
u̇

2n2,0
2n1

)2
,

(2)
E(2)

n1,n2
= m2

[(
u̇

2n2+1,1
2n1+1

)2 + (
u̇

2n2+1,−1
2n1+1

)2]
.
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The parabolic potential energy is the following:

U = 1

2

∑
n1,n2

⎡
⎣ ∑

|n3|�2

Un3
n1n2

+
5∑

m=1

U (m)
n1n2

⎤
⎦, (3)

where

Un3
n1n2

= γ
∑
δi

(
u

2n2,2n3
2n1

− u
2n2+δ2,2n3+δ3
2n1+δ1

)2
,

U (1)
n1n2

= γ
∑
δi

(
u

2n2,2δ3
2n1

− u
2n2+δ2,3δ3
2n1+δ1

)2
,

U (2)
n1n2

= γ1

∑
δi

(
u

2n2,0
2n1+2 − u

2n2+δ2,δ3
2n1+2+δ1

)2
,

U (3)
n1n2

= γ ∗
1

∑
δi

(
u

2n2,0
2n1

− u
2n2+δ2,δ3
2n1+δ1

)2
,

U (4)
n1n2

= γ2

∑
δi

(
u

2n2,2δ3
2n1

− u
2n2+δ2,δ3
2n1+δ1

)2
,

U (5)
n1n2

= γ3
(
u

2n2+1,1
2n1+1 − u

2n2+1,−1
2n1+1

)2
. (4)

The index δi at the summation symbol means that the summa-
tion is over eight combinations of δ1,δ2,δ3 = ±1.

In view of Eqs. (1)–(4), the equations of motion in the lattice
dynamics can be represented in the following form:

müp2,p3
p1

= −γ
∑
δi

D
δ2,δ3
δ1

, |p3| � 3 (5)

where

D
δ2,δ3
δ1

= up2,p3
p1

− u
p2+δ2,p3+δ3
p1+δ1

, (6)

p1,2,3 are triplets of even and odd integers;

mü
2n2,2δ3
2n1

= −
∑
δ1,2

[
γD

δ2
δ1

+ γ2D̃
δ2
δ1

]
, (7)

where

D
δ2
δ1

= u
2n2,2δ3
2n1

− u
2n2+δ2,3δ3
2n1+δ1

,
(8)

D̃
δ2
δ1

= u
2n2,2δ3
2n1

− u
2n2+δ2,δ3
2n1+δ1

.

The index δ1,2 at the summation symbol implies the summation
over four possible combinations of δ1,δ2 = ±1:

m1ü
2n2,0
2n1+2 = −γ1

∑
δi

(
u

2n2,0
2n1+2 − u

2n2+δ2,δ3
2n1+2+δ1

)
, (9)

m∗
1ü

2n2,0
2n1

= −γ ∗
1

∑
δi

(
u

2n2,0
2n1

− u
2n2+δ2,δ3
2n1+δ1

)
, (10)

and

m2ü
2n2+1,δ3
2n1+1 = γ2

⎡
⎣∑

δ1,2

D̄
δ2
δ1

⎤
⎦ + γ1D̄

′ + γ ∗
1 D̄∗′ − δ3γ3

¯̄D, (11)

where

D̄
δ2
δ1

= u
2n2+1+δ2,2δ3
2n1+1+δ1

− u
2n2+1,δ3
2n1+1 ,

D̄′ = u
2n2+2,0
2n1

+ u
2n2,0
2n1+2 − 2u

2n2+1,δ3
2n1+1 ,

(12)
D̄∗′ = u

2n2+2,0
2n1+2 + u

2n2,0
2n1

− 2u
2n2+1,δ3
2n1+1 ,

¯̄D = u
2n2+1,1
2n1+1 − u

2n2+1,−1
2n1+1 .

These equations describe, respectively, the vibrations of the
host atoms in the planes |p3| � 3 and p3 = ±2 [Eqs. (5) and
(8)], the vibrations of impurities in the plane p3 = 0 [Eqs. (9)
and (10)], and the vibrations of impurities in the planes p3 =
±1 [Eq. (11)].

From Eq. (5), the bulk phonon spectrum in the host lattice
is found. There is one acoustic branch since the elementary
cell contains one atom and displacements are one component.
Assuming that the half-length of the bcc cell edge is 1, one
obtains the dependence of the phonon frequency ω on the
components ki , i = 1,2,3, of its normalized wave vector k:

ω(k) = 2

√
2γ

m
(1 − cos k1 cos k2 cos k3). (13)

The first Brillouin zone is a 12-face polyhedron bordered by
the surface resulting from the intersection of 12 planes drawn
normally to the 12 directions of the type [110] at a distance of
π/

√
2 from the origin of coordinates (cf., e.g., [84]). Each face

is a rhombus, and all rhombuses are identical.
We are interested in the energy reflection R and transmis-

sion T coefficients of the phonons, incident on the defect
planes p3 = 0,±1. These coefficients are defined as R = |aR|2
and T = |aT |2, where aR and aT are the amplitudes of the
displacements u

p2,p3
p1,R

and u
p2,p3
p1,T

accompanying the reflected
and transmitted phonons, respectively. The amplitude of the
displacement associated with the incident phonon u

p2,p3
p1,I

equals
1. It is assumed that the incident phonon propagates in the
part of the lattice where the indices p3 are negative, so the
phase factors take the form exp[i(ϕg − ωt)], where ϕg =∑2

j=1 kjpj ± k3p3, g = I,T ,R, the upper and lower signs
correspond, respectively, to the incident (I ) and transmitted
(T ), and to the reflected (R) phonons.

We derive aR,T with the aid of Eqs. (5)–(11). Intermediate
calculations involve the displacements of the host atoms

up2,p3
p1

= u
p2,p3
p1,I

+ u
p2,p3
p1,R

, p3 = −2, − 3

up2,p3
p1

= u
p2,p3
p1,T

, p3 = 2,3

displacements u
p2, ±1
p1 of the impurities m2 and the displace-

ments of impurities m1 and m∗
1. The latter two quantities are

expressed in terms of u
p2, ±1
p1 directly from Eqs. (9) and (10).

By writing equations for combinations u
p2,p3
p1 ± u

p2,−p3
p1 and

excluding u
p2,1
p1 ± u

p2,−1
p1 , we eventually arrive at two equations

for aT ± aR . They yield the following expressions for the
complex reflection aR and transmission aT amplitudes:

aR = −e−i4k3

2

[
Q(−)

Q
(−)
∗

+ Q(+)

Q
(+)
∗

]
, (14)

aT = e−i4k3

2

[
Q(−)

Q
(−)
∗

− Q(+)

Q
(+)
∗

]
, (15)

where

Q(±) = A + 16γ 2
2 C2

k1k2

B(±)
, Q(±)

∗ = A† + 16γ 2
2 C2

k1k2

B(±)
,

A = 0.5mω2 − 4γ2 − i4γCk1k2 sin k3,

Ck1k2 = cos k1 cos k2,
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B(−) = 2(γ1 + γ ∗
1 + γ3 + 2γ2) − m2ω

2,

B(+) = B(−) − 2γ3 + 16Ck1k2B,

B =
[
γ 2

1 cos(k1 − k2)

m1ω2 − 8γ1
+ γ ∗2

1 cos(k1 + k2)

m∗
1ω

2 − 8γ ∗
1

]
, (16)

where A† means complex conjugation of A in Eqs. (16). This
operation is not applied to B(±) because in the next section
phonon absorption by defect layers is studied and certain force
constants entering B(±) are assumed to be complex. If all the
force constants are real, then Q

(±)
∗ = Q(±)† and, for instance,

one can check that the condition of the absence of losses T +
R = 1 holds true. The explicit expressions of R and T are
omitted here.

Equations (14)–(16) allow a number of general conclusions
to be made. We begin from the analysis of the behavior of aT,R

at k3 → 0. The ratio Q(−)/Q
(−)
∗ tends to 1 independently of

whether k1,2 ≡ 0 or they are finite. On the contrary, the limit
of Q(+)/Q

(+)
∗ is different depending on whether k1,2 ≡ 0 or

k1,2 are finite. In the former case Q(+)/Q
(+)
∗ → −1 and in the

latter one Q(+)/Q
(+)
∗ → 1. Due to Eqs. (14) and (15), aT → 1

and aR → 0 if k1,2 ≡ 0 while aT → 0 and aR → −1 if k1 �= 0
and/or k2 �= 0. These results can be interpreted as follows. In
the case of vanishing k1,2, a phonon with frequency

ω = ωmax sin(k3/2), (17)

where ωmax = 4
√

γ /m, is incident normally onto the defect
plane, so in the limit k3 → 0 the long-wave phonons transmit
freely across the defect layer. If k1,2 �= 0, then for k3 →
0 the grazing incidence of a phonon with frequency ω =
2
√

(2γ /m)(1 − cos k1 cos k2) onto the defect plane occurs.
Once aT = 0, there is no displacement field in one part of the
structure. But, since aR tends to be equal to −1 for the grazing
incidence, the incident and reflected fields add up to zero, so
there is no field in the other part either [61]. The vanishing
of fields on both sides of the defect means that bulk phonons
cannot propagate parallel to the defect plane although the plane
can have an atomic-scale thickness [61]. This feature of the
reflection of the grazing-incident phonons will be analyzed
with more details in Sec. V.

Thermal conductance of the defect crystal plane is de-
termined by the phonon energy transmission coefficient T .
It appears that defect monoatomic layers can dramatically
modify the frequency dependence of T and even make it
to vanish at certain frequencies ωR which correspond to the
transmission antiresonances. Indeed, from Eqs. (15) and (16)
it follows that one has aT = 0 provided that B(+) = B(−). This
equality results in the equation

γ3 −
[

γ1ω
2
1F

(−)
k1k2

ω2 − ω2
1

+ γ ∗
1 ω∗2

1 F
(+)
k1k2

ω2 − ω∗2
1

]
= 0, (18)

where

F
(±)
k1k2 = Ck1k2 cos(k1 ± k2) (19)

and

ω1 = 2
√

2γ1/m1, ω∗
1 = 2

√
2γ ∗

1 /m∗
1 (20)

are the eigenfrequencies of vibrations of defect atoms lying in
the plane p3 = 0.

First of all, we note that in accordance with Eq. (18), ωR

is independent of the mass m2 of impurities in planes p3 =
±1 and on the force constant γ2 specifying the interaction of
these impurities with host atoms. The host lattice parameters γ

and m control the upper limit of the antiresonance frequency,
namely, the antiresonance frequency must be smaller than the
maximum ωmax(k1,2) of the phonon frequency at the given k1,2.
As it follows from Eq. (13), the maximum frequency is reached
at the boundary of the Brillouin zone.

Now, we analyze the existence of solutions of Eq. (18). No
solutions exist when γ3 = 0 and ω1 = ω∗

1 simultaneously. If
γ3 = 0, then no direct interatomic bonds exist between impu-
rities in the planes p3 = ±1. If ω1 = ω∗

1, then it can be said
that plane p3 = 0 is completely occupied by alike impurities
(however, we note that ω1 = ω∗

1 implies only m1/m∗
1 = γ1/γ

∗
1

rather than the identity of the corresponding parameters).
Therefore, with γ3 = 0 and ω1 = ω∗

1 simultaneously, we meet
the situation when only a single phonon path to cross the defect
layer exists. The two-path or multipath destructive interference
is impossible and, therefore, the transmission does not vanish
for ω < ωmax.

In the cases when ω1 = ω∗
1 but γ3 �= 0 or γ3 = 0 but ω1 �=

ω∗
1, Eq. (18) has one solution. We discuss such particular

options in Sec. IV and now we turn to the general case
when ω1 �= ω∗

1 and γ3 �= 0. In this instance, there are three
paths for phonon transmission across the defect, namely, two
paths through different impurities in the plane p3 = 0 and a
third path through the next-to-nearest-neighbor interatomic
bond between impurities γ3. In general, in such 2D lattice
defect the two two-path destructive-interference transmission
antiresonances can occur: one antiresonance can be produced
by the additional phonon path through the interatomic bond
γ3, cf. Ref. [66], and another antiresonance can be produced
by the two phonon paths provided by the different defect
eigenfrequencies ω1 and ω∗

1, cf. Ref. [72].
The roots of Eq. (18) for the antiresonance frequencies ωR1,2

obey the biquadratic equation

γ3ω
4 − D1ω

2 + D2 = 0, (21)

where

D1 = ω2
1(γ3 + γ1F

(−)
k1k2) + ω∗2

1 (γ3 + γ ∗
1 F

(+)
k1k2),

(22)
D2 = ω2

1ω
∗2
1 (γ3 + γ1F

(−)
k1k2 + γ ∗

1 F
(+)
k1k2),

under the condition that the roots of Eq. (21) are not equal to
ω1 and ω∗

1. By direct substitution, it can be verified that this
condition is broken if either F

(−)
k1k2 = 0 or F

(+)
k1k2 = 0, and then

one of the two roots of Eq. (21) is equal to either ω1 or ω∗
1,

respectively. Otherwise, none of the roots of Eq. (21) are equal
to ω1 or ω∗

1 unless ω1 = ω∗
1.

When F
(±)
k1k2 > 0, the discriminant of Eq. (21) is positive

and smaller than D2
1 , and D1 > 0. Thus, the condition F

(±)
k1k2 >

0 guarantees the existence of two roots ωR1 and ωR2 of
Eq. (21) independently of the characteristics of defects. The
transmission coefficient vanishes at these frequencies provided
that they are smaller than the ωmax(k1,2) corresponding to k1,2.

Figure 2 shows the area of k1,2 values where F
(±)
k1k2 > 0. Out-

side this area, the number of the antiresonance frequencies de-
pends on the parameters of defects. For example, let F (+)

k1k2 < 0.
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FIG. 2. Domain of k1,2 values in plane k3 = 0 where F
(±)
k1k2 > 0

(gray squares). The borders of the big central square are lines |k1| +
|k2| = π/2. Each of the four small squares is 1

4 of the big square. The
borders of the first Brillouin zone |k1| + |k2| = π are shown by bold
lines.

We choose γ1 and γ ∗
1 such that γ3 = γ ∗

1 |F (+)
k1k2| − γ1F

(−)
k1k2,

so D2 = 0. Accordingly, one root of Eq. (21) is ω(1)2 = 0.
The other one ω(2)2 = ω2

1γ
∗
1 |F (+)

k1k2| − ω∗2
1 γ1F

(−)
k1k2 is positive

or negative or equal to zero depending on the ratio between
ω2

1 and ω∗2
1 . Therefore, we have either one or two, or no,

antiresonances.
An example of the spectrum of the coefficient T is shown in

Fig. 3. The symbol ω stands for the reduced frequency ω/ωmax.
It is seen that the reduced frequencies of the antiresonances,
ωR1 ≈ 0.315 and ωR2 ≈ 0.44, given by Eq. (21), do not
depend on mass m2 (and on the force constant γ2) because
this mass and this force constant do not affect the difference
between the phonon paths through the bonds γ1 and masses
m1 and through the bonds γ ∗

1 and masses m∗
1 (see Fig. 1).

The connection of the two transmission antiresonances shown
in Fig. 3 with the difference between the two phonon paths

FIG. 3. Spectra of the phonon transmission coefficient T across
triple defect layer versus reduced frequency at m2 = 0.5m (curve 1),
m2 = m (curve 2), m2 = 1.5m (curve 3), m2 = 2m (curve 4). The
other parameters are fixed and equal to γ1 = 0.25γ , γ ∗

1 = 0.5γ , γ2 =
γ , γ3 = 2γ , m1 = 0.75m, m∗

1 = 3m.

is related in turn with the phonon-interference nature of the
antiresonances (see also Sec. IV below). On the other hand,
the shape of the spectral lines beyond the antiresonances
is significantly affected by the value of m2, especially at
frequencies higher than ωR2. The change of m2 also slightly
shifts the frequency ωT of the transmission resonance with
T = 1, given by Eqs. (14) and (16), located in-between the
frequencies of antiresonances at ωR1 and ωR2: ωT changes
from ωT ≈ 0.384ωmax for m2 = 0.5m to ωT ≈ 0.375ωmax for
m2 = 2m for the indicated in Fig. 3 parameters of the defect
layer. Note that in the triple defect layer shown in Fig. 1, there
can be up to two transmission resonances at the frequencies
ωT 1,2 inside the acoustic phonon band, with 0 < ωT 1,2 < ωmax,
in addition to the obvious transmission resonance through the
2D lattice defect at ω = 0, see Figs. 6(a) and 6(b) below.

Summing up, our model predicts the existence of two trans-
mission antiresonances provided that there are three different
paths for phonons to cross the atomic-scale defect layer. The
spectral positions of the antiresonances are determined by
the frequencies of two different vibrational eigenmodes of
the defect atoms and the difference between the paths is due
to different masses and/or different interatomic bonds of the
defects. The independence of the antiresonance frequencies in
Fig. 3 on the mass m2 and force constant γ2 is explained by
the independence of the characteristic frequencies ω1 and ω∗

1
on the parameters m2 and γ2 that do not affect the difference
between the two phonon paths [see Eq. (20) and Fig. 1]. In
Sec. IV below we describe the phenomenon of the phonon-
interference-induced transparency of the defect crystal plane,
which is caused by relatively weak splitting of the frequencies
of vibrational eigenmodes of the defect atoms.

According to our model, the antiresonances occur within a
fairly wide domain of the Brillouin zone embracing the direc-
tion of normal incidence. As applied to the situation where all
three acoustic phonon branches are present, one can conjecture
the following conclusion about the phonon transmission. If the
transmission coefficient of (quasi)longitudinal phonons inci-
dent normally onto a 2D defect vanishes at frequency ωR , then
it will vanish also for oblique incidence of (quasi)longitudinal
phonons at the frequencies ωR(k1,k2) depending on the wave-
vector tangential components k1 and k2. But, the cumulative
(for all polarizations) transmission coefficient will not be
zero since obliquely incident (quasi)longitudinal phonons can
generate the transmission of (quasi)transverse phonons. On
the other hand, if the defect planes are oriented symmetri-
cally, e.g., are parallel to the plane of symmetry, then the
phonon conversion disappears at normal incidence and the
conversion is weak for the phonons incident under not large
incidence angles. Hence, there is a domain of the wave-vector
tangential components k1 and k2, in which the cumulative
transmission will be finite but very small around the frequency
ω = ωR(k1,k2).

III. ANOMALOUS PHONON ABSORPTION
BY 2D DEFECT LAYER

It is well known that attenuation can significantly change the
behavior of a system in the vicinity of resonance frequencies.
In this section, we analyze the effect of dissipation of the
defect layer oscillations on the phonon multipath reflection
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A

s

(a) (b)

FIG. 4. (a) Spectra of phonon energy transmission T (dashed line), reflection R (dotted-dashed line), and interface absorption As =
1 − T − R (solid line) at double-resonance defect layer in the presence of dissipation. Parameters of the defect layer are given by Eqs. (32). (b)
Spectra of phonon energy transmission (dashed line) and reflection (dotted-dashed line) through double-resonance defect layer in the absence
of dissipation. Parameters of the defect layer are given by Eqs. (33). Inset shows phonon transmission in the vicinity of the antiresonance.

and transmission [66]. For the sake of simplicity, the normal
incidence is considered (k1 = k2 = 0) and it is assumed that
m1 = m∗

1 and γ1 = γ ∗
1 . Phonon spectrum (13) reduces to

Eq. (17) in this case.
Losses of the defect layer oscillations are assumed to be

proportional to relative velocities of the impurity and host
atoms. They can be incorporated into our model by replacing
the real force constants γ1,3 with the complex quantities γ1,3 =
γ ′

1,3 − iγ ′′
1,3, with

γ ′′
1,3 ∝ ωχ1,3, (23)

where χ1,3 are real constants. The exact nature of phonon
dissipation, e.g., due to lattice anharmonicity, is not crucial
in our approach and is not discussed here.

The expressions for the transmission and reflection ampli-
tudes (14) and (15) in the case of normal incidence (k1 =
k2 = 0) and for m1 = m∗

1, γ ∗
1 = γ1, and γ2 = γ , can be written

explicitly in an acceptably concise form as

aT = exp(−2ik)
Nt (ω)


(ω)
, (24)

aR = exp(−2ik)
Nr (ω)


(ω)
, (25)

where


(ω) = {γ1 + γ3/2 − m2ω
2 + γ [1 − exp(ik)]}[2γ 2

1

+ (2γ1 − m1ω
2){m2ω

2 − γ1 − γ [1 − exp(ik)]}],
(26)

Nt (ω) = 2i sin(k)γ
[
γ 2

1 + γ3(2γ1 − m1ω
2)/4

]
, (27)

Nr (ω) = −[
(ω) + 2iγ sin(k){γ 2
1 + (2γ1 − m1ω

2)

× [m2ω
2 − γ1 − γ3/4 − γ (1 − exp(ik))]}]. (28)

With the use of Eqs. (24)–(28), one can find the following
four equations for the defect masses and the real and imaginary
components of the defect force constants, which determine
the conditions for the occurrence of the anomalous interface

absorption with the total nontransmission and total nonreflec-
tion, when T = R = 0, and the value of the corresponding
antiresonance frequency ωR:

ωR =
√

2γ
′
1 + γ

′
3

2m2 − m
=

√
2γ

′
1 + 4γ

′2
1 /γ

′
3

m1
, (29)

γ
′′
1

γ
′′
3

= γ
′2
1

γ
′2
3

2

1 + 4γ
′
1/γ

′
3

, (30)

γ
′′
1 + γ

′′
3 /2

γ
= 2

ωR

ωmax

√
1 − ω2

R/ω2
max. (31)

The four equations (29)–(31) originate from the nullification
of the two, transmission and reflection, complex amplitudes.
Equations (29)–(31) show that the anomalous interface ab-
sorption occurs under the double-resonance conditions and
that significant difference between imaginary components of
the force constants γ1 and γ3 in the defect layer should be
present [66].

Figures 4(a) and 4(b) illustrate the relevant situation.
Figure 4(a) shows the spectra of phonon energy transmission
T , reflection R, and interface absorption As = 1 − T − R by
the internal crystal plane completely filled with heavy-isotope
atoms, with the mass ratio 2.59 between the defect and host
atoms which corresponds to the case of Ge-like atoms in a
lattice of Si-like atoms. The following parameters of the defect
layer, which exactly track the relations given by Eqs. (29)–(31),
were used in the calculations:

γ1(ω) = [
1 − i1.04(ω/ωmax)

√
1 − ω2/ω2

max

]
γ, γ2 = γ,

γ3(ω) = [
0.772 − i1.92(ω/ωmax)

√
1 − ω2/ω2

max

]
γ,

m1 = 2.59m, m2 = m. (32)

Figure 4(b) shows the spectra of the double-resonance
transmission and reflection with no absorption in the defect
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layer. The parameters of the model are the following:

γ1 = γ, γ2 = γ,

γ3 = 0.772γ, m1 = 2.59m, m2 = m. (33)

It is seen in Fig. 4(a) that the total interface absorption of
the incident phonon takes place and spectral width of the
absorption line is very broad. The shape of the anomalous
interface absorption line is very different from the asymmetric
Lorentzian shape which is characteristic for the shape of the
absorption line produced by the Fano resonance [83]. With the
increase of the mass of heavy defect atoms filling the crystal
plane, e.g, in the case of Sn-like atoms in the lattice of Si-like
atoms with the mass ratio 4.23, the antiresonance frequency
ωR decreases and the spectral width of the absorption line
further increases. From the comparison of Figs. 4(a) and 4(b),
one can conclude that the change of spectrum of the reflection
coefficient R(ω), caused by surface dissipation in the presence
of two-path phonon interference, is much more substantial
than that of the transmission coefficient T (ω). As one can see in
Fig. 4(b), the double-resonance dissipationless transmission
through the planar defect, which is accompanied by the
two-path phonon interference, does not show the sequence of
the transmission resonance and transmission antiresonance,
which in some cases is characteristic for the single-resonance
transmission with the phonon-interference effects. In the inset
in Fig. 4(b), we show the phonon transmission in the vicinity
of the antiresonance at the frequency ωR ≈ 0.832ωmax, given
by Eqs. (29), which is not followed by the transmission
resonance [see also line 4 in Fig. 17(c) below].

It is worth comparing the anomalous interface phonon
absorption, shown in Fig. 4(a), with the superscattering of
photons in a planar photonic structure: in both cases of phonons
[66,72,73] and photons [85], the interference overlap between
two interface resonance eigenmodes is crucial and dissipative
parameters of the two interfering eigenmodes are substantially
different.

IV. PHONON SCATTERING BY CHESSBOARD-TYPE
MONOLAYER AND PHONON-INDUCED TRANSPARENCY

OF THE METASURFACE

The sharp transition from total reflection to total transmis-
sion and back again to total reflection is characteristic for the
systems which show phonon analog of electromagnetically
induced transparency. The latter is characterized by the oc-
currence of narrow transmission band for photons on the low-
transmission background [86,87]. Below, we show that phonon
analog of electromagnetically induced transparency can be
realized in the crystal plane partially filled with resonance
defects in the chessboard manner (see Fig. 1).

We assume in our model that m2 = m, γ2 = γ and that the
defect layer is merely a single crystal plane in which two types
of impurities occupy positions in the chessboard order. This
case will be referred to as the chessboard (CB) model. We
neglect here the dissipation in the impurity layer, i.e., the γ1

and γ ∗
1 force constants are assumed to be real.

The chessboard order in 2D atom distribution naturally
creates two different phonon paths through the defect plane.
One of them goes through the impurity bond γ1 and the other

goes through the impurity bond γ ∗
1 (see Fig. 1). Examination

of Eq. (18) reveals that for γ3 = 0, a single antiresonance exists
at the frequency

ωR = ω1ω
∗
1

√√√√ γ1F
(−)
k1k2 + γ ∗

1 F
(+)
k1k2

γ1ω
2
1F

(−)
k1k2 + γ ∗

1 ω∗2
1 F

(+)
k1k2

, (34)

provided that the radicand in Eq. (34) is positive and neither
F

(−)
k1k2 nor F

(+)
k1k2 is equal to zero. The latter condition stems

from the fact that the antiresonance does not exist exactly
at the frequencies ω1 and ω∗

1 from Eq. (20), as it follows
from Eq. (18). Note that in Eq. (34), F

(±)
k1k2 = cos(k1 ± k2),

since the factor Ck1k2 entering into the definition of F
(±)
k1k2 in

Eq. (19) is canceled. If k1 = 0, then ωR does not depend on
k2. The analogous situation takes place in the plane k2 = 0.
Note also that the case under consideration clearly shows that
aT = 0 cannot be attributed to any one-path interference of
the Fabry-Pérot type: the key role plays the difference in the
characteristics of the impurities in the plane p3 = 0, namely,
the condition that ω1 �= ω∗

1. The latter is equivalent to the
atomic-scale lateral inhomogeneity of the 2D defect layer,
which provides the two different phonon paths through the
layer [66,72].

Nonexistence of the antiresonances under the conditionω =
ω1 or ω∗

1 can be qualitatively explained as follows. According
to Eqs. (9) and (10), the amplitudes u0 and u∗

0 of the impurities
m1 and m∗

1, respectively, obey the equations(
ω2 − ω2

1

)
u0 = 0.5ω2

1Ck1k2(u(+)
1 + u

(−)
1 ),

(35)(
ω2 − ω∗2

1

)
u∗

0 = 0.5ω∗2
1 Ck1k2(u(+)

1 + u
(−)
1 ),

where u
(+)
1 and u

(−)
1 are the amplitude of the displacements of

the atoms in planes p3 = 1 and −1, respectively. If ω = ω1,
then in view of Eq. (35) one has u

(+)
1 + u

(−)
1 = 0. Hence,

u∗
0 = 0 and one of the two phonon paths is blocked, so there

is no interference. If ω1 = ω∗
1, then the two impurities move

likely. Thus, there is always only a single path for phonons.
Therefore, the interference and the related anomalous feature
(antiresonance) in the transmission through the monolayer
defect are absent.

The transmission coefficient at ω = ω1 equals

T = 64γ 2C2
k1k2 sin2 k3[

4(γ1 + γ ∗
1 ) − mω2

1

]2 + 64γ 2C2
k1k2 sin2 k3

, (36)

where the k3 value corresponds to ω = ω1. In deriving this
expression, we have taken the advantage of the facts that
at γ2 = γ the expression for A in Eq. (16) reduces to A =
−i4γCk1k2 exp(−ik3) and that B(+) in Eq. (16) becomes
infinite at ω = ω1.

The CB model can be used for the analytical description of
phonon transmission through internal crystal plane in a model
bcc cubic lattice of Si-like atoms, partially filled with Ge-like
defect atoms, which can serve as interference phonon metamir-
ror with the transmission antiresonances in the vicinities of
frequencies of resonance modes of Ge-like defect atoms in the
terahertz frequency range and which were previously studied
by molecular dynamics simulation [74–76]. The CB model

094117-9



KOSEVICH, POTYOMINA, DARINSKII, AND STRELNIKOV PHYSICAL REVIEW B 97, 094117 (2018)

(a)

1

2

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

/ max

Tr
an
sm
is
si
on
,P
ha
se

1 2

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

/ max

Tr
an
sm
is
si
on

1

2

(c)

0.0 0.2 0.4 0.6 0.8 1.0

−3

−2

−1

0

1

2

3

/ max

Tr
an
sm
is
si
on
,P
ha
se 1

2

(d)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

/ max

Tr
an
sm
is
si
on

12

(e)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

/ max

Tr
an
sm
is
si
on

FIG. 5. (a) Spectrum of energy transmission (line 1) and phase of transmission amplitude (line 2) in the CB model with γ1 = γ ∗
1 = γ2 = γ ,

γ3 = 0, m∗
1 = m2 = m, m1 = 2.59m, where blue line 1 is obtained with the lattice dynamics for the model in Fig. 1, which visually coincides

with the yellow line 1 given by Eq. (37) with G = 0.2, dashed line shows total transmission with T = 1. (b) Spectrum of energy transmission
through the crystal plane filled with heavy-isotope atoms with m1 = m∗

1 = 2.59m with filling fraction fd = 0.25, obtained with the lattice
dynamics for the model in Fig. 1 (line 1) and given by Eq. (37) with G = 0.008 (line 2). (c) Spectrum of energy transmission (line 1) and phase
of transmission amplitude (line 2) through the crystal plane filled with heavy-isotope atoms with m1 = m∗

1 = 2.59m and fd = 0.75, dashed
line shows total transmission with T = 1. (d), (e) Spectrum of energy transmission through the crystal plane filled with heavy-isotope atoms
with m1 = m∗

1 = 2.59m (d) or m1 = m∗
1 = 10m (e), with fd = 0.99 (lines 1) or fd = 1 (lines 2).

for such system corresponds to m∗
1 = m2 = m, m1 = 2.59m,

and γ1 = γ ∗
1 = γ2 = γ, γ3 = 0 in Fig. 1. In Fig. 5(a), we

plot both the normal-incidence energy transmission coefficient
(line 1) and the phase of the transmission amplitude (line
2) at such internal crystal plane. As one can see in this
figure, the transmission antiresonance at ωR/ωmax ≈ 0.53 is
accompanied by the sharp change by π of the phase of the
transmission amplitude, which is a characteristic feature of

the destructive-interference antiresonance: the lattice waves
traversing the defect plane through two different paths mutu-
ally cancel one another which results in zero phonon energy
transmission. Similar sharp change by π of the phase of
transmission amplitude accompanies all the considered in this
paper interference antiresonances. One can also see in Fig. 5(a)
that the total transmission resonance, at ωT /ωmax = 1/

√
2, is

accompanied by the phase of the transmission amplitude equal
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to zero, which is characteristic for the constructive-interference
resonance [see also Fig. 5(c)].

From Eqs. (15) and (16), we get the following compact
expression for the energy transmission coefficient for the CB
model (see also [66,74,75]):

T (ω) =
(
ω2 − ω2

R

)2(
ω2

max − ω2
)

(
ω2 − ω2

R

)2(
ω2

max − ω2
) + Gω2

(
ω2 − ω2

T

)2 , (37)

where ωR and ωT are the frequencies of the transmission
antiresonance and transmission resonance, respectively, ωR <

ωT < ωmax. Here, G is the real positive coefficient, which
gives the spectral width of the transmission dip and which
for the plane waves can be related with the filling fraction
fd of the heavy-isotope Ge-like atoms in the crystal plane
of the lattice of Si-like atoms. In the CB model, which
corresponds to fd = 0.5, the frequencies of the transmission
antiresonance and transmission resonance are, respectively,
ωR/ωmax = 1/

√
m1/m + 1 and ωT /ωmax = 1/

√
2, and the

coefficient G = 0.2. The plot for the energy transmission
coefficient, given by Eq. (37) with these control parameters,
yellow line 1 in Fig. 5(a), is visually indistinguishable from
the blue line 1 in Fig. 5(a), obtained by numerical solution of
the lattice-dynamics equations for the considered model. We
note that in the case of the crystal plane in the cubic lattice of Si-
like atoms filled with Ge-like atoms, the antiresonances are in
the terahertz frequency range: ωR ≈ 6.3 THz for longitudinal
phonons (see [74–76]).

We assume that G ∝ f 2
d , which corresponds to cooperative

superradiant phonon emission of defect atoms in the internal
crystal plane. In optics, the radiated intensity ∝f 2

d is related
with the Dicke superradiant emission [88] from a collection of
identical excited atoms due to cooperative interaction between
the small-size emitters and common coherent radiation (see,
e.g, Ref. [89] for a review). In the case of phonon emission, the
superradiance occurs due to the phonon wavelength larger than
the effective thickness of the defect layer and correspondingly
larger than the effective size of the identical emitters of
coherent lattice waves. Using the fitting value of G = 0.2 for
fd = 0.5, we getG ≈ 0.8f 2

d for the arbitrary partial filling with
fd � 0.5. In Fig. 5(b), we plot the transmission coefficients
through the internal crystal plane in the lattice of Si-like
atoms, periodically filled with heavy-isotope Ge-like atoms
with fd = 0.25, which corresponds to one Ge-like atoms per
three Si-like atoms in the each square plaquette with 2 × 2
atoms in the defect crystal plane. In this plot, line 1 is obtained
with the use of lattice dynamics while line 2 is given by
Eq. (37) with ωR/ωmax = 1/

√
m1/m + 1 = 0.53 for m1 =

2.59m, ωT /ωmax = 0.71, and G = 0.8f 2
d = 0.05. As one can

see in Fig. 5(b), there is small shift of the antiresonance to
lower frequency with respect to the prediction of Eq. (37), but
the reduced, with respect to that in Fig. 5(a), spectral width
of the antiresonance is well reproduced. For fd � 1, the an-
tiresonance transforms into very narrow transmission dip, with
the spectral width 
ω/ωmax ∝ f 2

d at the reduced frequency
which for fd → 0 tends to ω1/ωmax = √

m/(2m1) = 0.439,
on the background of almost total transmission for the rest of
frequencies in the phonon band, for 0 � ω < ωmax. But, in the
case of the incidence of Gaussian phonon wave packet with a
finite spatial width (coherence length) l, spectral width 
ω of
very narrow antiresonance, in the limit fd � 1, is determined

by the coherence length of the wave packet, 
ω = vg/(2l),
where vg is phonon group velocity at ω = ωR and λ = λR , see
also [74,75]. Therefore, the width of the narrow transmission
antiresonance at the two-phonon-path defect crystal plane can
provide a measure of the coherence length of the phonon wave
packet, similar to the width of the Hong-Ou-Mandel dip in
the detection probability of the output photons produced by
the two-photon destructive interference (see [78–82]). It is
worth noting that because of shorter λR , the plane-wave limit
for phonon wave packets l � λR , necessary for the existence
of the sharp and deep interference antiresonance, is easier to
realize for the single-atom scatterers than for the defect-atom
nanoparticles embedded in a matrix, that also produce phonon-
interference antiresonances [90]. It is essential in this connec-
tion that one can attribute the de Broglie–type wavelength λR ,
which is determined by the position of the antiresonance fre-
quency ωR in the corresponding branch of phonon dispersion
in the matrix and which governs the interference effects in
phonon scattering by the defects, both to single defect atoms
and to defect-atom nanoparticles embedded in the matrix.

On the other hand, for higher filling fraction fd > 0.5,
the form of the transmission line changes and can not be
properly described with Eq. (37). In Fig. 5(c), we plot both
the transmission coefficient (line 1) and the phase of the trans-
mission amplitude (line 2) for the internal crystal plane in the
lattice of Si-like atoms, periodically filled with heavy-isotope
Ge-like atoms with fd = 0.75, which corresponds to three
Ge-like atoms per one Si-like atom in each square plaquette
with 2 × 2 atoms in the defect crystal plane. As one can see
in this figure, the transmission antiresonance is accompanied
by the sharp change by π of the phase of the transmission
amplitude, like in Fig. 5(a), while the transmission resonance
at ωT /ωmax ≈ 0.71 is accompanied by the 2π (equivalent to
zero) phase change, also like in Fig. 5(a), which is charac-
teristic for the constructive-interference resonance. With the
increase of fd beyond 0.5, the antiresonance frequency ωR

approaches the transmission-resonance frequency ωT . For the
crystal plane, almost fully filled with heavy-isotope defects,
with 1 − fd � 1, the transmission line contains very narrow
resonance peak of total transmission, at ωT /ωmax ≈ 1/

√
2 and

with spectral width 
ω/ωmax ∝ (1 − fd )2, on the background
of monotonously decaying transmission line. In Fig. 5(d),
we plot the transmission coefficients at the 2D defect planes
with fd = 0.99 of Ge-like atoms (line 1), which corresponds
to 99 defect atoms per one Si-like atom in the each square
plaquette with 10 × 10 atoms in the crystal plane, and with
fd = 1 (line 2), which corresponds to the crystal plane fully
filled with heavy-isotope atoms. In Fig. 5(e), we plot similar
spectra for the case of the model crystal plane, which is
partially, with fd = 0.99 (line 1), or fully, with fd = 1 (line
2), filled with heavy-isotope atoms with even larger mass ratio
m1 = m∗

1 = 10m.
Lines 1 in Figs. 5(d) and 5(e) demonstrate the constructive-

interference extraordinary phonon transmission produced by
resonance oscillations of rare host atoms, periodically dis-
tributed in the crystal plane almost fully filled with heavy-
isotope defects. This phenomenon is similar to the extraordi-
nary optical transmission through a metal film with periodic
array of subwavelength holes [91]. The extraordinary optical
transmission is related with the excitation of surface elec-
tromagnetic mode in the finite-thickness metal film [92]. In
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(a) (b)

FIG. 6. Spectra of energy transmission (solid lines) and reflection (dashed lines) coefficients versus reduced frequency in the CB model
with γ1 = γ ∗

1 = 0.2γ , m1 = 0.6m, m∗
1 = 0.9m, and γ3 = 0 (a) or γ3 = 4γ (b).

the case of phonons crossing crystal plane almost fully filled
with heavy-isotope atoms, the close sharp transmission and
reflection peaks are produced by the two-path constructive
and destructive interference of the lattice waves traversing
defect plane through the rare host atoms with local vibrational
resonance at ω ≈ ωmax/

√
2 and through the surrounding them

heavy isotopes.
Now, we analyze the case of relatively small splitting of the

frequencies of vibrational eigenmodes of defect atoms caused

by the difference in their masses and/or force constants (see
Fig. 1). First, we consider the case, when the frequencies ω1

and ω∗
1 in Eq. (36) for T are approximately equal to each other.

Let ω∗
1 = ω1 + 
ω, where 
ω � ω1. From Eq. (34) we get

an estimate for the antiresonance frequency

ωR ≈ ω1 + γ1F
(−)
k1k2
ω

γ1F
(−)
k1k2 + γ ∗

1 F
(+)
k1k2

. (38)
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FIG. 7. Energy transmission versus reduced frequency in the CB model with (a) γ1 = γ ∗
1 = γ , γ3 = 2γ , m1 = m∗

1 = 2.59m, (b) γ1 = γ ,
γ ∗

1 = 0.8γ , γ3 = 2γ , m1 = m∗
1 = 2.59m, (c) γ1 = γ ∗

1 = γ , γ3 = 2γ , m1 = 2.59m, m∗
1 = 0.8 ∗ 2.59m, and (d) γ1 = γ [1 − i0.05(ω/ωmax)],

γ ∗
1 = 0.8γ [1 − i0.05(ω/ωmax)], γ3 = 2γ [1 − i0.05(ω/ωmax)], m1 = m∗

1 = 2.59m. Spectra in panels (b)–(d) show the phonon-interference-
induced transparency, which survives even in the presence of dissipation.
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For F
(±)
k1k2 > 0, k1,2 fall into the gray region in Fig. 2. As a

result, we meet a situation where T is around unity at two close
frequencies and T = 0 in-between them. Figure 6(a) illustrates
the frequency dependence of such type.

But, if the non-nearest-neighbor coupling γ3 in the CB
model is introduced (see Fig. 1), the transmission and reflection
spectra change drastically: the additional phonon pass through
the non-nearest-neighbor bonds can invert the transmission and
reflection spectra in the vicinity of the resonance. In Fig. 6(b),
we show the spectra of the transmission and reflection in the CB
model in the supercoupling limit γ3 = 4γ , while other parame-
ters of the 2D defect are the same as in Fig. 6(a). In this case, the
transmission antiresonance, at the frequency ωR ≈ 0.365ωmax

given by Eq. (21), is replaced by the transmission resonance at
the frequency ωT 1 ≈ 0.372ωmax, in addition to the transmis-
sion resonance at the higher frequency ωT 2 ≈ 0.79ωmax, given
by Eqs. (14) and (16). This effect can be considered as the
phonon-interference-induced transparency of 2D defect layer.
The occurrence of the two antiresonances in Fig. 6(b) has the
same origin as that of the two antiresonances in Fig. 3, namely,
the splitting of the frequencies of two different vibrational
eigenmodes of the defect atoms and the existence of three dif-
ferent paths for phonons to cross the atomic-scale defect layer.

The phonon-induced transparency can be even more pro-
nounced and more similar to the electromagnetically induced
transparency in the 2D defect layer with close frequencies ω1

and ω∗
1. In Fig. 7, we show the transmission spectra through

2D defect layer with the non-nearest-neighbor supercoupling
γ3 = 2γ for, respectively, (a) homogeneous layer of heavy-
isotope defects with m1 = 2.59m, (b) inhomogeneous layer
with two different types of force constants (interatomic bonds)
between defect and host atoms, with γ1 = γ and γ ∗

1 = 0.8γ ,
(c) inhomogeneous layer with two types of heavy-isotope
defects, with m1 = 2.59m and m∗

1 = 0.8 ∗ 2.59m, and (d)
inhomogeneous layer with two different types of complex
force constants between defect and host atoms, with γ1 =
γ [1 − i0.05(ω/ωmax)], γ ∗

1 = 0.8γ [1 − i0.05(ω/ωmax)], and
γ3 = 2γ [1 − i0.05(ω/ωmax)]. The ratio between masses of
the defect atoms in 2D layer and host atoms is equal to
the mass ratio of Ge and Si atoms, in which case the force
constants between different combinations of these atoms are
almost identical. As one can see in Figs. 7(b) and 7(c), the
phonon-induced transparency occurs at the frequency, given by
Eqs. (14) and (16), ωT ≈ 0.41ωmax or ωT ≈ 0.47ωmax in 7(b)
and 7(c), respectively. It is caused by the existence of two
close defect eigenfrequencies in the 2D embedded layer that
make nonequivalent the two phonon paths through the nearest-
neighbor defect-host bonds γ1 and γ ∗

1 and masses m1 and m∗
1.

Comparison of Figs. 7(b) and 7(d) shows that the dissipation
smooths out resonance features of the phonon-interference-
induced transparency of the 2D defect, but does not suppress
them fully. The origin of the suppression of the phonon-
induced transparency is related with the incoherence of res-
onance oscillations at ω1 and ω∗

1, produced by dissipation,
and corresponding suppression of the constructive interference
in the two phonon paths with close resonance frequencies,
producing narrow transmission peak. This conclusion is con-
firmed by the observation that the dissipative contribution
to the nearest-neighbor defect-host bonds γ1 and γ ∗

1 , which

form two different phonon paths, is more essential in the
suppression of the phonon-induced transparency than the
dissipative contribution to the non-nearest-neighbor bond γ3,
which produces the “main” antiresonance transmission dip.
Indeed, the equal relatively small dissipative contributions to
the bondsγ1,γ ∗

1 , andγ3 substantially suppress the constructive-
interference-induced transmission peak but do not suppress
the main antiresonance transmission dip at the frequency
ωR2 ≈ 0.58ωmax, given by Eq. (21), which is produced by
the destructive phonon interference through the additional
phonon path provided by the strong bond γ3 [see Fig. 7(d)].
It is worth noting in this connection that in the case of very
close defect eigenfrequencies ω∗

1 ≈ ω1 ≡ ωD , the width of
transmission peak decreases monotonically with the decrease
of the difference between the eigenfrequencies ω1 and ω∗

1, and
the frequency of the narrow phonon-induced transparency peak
is determined by the defect eigenfrequency, ωT

∼= ωR1 ≈ ωD ,
and is in general different from but is close to the frequency ωR2

of the relatively broad main antiresonance in the case of strong
non-nearest-neighbor bondγ3, see Eq. (21) and Figs. 7(a)–7(d).

The CB model allows also one to compare the phonon
transmission across a monoatomic layer fully occupied by for-
eign atoms with the phonon transmission across a monoatomic
layer partially filled with foreign atoms. Let m∗

1 = m and
γ ∗

1 = γ , that is, we assume that half of the cites in the defect
plane p3 = 0 are occupied by the impurity atoms with mass
m1 and defect-host bond γ1. The other half of the cites are
occupied by the host atoms (we recall that the atoms with
m2 = m and γ2 = γ in the CB model are the host atoms; see
Fig. 1 and the beginning of this section). For the sake of
simplicity, we consider the normal incidence. In this instance,
like in the previous section, we use the reduced frequency
ω/ωmax → ω, which changes from 0 to 1. The symbol ωmax

denotes the maximum frequency of normally incident phonons
[see Eq. (17)], and in the following we use the notations

μ1,2 = m1,2

m
, γ̃1,2 = γ1,2

γ
, γ̃3 = γ3

4γ
.

The transmission and reflection coefficients simplify to

T = NCB
T

NCB
T + NCB

R

, (39)

R = NCB
R

NCB
T + NCB

R

, (40)

where

NCB
T = (1 − ω2)

(
μ1 + γ̃ 2

1

)2(
ω2 − ω2

R

)2
,

(41)
NCB

R = 16ω2μ2
1(γ̃1 − 1)2

(
ω2 − ω2

T 1

)2(
ω2 − ω2

T 2

)2
,

where the reduced antiresonance frequency ωR , normalized by
ωmax, is given by the expression

ωR =
√

γ̃1(1 + γ̃1)

2
(
μ1 + γ̃ 2

1

) , (42)

and ωT 1,T 2 are the roots of the equation

8μ1ω
4
T (γ̃1 − 1) − ω2

T

[
γ̃ 2

1 (2 + μ1) + 2γ̃1(3μ1 − 2) − 5μ1
]

+ γ̃1

2
[γ̃1(μ1 + 3) + μ1 − 5] = 0. (43)
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(a) (b)

FIG. 8. Energy transmission (solid lines) and reflection (dashed lines) coefficients versus reduced frequency in the CB model with m1 =
2.59m, m∗

1 = m and γ1 = 0.2γ, γ ∗
1 = γ . Impurity filling factor is 1 in (a) and 0.5 in (b).

The transmission coefficient is zero at ω = ωR under the
condition ωR < 1. The latter inequality restricts the values of
γ̃1 and μ1. Similarly, the reflection coefficient R vanishes at
the reduced frequencies ωT 1 and ωT 2 provided that they are
real and smaller than 1.

Figure 8(a) depicts the spectra of T and R in the case when
the plane p3 = 0 is fully filled by weakly bound and heavy
defect atoms. There are no transmission antiresonances, the
transmission falls almost to zero at ω > 0.3, and the transmis-
sion peak at the frequency ωT ≈ 0.18ωmax, given by Eq. (49)
below, is produced by the one-path constructive-interference
Fabry-Pérot–type total transmission through the monolayer of
the weakly bound impurity atoms (see also Refs. [58,61–66]).
If the same impurities occupy only a half of lattice sites in the
2D layer, the antiresonance, caused by the second phonon path,
occurs at the frequency ωR ≈ 0.21ωmax, given by Eq. (42), at
which T = 0 and R = 1 [see Fig. 8(b)]. This figure also shows
that the total transmission, with T = 1 and R = 0, is realized
at the frequencies ωT 1 ≈ 0.11ωmax and ωT 2 ≈ 0.79ωmax, given
by Eq. (43), due to the resonances with the impurity and host
atoms in the crystal plane partially filled with weakly bound
and heavy defect atoms. For the high filling fraction fd of the
weakly bound and heavy defect atoms, when 1 − fd � 1, the
relatively broad transmission peak at ωT 1 ≈ 0.18ωmax persists
together with the narrow extraordinary phonon transmission
peak at ωT 2 ≈ ωmax/

√
2 on the background of very low

transmission at close frequencies (not shown), similar to the
transmission peak shown in Fig. 5(e).

V. PHONON SCATTERING BY HOMOGENEOUS
EMBEDDED MONOLAYER

Now, we consider one more option of the general model
described in Sec. II (see Fig. 1). We assume that γ1 = γ ∗

1 ,
γ2 = γ , m1 = m∗

1, and m2 = m. This defect structure, which

we call the FF model, implies that the plane p3 = 0 is fully filled
with the impurities of one sort. All sites not belonging to the
p3 = 0 plane are occupied by host atoms. The next-to-nearest-
neighbor bond with the nonzero strength γ3 couples host atoms
in the plane p3 = −1 with host atoms in the plane p3 = 1.

Once γ1 = γ ∗
1 and m1 = m∗

1, the frequencies ω1 and ω∗
1 in

Eq. (20) are identical. In this instance, one solution of Eq. (18)
for antiresonance frequency exists:

ωR = ω1

√
1 + 2γ1 cos2 k1 cos2 k2

γ3
. (44)

In what follows, we confine ourselves to the scattering of
normally incident phonon. The reflection and transmission
coefficients read explicitly as

T = NFF
T

NFF
T + NFF

R

, (45)

R = NFF
R

NFF
T + NFF

R

, (46)

where, with the notations in Eq. (16), one has

NFF
T = γ̃ 2

3 (1 − ω2)
(
ω2 − ω2

R

)2
, (47)

NFF
R = (1 − γ̃1 − γ̃3)2ω2

(
ω2 − ω2

T

)2
. (48)

Here, the symbol ω stands for the reduced frequency ω/ωmax,

ωT =
√

γ̃1

4μ1

2 − (1 + μ1)(2γ̃3 + γ̃1)

1 − γ̃1 − γ̃3
, (49)
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(a) (b)

FIG. 9. Coefficients of phonon energy transmission (solid lines) and reflection (dashed lines) versus reduced frequency through the planar
defect in the FF model with m1 = 2.59m, γ1 = 0.1γ , and with γ3 = 0 in (a) and γ3 = 4γ in (b).

and ωR from Eq. (44) at k1,2 = 0, after division by ωmax,
reduces to

ωR =
√

γ̃1(γ̃1 + 2γ̃3)

4μ1γ̃3
. (50)

The value of ωR (50) should fulfill the inequality ωR < 1 for
the transmission coefficient to vanish. This inequality restricts
the minimum possible value of ˜γ3c, which is necessary for the
appearance of the antiresonance:

γ̃3c = γ̃ 2
1

2(2μ1 − γ̃1)
. (51)

With further increase of γ̃3, γ̃3 > γ̃3c, the reduced antireso-
nance frequency ωR decreases from 1 until ω1/ωmax. Thus,
when the defect monolayer is homogeneous, i.e., fully filled
with the impurity atoms of the same sort, the total reflection oc-
curs provided that the interactions responsible for the existence
of the second channel of phonon transmission, provided by the
bond γ3, are strong enough. In view of Eq. (44), this conclusion
also applies to the oblique phonon incidence. In contrast to
that, as it follows from Eq. (21) and as it was mentioned in
Sec. IV in connection with Fig. 7, no finite lower bound exists
for the (nonzero) difference between eigenfrequencies of the
impurities for the occurrence of the antiresonance in the defect
monolayer filled by different atoms, even in the absence of the
next-to-nearest-neighbor bond γ3, for γ3 = 0.

Figures 9(a) and 9(b) demonstrate how the transmission
and reflection can vary with the γ3 values in the case of crystal
plane fully filled with weakly bound, γ1 = 0.1γ , and heavy,
m1 = 2.59m, defect atoms, without and with the non-nearest-
neighbor bond γ3 across the defect plane. We see in Fig. 9(a)
that the transmission is high below and around the reduced
frequency ωT ≈ 0.13, given by Eq. (49), at which it reaches
unity, and quickly decreases to zero at higher frequencies in the

case of γ3 = 0. When γ̃3 is nonzero and becomes much larger
than the critical one γ̃3c (51), the spectra of the transmission
and reflection coefficients change drastically, see Fig. 9(b) and
compare it with the Fig. 7(a), which shows the case of strong
defect-host bonds, with γ1 = γ . For the weak defect-host
bonds, the transmission is close to unity for all frequencies
with the exception of relatively narrow range around the
antiresonance frequency ωR ≈ 0.14ωmax, given by Eq. (50),
which is very close to the frequency of the total transmission
in the case of γ3 = 0. In other words, there is an effective
“inversion” of the total transmission and total reflection in the
limits of γ̃3 � γ̃3c and γ̃3 > γ̃3c [cf. Figs. 9(a) and 9(b)]. This
observation clearly demonstrates that the additional phonon
path through the interatomic bond γ3 can drastically change
phonon transmittance of the system with almost no change in
the eigenfrequency (and polarization) of the local vibrational
mode resonating with the continuum of phonon eigenstates in
the system, in contrast to the concept of Fano resonance.

The phenomena of total transmission and total reflection of
long acoustic wave by a homogeneous ultrathin defect layer
or monolayer can also be observed in the domain of angles of
incidence, instead of previously considered frequency domain.
To describe quantitatively these phononic effects, we will use
dynamic boundary conditions for the local elastic stressesσ

(1,2)
ik

and displacements u
(1,2)
i in the vicinity of the embedded 2D

defect (see, e.g., [66,93]). For long waves and low frequencies,
with ω � ωR , the simplest translationally and rotationally in-
variant dynamic boundary conditions have the following form:

u
(1)
i = u

(2)
i ≡ us

i , (52)

σ
(1)
ni − σ

(2)
ni = gαβ∇α∇βus

i + δiβhαβγ δ∇αus
γ δ

−Ds�2
αus

i − ρs∂
2us

i /∂t2, (53)
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where σni = σiknk , nk is a unit vector of the normal to the
interface directed from the medium 1 into medium 2, gαβ is
a symmetric two-dimensional tensor of the residual surface
stresses (surface stress tensor), hαβγ δ is the tensor of the
lateral elastic moduli of the two-dimensional defect layer,
Ds is (isotropic) bending stiffness of the 2D defect layer,
us

αβ is a symmetric tensor of two-dimensional deformations,
ρs is an excess mass of the embedded layer per unit surface
(interface) area. Here, the Latin indices take the values
1,2,3 while the Greek indices take the values 1,2 and label the
coordinate axes in the (x,y) plane of the interface. In Ref. [66],
more complicated boundary conditions were proposed, which
take into account the displacement of the 2D defect layer as
an independent dynamical variable and can also be used for
the macroscopic description of 2D defects, but we will not
discuss them here.

The following five phononic effects can be observed with
the use of Eqs. (52) and (53).

(1) Change from the total transmission to total reflection
of grazing-incident long-wave acoustic waves, which is caused
by the change of the dynamic parameters of the 2D embedded
monolayer [61,62].

(2) Total transmission, T = 1, R = 0, of transverse acous-
tic waves at the “critical angle” of excitation of bulk longi-
tudinal wave �l = arcsin(vt/vl), where vt,l are velocities of
transverse and longitudinal acoustic waves [69].

(3) Total reflection, T = 0, R = 1, of transverse acoustic
waves for the incidence angle �R > �l , that corresponds to the
excitation of the pseudosurface quasilongitudinal wave, whose
velocity is smaller than the speed of bulk longitudinal wave in
the direction parallel to the defect plane [67–71].

(4) Anomalous surface absorption, As = 1 − T − R, of
the incident transverse acoustic wave by 2D defect monolayer
in the solid with low attenuation of sound waves, when one half
of the incident energy of the long acoustic wave is absorbed
by the monolayer, As = 0.5, T = R = 0.25 [69,70].

(5) Softening of the flexural surface acoustic wave, local-
ized at the defect plane, caused by negative (compressive)
surface stress gxx and finite bending stiffness Ds of the 2D
elastic layer. Softening of the flexural surface acoustic wave
results in periodic static bending deformation (modulation) of
the interface layer with the definite wave number kx0. The soft-
ening of the flexural surface acoustic wave in a sandwichlike
elastic structure presents a dynamical counterpart of purely
static phenomenon of the buckling of the plate sandwiched
in the compressively strained matrix (see, e.g., [94]). The
possibility of the softening of surface acoustic Rayleigh and
interface waves, triggered by negative surface stress, was noted
in [61,63,95].

The phenomenon of the total reflection of the grazing-
incident long acoustic waves by an embedded monolayer is
related with the impossibility of propagation of homogeneous
bulk wave along the embedded monolayer when the local
velocity of acoustic phonon with corresponding polarization in
the layer is different from the bulk velocity in the same direction
[61,63]. But, when the local velocity of acoustic phonon in
the embedded monolayer coincides with the bulk one in the
same direction, the grazing-incident phonons do not suffer
total reflection and experience total transmission. The total

reflection at the intermediate incidence angle π/2 > �R > �l

[67–70] we relate with the two-path interference transmission
antiresonance. Now, one phonon path is provided by the trans-
verse bulk wave traversing the 2D layer, the other phonon path
is provided by the pseudosurface (leaky) quasilongitudinal
wave supported by the layer, and the necessary π phase dif-
ference between the paths is provided by the incidence-angle
resonance at the excitation of the pseudosurface quasilongi-
tudinal wave. The anomalous surface absorption occurs at the
same incidence-angle resonance at the 2D defect layer in the
presence of definite bulk or interface dissipative parameters.
Possible softening of the surface acoustic wave at the 2D lattice
defect with negative surface stress was qualitatively described
in Refs. [61,63] for pure shear waves polarized in the defect
plane, and here we describe similar effect for the flexural waves
within the unified approach. Below, we analyze in details all
the above phononic effects.

First, we introduce the four length parameters a, b, c, and d,
which describe the following three surface parameters of the
defect: ρs = aρ, gxx = bμ, hxxxx = cμ, Ds = d3μ, where ρ

and μ are bulk density and shear elastic modulus of the solid,
which we will assume to be isotropic below in this section.
All the parameters a, b, c, and d have in general the order
of interatomic distance in the solid. Then, all the acoustic
parameters of the solid can be made dimensionless after
corresponding normalization, and the frequency of the incident
phonon can be measured in vt/a. In these dimensionless units,
the transmissivity and reflectivity of the 2D defect layer are the
functions of only the ratio of longitudinal and transverse bulk
acoustic velocities Vrel = vl/vt of the isotropic solid, angle
of incidence �, dimensionless frequency ωa/vt , and three
relative defect lengths b/a, c/a, and d/a. In Fig. 10, we plot
the energy transmission coefficient T of transverse phonons
through the 2D defect layer, described with the use of Eqs. (52)
and (53) in the case of vl/vt = 2, c = 0.1a, d = 0, and b =
0.9a in the upper panel, or b = a in the lower panel. According
to Eq. (53), velocity of the transverse wave with vertical
polarization in the 2D defect layer with Ds = 0, propagating
along the x direction, is given by

√
gxx/ρs = vt

√
b/a. It is

different from the bulk transverse velocity vt for b �= a and
coincides with it for b = a. In result, the transverse acoustic
waves, which are incident at the angles close to π/2, are totally
reflected from the 2D defect layer with b �= a (upper panel in
Fig. 10) and are totally transmitted through the defect layer with
b = a (lower panel in Fig. 10). Figure 10 also demonstrates
the total transmission at the “critical angle” of the excitation
of bulk longitudinal wave �l = arcsin(vt/vl) ≈ 0.52 in both
cases, and the total reflection at the incidence angle slightly
larger than �l = arcsin(vt/vl) ≈ 0.523. In Fig. 11, we show
the transmission through 2D defect layer versus incidence
angle for transverse phonon with ω = vt/a and b = a (red line
1) or b = 0.9a (blue line 2). As one can see in Figs. 10 and 11,
the small change of the parameters of the 2D monolayer, from
b = a to b = 0.9a, almost does not affect the transmissivity of
the 2D monolayer for nongrazing incidence but drastically sup-
press the transmissivity for the grazing-incident waves [61,63].

Dispersion equation for the pseudosurface wave with quasi-
longitudinal polarization, which is supported by the 2D defect
layer described by Eqs. (52) and (53), relates the real part of
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FIG. 10. Energy transmission of transverse acoustic phonons
through 2D defect layer as a function of frequency and incidence
angle for vl/vt = 2, c = 0.1a, d = 0 with b = 0.9a (upper panel) or
b = a (lower panel).

its frequency with the parallel to the defect-plane component
of the wave vector kx and can be written in the following form
(see Ref. [96]):

(q1 + q2)q1q2C11C66 = 1
2

[
ρsω

2 − (hxxxx + gxx)k2
x − Dsk

4
x

]
× (

C66k
2
x + C11q1q2 − ρω2

)
, (54)

where in the isotropic solid one has q1 =
√

k2
x − ω2/v2

l , q2 =√
k2
x − ω2/v2

t , vl = √
C11/ρ, vt = √

C66/ρ, C11 = λ + 2μ,
and C66 = μ are the elastic moduli, with λ and μ being the
Lamé coefficients.

In Fig. 12, we plot the transverse-phonon energy trans-
mission coefficient, the phase of the transmission amplitude,
and the frequency of pseudosurface quasilongitudinal wave
as functions of incidence angle of the transverse phonon
� = arcsin (kxvt/ω). Figure 12(a) shows that the excitation of
the pseudosurface quasilongitudinal wave with the dispersion
equation (54) is indeed related with the antiresonance, which
is accompanied by the sharp change, by π , of the phase
of the transmission amplitude. This sharp π change of the
transmission amplitude phase is responsible for the two-path
destructive-interference transmission antiresonance at this in-

FIG. 11. Transmission of transverse acoustic phonon through 2D
defect layer as a function of incidence angle for ω = vt/a, vl/vt = 2,
c = 1.1a, d = 0, and b = a (line 1) or b = 0.9a (line 2).

cidence angle. This plot also shows the zero, equivalent to 2π ,
phase change at the total-transmission incidence angle �l =
arcsin(vt/vl) = arcsin(1/2) ≈ 0.5236, which is characteristic
for the constructive-interference transmission resonance [see
also Figs. 5(a) and 5(c)].

In order to describe the anomalous surface absorption by
the 2D defect layer, we assume that the transverse acoustic
velocity in the solid vt and the incidence angle of the transverse
phonon �, as well as the length parameters a and b, are
real quantities, while the longitudinal acoustic velocity vl and
surface elastic modulus hxxxx can be the complex parameters,
vl = v

′
l − iv

′′
l and hxxxx = (c

′ − ic
′′
)μ, whose imaginary parts

take phenomenologically into account the wave attenuation
due to dissipation in the bulk of the solid and in the surface
of the 2D defect, respectively. Then, we write the ratios of
the bulk acoustic velocities and defect length parameters c/a

as Vrel = v
′
l/vt − iδB and c/a = c

′
/a − iδS , where δB > 0

and δS > 0 are the introduced dimensionless acoustic dissi-
pative parameters. For certain values of these parameters, the
anomalous surface absorption in the resonance of excitation
of the pseudosurface quasilongitudinal wave can be realized,
when surface absorption As = 1 − T − R reaches the maxi-
mal value of 0.5, with T = R = 0.25 [69,70]. The equation,
which determines the relation between the parameters δB and
δS in the resonance anomalous surface absorption, has the
following form (see Ref. [69]):

δB+δS

(ωa)2

4vlvt

[1 − sin2 �R(b+c
′
)/a] sin2 �R = 3F

8

(
ωa

vt

)3

× [1 − sin2 �R(b + c
′
)/a]3 tan �R sin2 �R, (55)

where �R is incidence angle of transverse phonon at the
resonance with pseudosurface quasilongitudinal wave, factor
F has the order of unity.

In Figs. 13 and 14 we show the incidence-angle dependen-
cies of anomalous surface absorption, frequency of pseudo-
surface quasilongitudinal wave with dispersion equation (54),
and energy transmission and reflection coefficients at the 2D
defect layer in a solid with losses of bulk longitudinal acoustic
wave, with δB > 0 and δS = 0 in Fig. 13, and in a lossless solid
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v t

(a) (b)

FIG. 12. (a) Transverse phonon energy transmission (line 1) and phase of transmission amplitude (line 2), (b) transmission (line 1) and
frequency of pseudosurface quasilongitudinal wave (line 2), with dashed line indicating ωa/vt = 0.1, as functions of incidence angle at the 2D
defect layer in the lossless solid for ωa/vt = 0.1, vl/vt = 2, b = c = d = 0.

with dissipative 2D defect, with δB = 0 and δS > 0 in Fig. 14.
These figures show that the anomalous surface absorption can
be realized both due to only bulk acoustic losses, when δS = 0,
and due to only surface losses in the 2D defect later, when
δB = 0.

Figures 12–14 clearly show that the transmission antires-
onance [67] and anomalous surface absorption [69,70] occur
at the same incidence angle, which corresponds to the exci-

tation of the pseudosurface quasilongitudinal wave with the
dispersion equation given by Eq. (54).

The value of the dimensionless bulk dissipative parameter
δB , which realizes the maximal surface absorption for δS = 0,
scales with frequency and the length parameter a as δB ∝
(ωa/vt )3 [see Eq. (55)]. This means that the anomalous surface
absorption can be observed in the crystal with very low bulk
acoustic losses (like, e.g., quartz crystal) with the embedded

(a) (b)

FIG. 13. (a) Anomalous surface absorption (line 1) and frequency of pseudosurface quasilongitudinal wave (line 2), with dashed line
indicating ωa/vt = 0.1, (b) transverse phonon energy transmission (line 1) and reflection (line 2), with dashed line indicating the value of 0.25,
as functions of incidence angle at the 2D defect layer in dissipative solid for ωa/vt = 0.1, v

′
l /vt = 2 − i0.000055, b = c = d = 0.
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(a) (b)

FIG. 14. (a) Anomalous surface absorption (line 1) and frequency of pseudosurface quasilongitudinal wave (line 2), with dashed line
indicating ωa/vt = 0.1, (b) transverse phonon energy transmission (line 1) and reflection (line 2), with dashed line indicating the value
of 0.25, as functions of incidence angle at the 2D absorbing defect layer in lossless in bulk solid for ωa/vt = 0.1, vl/vt = 2, b = 0.9a,
c/a = 0.1 − i0.097, d = 0.

monolayer of heavy impurities, which can realize high value
of the defect length parameter a. On the other hand, the
phenomena of almost total resonance reflection and anomalous
surface absorption in a 2D defect layer are absent in solids
with the bulk losses, which greatly exceed the values given
by Eq. (55) but still remain relatively weak, when 1 � δB �
(ωa/vt )3. In such solids, both the reflectivity R and surface
absorption As = 1 − T − R in the 2D defect layer are small
while the transmissivity is high, T ≈ 1.

To describe the softening of the flexural surface acoustic
wave at the defect plane, triggered by negative (compressive)
surface stress, we start with the dispersion equation for the
surface wave with the quasitransverse polarization, normal to
the defect plane, which is similar to the dispersion equation for
the pseudosurface wave with quasilongitudinal polarization,
given by Eqs. (54) with the same notations (see Ref. [96]):

(q1 + q2)q2C11C66 = 1
2

(
ρsω

2 − gxxk
2
x − Dsk

4
x

)
× (C66q2 + C11q1). (56)

The value of the negative surface stress gxx = − | gxx | and
the wave number kx0 at which the softening occurs can be found
from the following two conditions (cf. Refs. [61,63,95]):

ω(kx0) = 0,
∂ω(kx0)

∂kx

= 0. (57)

In the assumption of isotropy of the elastic matrix, the required
parameters are determined from Eqs. (56) and (57) and are
given by the bulk modulus μ, bending stiffness Ds of the
2D elastic interface layer, and the ratio of longitudinal and

transverse elastic waves in the matrix Vrel = vl/vt :

λ0 = 2π

kx0
= 2π

(
Ds

μ

)1/3(
V 2

rel + 1

2V 2
rel

)1/3

, (58)

|gxx | = 3

(
2V 2

rel

V 2
rel + 1

)2/3

D1/3
s μ2/3. (59)

Since |gxx | = Es |εxx |, where Es = hxxxx is Young modulus of
the 2D elastic layer and εxx is the in-plane strain of the matrix,
from Eq. (59) we get

|εxx | = 3

(
2V 2

rel

V 2
rel + 1

)2/3
D

1/3
s

Es

μ2/3. (60)

Using Eqs. (58) and (60), we can estimate the wavelength
of periodic bending λ0 and the in-plane contraction strain in
the matrix εxx = −|εxx | for the graphene monolayer embed-
ded in three-dimensional strained soft matrix of low-density
polyethylene. For the low-density polyethylene, we take μ =
0.2 GPa, vt = √

μ/ρ = 0.466 km/s, vl = 2.400 km/s, and
Vrel = 2400/466 = 5.15 [97], which is consistent with the
molecular dynamics simulations within the coarse-grained
model of amorphous polyethylene [98]. For the monolayer
graphene, we take bending stiffness Ds = 1.1 eV and Young

modulus Es = ρsv
2
l ≈ 22 eV/Å

2
, where vl = 21.6 km/s is

longitudinal sound velocity and ρs = 7.6 × 10−7 kg/m2 is
mass density per unit surface area [99]. Then, we find from
Eqs. (58) and (60) that the monolayer of graphene embedded
in the matrix of low-density polyethylene undergoes periodic
static bending deformation (modulation) with the wavelength
λ0 ≈ 48.4 Å, triggered by the compressive strain in the matrix
as small as εxx = −2.5 × 10−3. The bending modulation
wavelength λ0 is about 34 times larger than the carbon-carbon
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FIG. 15. Dispersion of flexural surface acoustic wave, propagat-
ing along the x axis in the graphene monolayer embedded in a matrix
of low-density polyethylene, triggered by the compressive strain in
the polyethylene along the x axis. Frequency is measured in units of
vt/a, wave vector kx is measured in units of 1/a, where vt = 0.466
km/s, a = ρs/ρ = 8.26 Å for the polyethylene with density ρ = 920
kg/m3. Lines 1, 2 and 3 correspond, respectively, to the strain
0.99ε(cr)

xx , 0.997ε(cr)
xx and 1.0ε(cr)

xx , where ε(cr)
xx = −2.5 × 10−3 is given

by Eq. (60).

bond length a∗ = 1.42 Å, that justifies the above description in
the long-wavelength approximation. The bending modulation
wavelength λ0 is even larger in comparison with the effective
mechanical thickness of graphene monolayer d∗ ≈ 0.77 Å,
which can be found from the relation between bending stiffness
Ds and Young modulus Es of 2D elastic layer given by the
theory of elasticity: Ds = Esd

∗2/12.
In Fig. 15 we present the change of the dispersion of surface

acoustic waves, propagating along the x axis in the graphene
monolayer embedded in soft matrix of low-density polyethy-
lene, triggered by the compressive strain in the matrix along
the x axis. Frequency is measured in units of vt/a, the wave
vector kx is measured in units of 1/a, where vt = 0.466 km/s,
a = ρs/ρ = 8.26 Å for the polyethylene with density ρ =
920 kg/m3 [97]. Both the wave number of periodic bending
deformation kx0 = 1.07/a and the value of the negative surface
stress gxx , given by Eqs. (58) and (59), are very well confirmed
by the numerical simulations. Close to the critical strain in the
matrix ε(cr)

xx = −2.5 × 10−3, given by Eq. (60), the change of
the dispersion around the wave number kx0 is very sharp: the
lines 1, 2 and 3 correspond to the strain 0.99ε(cr)

xx , 0.997ε(cr)
xx

and 1.0ε(cr)
xx , respectively. For |εxx | > |ε(cr)

xx |, periodic static
bending displacement of the graphene monolayer occurs, when
us

z = A cos(kx0x), with the amplitude A = 2
√
|εxx | − |ε(cr)

xx |/kx0

which can be found from the extremum of the functional,
determined by the sum of the bending, in-plane membrane
and surrounding matrix elastic energies of the monolayer
embedded in the compliant matrix, for the given wave number
kx0 and uniform surface stress gxx = g(cr)

xx = Esε
(cr)
xx . The sharp

cusp with ω = 0, similar to the cusp shown by line 3 in Fig. 15,
is present at the wave number kx = kx0 of the “condensation”
of the flexural surface acoustic wave occurring in the embedded
monolayer for |εxx | � |ε(cr)

xx |. Similar sharp cusp with ω = 0
is present at the corresponding wave number kx = kx0 of the
“condensation” of the Rayleigh surface acoustic wave, which

is produced by the statically modulated (periodically wrinkled)
graphene monolayer bonded to the compressively strained
compliant substrate and which occurs for |εxx | � |ε(cr)

xx |. It is
worth noting that such small value of the compressive strain
ε(cr)
xx , critical for the occurrence of periodic static bending de-

formation, shows that even small local strains in the matrix (or
in the substrate) can produce ripples in the supported graphene,
similar to the ripples in suspended graphene [100,101].

VI. EFFECT OF NONLINEARITY ON TWO-PATH
PHONON INTERFERENCE

It could be anticipated that nonlinear interactions between
impurities results in higher harmonics which weaken the
two-path interference and prevent the transmission coefficient
from vanishing at the antiresonance. In this section, we study
the effect of nonlinearity on the transmission interference
antiresonance by analyzing the inelastic scattering of phonon
wave packet in time domain. To this end, the generalized
discrete nonlinear model is used which accounts for the local
nonlinear interactions between impurities via an additional
term Uah in the lattice Hamiltonian, given by Eqs. (1)–(4):

Uah =
4∑

m=1

∑
n1,n2

Uah(m)
n1n2

, (61)

where

Uah(1)
n1n2

= ζ1

3

∑
δi

(
u

2n2,0
2n1

− u
2n2+δ2,δ3
2n1+δ1

)3
,

Uah(2)
n1n2

= ν1

4

∑
δi

(
u

2n2,0
2n1

− u
2n2+δ2,δ3
2n1+δ1

)4
,

(62)
Uah(3)

n1n2
= ζ2

3

(
u

2n2+1,1
2n1+1 − u

2n2+1,−1
2n1+1

)3
,

Uah(4)
n1n2

= ν2

4

(
u

2n2+1,1
2n1+1 − u

2n2+1,−1
2n1+1

)4
.

The index δi here implies the summation over eight possible
combinations of δ1,δ2,δ3 = ±1. The terms Uah(1)

n1n2
and Uah(2)

n1n2

characterize the cubic and quartic interaction between the
impurities m1, m∗

1, and m2, respectively (see Fig. 1). The force
constants ζ1 and ν1 are put alike for the impurities m1 and m∗

1.
The potential energies Uah(3)

n1n2
and Uah(4)

n1n2
with force constants

ζ2 and ν2 describe the nonlinear interaction of the defect atoms
with mass m2 filling the plane p3 = −1 with the defect atoms
with mass m2 filling the plane p3 = 1.

We consider the propagation of the Gaussian phonon wave
packet having the initial form

un = Ae−(n−p0)2/σ 2
sin(kin),

u̇n = Ae−(n−p0)2/σ 2

[
2vg

σ 2
(n − p0) sin(kin)

−ωi cos(kin)

]
, n = n3 = 1 . . . N (63)

where the wave number ki corresponds to the wave-
packet central frequency ωi = ωmax sin(ki/2) ≈ ωR , vg =
ωmax cos(ki/2)/2 is the group velocity of phonons with fre-
quency ωi, σ is the wave packet spatial width (coherence
length) in units of lattice period, p0 is a number of the plane
where the displacement reaches maximum, the amplitude A
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(a) (b)

(c) (d)

FIG. 16. Transmission coefficient of phonon wave packet with spatial width σ = 120 lattice periods versus reduced frequency in the
nonlinear regime for the model, shown in Fig. 1, with m2 = m, γ2 = γ, γ3 = 0, and with m1 = m∗

1 = 2m, γ1 = 0.14γ , γ ∗
1 = 0.6γ in (a), or

with m1 = m∗
1 = 2m, γ1 = 0.14γ , γ ∗

1 = 1.8γ in (b) and (c), or with m1 = m∗
1 = m, γ1 = γ ∗

1 = 0.07γ in (d), for different values of cubic ζ1

and quartic ν1 anharmonic force constants.

is chosen such that in the input wave packet the maximum
displacement is equal to 0.1. Thus, it is assumed that the
Gaussian wave packet

un(t) = Ae−(n−p0−vgt)2/σ 2
sin(kin − ωit) (64)

moves upwards normally to the defect planes (see Fig. 1).
We assume that our crystal is divided into identical layers

composed of N = 212 = 4096 parallel planes with the defect
plane having the number n = M + 2 = N/2 + 2 (between
the planes n = M + 1 = N/2 + 1 and n = M + 3). The
nonlinear equations of motion are solved numerically with
initial conditions (63) and periodic boundary conditions in
vertical direction. We take σ = 120 and p0 = 1748. The time
interval of the wave-packet motion is tf = 900. At the final
time point tf , the transmitted phonon energy is measured
above the defect layer, at n > M + 3, and the reflected signal
is measured below the layer, at n < M + 1.

Energy transmission and reflection coefficients at the wave-
packet central frequency ωi (or wave number ki) are defined as

T = Etr

Einc
, R = Er

Einc
, (65)

where Einc is the total potential energy of the input pulse [see
Eqs. (3), (4), (63), and (64)], Etr and Er are the total potential
energies of the transmitted and reflected pulses, respectively,
at t = tf . Note that the energy conservation law holds fairly
precisely in our simulations: the ratio (Etr + Er )/Einc differs
from 1 in the fourth digit only.

To study the effect of nonlinearity on the phonon-
interference transmission antiresonaces, we fix the harmonic
force constants and the amplitude A in the incident wave
packet (such that in the input wave packet the maximum
displacement is equal to 0.1) and compute the frequency
dependencies of the transformation coefficients for different
values of the local cubic and quartic anharmonic force con-
stants. We found that the considered nonlinearities do not
not remove the transmission minimum at the antiresonance
(see also Refs. [74,75]). The transmission minimum can be
slightly shifted around its value ωR in the harmonic lattice,
but its depth and spectral width remains practically the same,
although the considered nonlinearities are fairly strong. The
examples depicted in Fig. 16 illustrate this effect. (The symbol
ω stands for the reduced frequency ω/ωmax in all the panels
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(b)(a)

(c)

FIG. 17. Ratio of thermal conductances versus temperature, normalized by the effective Debye temperature, of 3D lattice of Si-like atoms
with and without a defect plane half-filled in the chessboard order (lines 1) and fully filled (lines 2) with Ge-like atoms: (a) without (γ3 = 0) and
(b) with γ3 = 0.88γ non-nearest-neighbor coupling through the defect crystal plane (see Fig. 1). (c) Shows energy transmission coefficients
versus reduced frequency through the defect plane in the lattice of Si-like atoms half-filled in the chessboard order (lines 1 and 2) or fully
filled (lines 3 and 4) with Ge-like atoms, respectively, without, solid lines 1 and 3, and with, dashed lines 2 and 4, the next-to-nearest-neighbor
coupling through the defect crystal plane γ3 = 0.88γ .

in Fig. 16.) Figure 16(a) shows the observable shift of the
antiresonance towards lower frequency governed by the local
cubic anharmonic force constant, which in general decreases
the eigenfrequency of anharmonic oscillator (the red shift)
[102]. Figure 16(b) shows that the red shift of the antiresonace
is reduced by the relative increase of the harmonic with
respect to anharmonic defect-host force constants [cf. with
Fig. 16(a)]. Figure 16(c) shows that the local positive quartic
anharmonic force constant, which in general increases the
eigenfrequency of anharmonic oscillator (the blue shift) [102],
can counterbalance the red shift produced by the local cubic
anharmonicity.

One more example illustrates the effect of nonlinearity
on resonance transmission. We consider a crystal with the
weakly bound planar defect in the FF model with m1 = m∗

1 =
m2 = m, γ1 = γ ∗

1 = 0.07γ, γ2 = γ, γ3 = 0, in which there is
a resonance of total transmission for the phonon plane wave
with the frequency ωT ≈ 0.19ωmax, given by Eq. (49), but
there is no transmission antiresonance. Taking into account
the local cubic anharmonicity in the system and launching the
phonon wave packet with spatial width σ = 120 lattice periods
and central frequency close to ωT , we find the transmission
spectrum presented in Fig. 16(d). As one can see in Fig. 16(d),

the local cubic anharmonicity results in a decrease of the
frequency of the constructive-interference Fabry-Pérot–type
transmission resonance but does not fully suppress it, as in the
case of the destructive-interference antiresonances shown in
Figs. 16(a) and 16(b).

VII. EFFECT OF TWO-PATH PHONON INTERFERENCE
ON THERMAL INTERFACE CONDUCTANCE

With the use of the analytical model, we also compute the
thermal conductance of the cubic lattice of Si-like atoms with
the two-dimensional defect, which is fully filled or half-filled
with Ge-like atoms. The Ge-like atoms are considered as
heavy-isotope defects in the lattice of Si-like atoms, with mass
ratio 2.59. We calculate the interface thermal conductance G

by following the Landauer-type formalism (see, e.g., Ref. [34])

G =
∑

ν

∫
h̄ωνvgν,zα

(
ων,

k‖
ων

)
∂

∂T
nBE(ων,T )

dkzd
2k‖

(2π )3

=
∑

ν

∫
h̄ω3

να

(
ων,

k‖
ων

)
∂

∂T
nBE(ων,T )

dων

(2π )3
d2

(
k‖
ων

)
,

(66)
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where α(ων,k‖/ων) is energy transmission coefficient through
the defect crystal plane of the phonon plane wave with
frequency ων and parallel to the interface wave vector k‖,
where k‖/ων is determined by the incidence angle, vgν,z =
∂ων/∂kz is the phonon group velocity in the normal to the
interface direction, and nBE(ω,T ) = [exp(h̄ω/kBT ) − 1]−1 is
the Bose-Einstein distribution of phonons at temperature T .
(In this section, we use the notation α for the transmission
coefficient, instead of notation T in previous sections, not to
confuse it with the notation for temperature T .) The integration
is carried out over the whole Brillouin zone of the lattice and the
sum is taken over all the acoustic phonon branches ν = 1,2,3.
In Figs. 17(a) and 17(b), we plot the ratios between the thermal
conductances of the lattice with the defect and of the pristine
lattice, for the planar defects fully filled or half-filled, in the
chessboard order, with heavy-isotope defect atoms, with mass
ratio 2.59. Being mainly interested in the phonon interference
effects, in the computed thermal conductance ratios we used the
same form of the transmission spectra [see Fig. 17(c)] for the
longitudinal and (two) transverse waves with the scaling factor
2 in frequency axis and neglected the incidence-angle depen-
dencies of the transmission coefficients but took into account
the three dimensionality of the system, which is preserved by
the ω3

ν term in the integrand in Eq. (66). Temperature of the
lattice is normalized by the effective Debye temperature: TD =
h̄ωmax/kB , where ωmax is maximal frequency of longitudinal
acoustic phonons in the lattice. As one can see in Fig. 17(b), a
single planar defect of atomic-scale thickness in the lattice of
Si-like atoms can reduce the thermal interface conductance by
50% in the case of half-filling and by 90% in the case of com-
plete filling with Ge-like (heavy-isotope-defect) atoms with
relatively weak non-nearest-neighbor coupling, γ3 = 0.88γ ,
through the defect crystal plane (see Fig. 1). The comparison
of Figs. 17(a) and 17(b) also shows that, counterintuitively,
the additional next-to-nearest-neighbor coupling through the
defect crystal plane with heavy-isotope defect atoms sub-
stantially decreases the interface thermal conductance (see
also Refs. [66,72,74,75,77]). This effect demonstrates another
possibility for the control of the lattice-wave heat transport by
the two-path destructive phonon interference: more heat flux is
impeded despite the opening of additional phonon paths. It is
also important to emphasize that the reduction of the thermal
interface conductance is larger in the three-dimensional lattice
than in the quasi-1D chain, studied previously in Ref. [77],
because of higher density of phonon states in the high-
frequency domain in the 3D system, in which the transmission
is most strongly suppressed by the additional phonon paths.
Figure 17(c) shows the change of the transmission coefficients
through the defect plane in the lattice of Si-like atoms half-
filled in the chessboard order or fully filled with Ge-like atoms,
induced by relatively weak non-nearest-neighbor coupling,
γ3 = 0.88γ , through the defect crystal plane. As one can
see in Fig. 17(c), the non-nearest-neighbor coupling through
the defect crystal plane indeed suppresses most strongly the
transmission in the high-frequency domain. The ratio of the
next-to-nearest- and nearest-neighbor force constants under the
discussion, γ3/γ = 0.88, we can compare with corresponding
force constants ratio for Si crystal that can be found from

the Tersoff potential [103], which is more than unit and is
higher than that used in the plots in Figs. 17(b) and 17(c). In
connection with the discussion of the next-to-nearest-neighbor
force constants across the defect plane, we note that the
introduction of the three-body Keating-type potentials between
the atoms with mass m2 through the atom with mass m1 or
through the atom with mass m∗

1 shown in Fig. 1, which depend
on the angles between interatomic bonds [104,105], results in
the appearance of the effective next-to-nearest-neighbor pair
potential between the atoms with mass m2 across the defect
plane. Such three-body interatomic potentials also produce
interference transmission antiresonances at the defect crystal
plane, which will be described elsewhere.

VIII. CONCLUSIONS

We have developed an analytical theory of the effects
of interference in the two and more phonon paths on the
transmission through and anomalous absorption in the impurity
layers of atomic-scale thicknesses (2D defects), embedded
in 3D crystal. The case of the 2D defects, fully or partially
filled with weakly bound or heavy-isotope defect atoms, is
considered taking also into account the long-range interatomic
bonds. Our analysis covers different systems exhibiting the
anomalous phonon transmission, reflection, and absorption
features not present in the systems with only one-path phonon
propagation. It is shown that a crystal plane, fully or partially
filled with the impurity atoms, can become the strong obstacle
for bulk phonons, which possesses one or several, depending
on the number of different phonon paths, transmission dips
(transmission antiresonances). The latter means that defect
layers of atomic-scale thicknesses within certain frequency
ranges are able to operate as perfect phonon metamirrors
or meta-absorbers in realistic 3D crystal structures. Due to
the cooperative superradiant effect, the spectral widths of the
two-path interference antiresonances for the plane waves are
determined by the square of the impurity surface density or
partial filling fraction in the defect crystal plane.

We have considered the anomalous interface absorption
with the total nontransmission and nonreflection of the incident
phonon at the double-resonant defect monolayer with two
equal frequencies of the local eigenmodes and two phonon
paths through the defect plane. One of the results is the
prediction of the extraordinary phonon transmission induced
by the two-path constructive interference of lattice waves
interacting with resonance oscillations of rare host atoms,
periodically distributed in the crystal plane almost fully filled
with heavy isotopes.

It is shown that the phonon-interference-induced trans-
parency can be produced by the defect monolayer with the
non-nearest-neighbor interactions, filled with two types of
isotopes with relatively small difference in masses or binding
force constants. In this case, a narrow transmission peak close
to the antiresonance frequency accompanies a relatively broad
transmission antiresonance.

We have analytically investigated the change from the
total transmission to total reflection of the grazing-incident
waves at the embedded monolayer defect as well as the
anomalous resonance surface absorption. In the latter case,
50% of the energy of the oblique-incident long acoustic wave
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is absorbed at the monolayer defect. In addition, it has been
found that the softening of the flexural surface acoustic wave
localized at the monolayer defect plane can occur due to
negative (compressive) surface stress gxx and finite bending
stiffness of the embedded elastic nanolayer. Softening of the
flexural surface acoustic wave results in spatially periodic static
bending deformation (modulation) of the embedded nanolayer
with the definite wave number kx0. This effect can be induced
by the compression of the matrix along the x axis, which
results in the negative surface stress gxx in the embedded 2D
elastic layer. We estimate the necessary compressive strain εxx

of the matrix and the resulting modulation wavelength λ0 =
2π/kx0 for the graphene monolayer, embedded in a strained
matrix of low-density polyethylene: εxx = −2.5 × 10−3,
λ0 = 48 Å.

We have analyzed the effect of nonlinearity on the one- and
two-path phonon interference and show that the interference
transmission antiresonances and resonances are shifted in
frequencies but are not fully suppressed by rather strong
anharmonicity of interatomic bonds. Destructive phonon in-
terference in a defect monolayer reduces the Kapitza thermal
interface conductance. Counterintuitively, an additional rela-
tively weak non-nearest-neighbor coupling through the crystal
plane filled with heavy-isotope defect atoms substantially
reduces the thermal interface conductance and this effect is
more pronounced in 3D system than in the quasi-1D systems,
studied previously. The effect gain is a result of higher density

of phonon states in the high-frequency domain in the 3D
system, in which the transmission is most strongly suppressed
by the additional phonon paths.
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