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We study finite-temperature dynamical quantum phase transitions (DQPTs) by means of the fidelity and the
interferometric Loschmidt echo (LE) induced metrics. We analyze the associated dynamical susceptibilities
(Riemannian metrics), and derive analytic expressions for the case of two-band Hamiltonians. At zero temperature,
the two quantities are identical, nevertheless, at finite temperatures they behave very differently. Using the
fidelity LE, the zero-temperature DQPTs are gradually washed away with temperature, while the interferometric
counterpart exhibits finite-temperature phase transitions. We analyze the physical differences between the two
finite-temperature LE generalizations, and argue that, while the interferometric one is more sensitive and can
therefore provide more information when applied to genuine quantum (microscopic) systems, when analyzing
many-body macroscopic systems, the fidelity-based counterpart is a more suitable quantity to study. Finally, we
apply the previous results to two representative models of topological insulators in one and two dimensions.
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I. INTRODUCTION

Equilibrium phase transitions (PTs) are characterized by a
nonanalytic behavior of relevant thermodynamic observables
with respect to the change of temperature. Quantum phase
transitions (QPTs) [1], traditionally described by Landau
theory [2], occur when we adiabatically change a physical
parameter of the system at zero temperature, i.e., the transi-
tion is driven by purely quantum fluctuations. A particularly
interesting case arises when one studies QPTs in the context
of topological phases of matter [3–7]. They are quite different
from the standard QPTs since they do not involve symmetry
breaking and are characterized by global order parameters
[8]. These novel phases of matter, which include topological
insulators and superconductors [9–11], have potentially many
applications in emerging fields such as spintronics, photonics,
or quantum computing. Although many of their remarkable
properties have traditionally been studied at zero temperature,
there has been a great effort to generalize these phases from
pure to mixed states, and finite temperatures [12–24].

The real time evolution of closed quantum systems out
of equilibrium has some surprising similarities with ther-
mal phase transitions, as noticed by Heyl, Polkovnikov, and
Kehrein [25]. They coined the term dynamical quantum phase
transitions (DQPTs) to describe the nonanalytic behavior of
certain dynamical observables after a sudden quench in one
of the parameters of the Hamiltonian. Since then, the study of
DQPTs became an active field of research, and a lot of progress
has been achieved in comparing and connecting them to the
equilibrium PTs [26–33]. Along those lines, there exist several

studies of DQPTs for systems featuring nontrivial topological
properties [34–39]. DQPTs have been experimentally observed
in systems of trapped ions [40] and cold atoms in optical
lattices [41]. The figure of merit in the study of DQPTs
is the Loschmidt echo (LE) and its derivatives, which have
been extensively used in the analysis of quantum criticality
[42–46] and quantum quenches [47]. At finite temperature,
generalizations of the zero-temperature LE were proposed,
based on the mixed-state Uhlmann fidelity [46,48], and the
interferometric mixed-state geometric phase [49,50]. For an
alternative approach to finite-temperature DPTs, see [51,52].
Fidelity is a measure of state distinguishability, which has been
employed numerous times in the study of PTs [43,53–56],
while the interferometric mixed-state geometric phase was
introduced in [57]. The two quantities are in general different
and it comes as no surprise that they give different predictions
for the finite-temperature behavior [50]: the fidelity LE does
not show DPTs at finite temperatures, while the interferometric
LE indicates their persistence at finite temperature. Thus, it
remains unclear what the fate of DQPT at finite temperature
truly is, and which of the two opposite predictions better
captures the many-body nature of these PTs.

In this paper, we discuss the existence of finite-temperature
dynamical phase transitions (DPTs) for the broad class of
two-band Hamiltonians in terms of both the fidelity and
the interferometric LEs. We derive analytic expressions for
the metrics (susceptibilities) induced by the fidelity and the
interferometric LEs, respectively, showing explicitly that the
two approaches give different behaviors: the fidelity sus-
ceptibility shows a gradual disappearance of DPTs as the
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temperature increases, while the interferometric susceptibility
indicates their persistence at finite temperature (consistent with
recent studies on interferometric LE [49,50]). We analyze
the reasons for such different behaviors. The fidelity LE
quantifies state distinguishability in terms of measurements
of physical properties, inducing a metric over the space of
quantum states, while the interferometric LE quantifies the
effects of quantum channels acting upon a state, inducing a
pullback metric over the space of unitaries. Thus, we argue
that the fidelity LE and its associated dynamical susceptibility
are more suitable for the study of many-body systems, while
the more sensitive interferometric counterparts are optimal
when considering genuine microscopic quantum systems. In
addition, interferometric experiments that are suitable for
genuine (microscopic) quantum systems involve coherent
superpositions of two states, which could be, in the case of
many-body macroscopic systems, experimentally infeasible
with current technology. To confirm our analysis for the fidelity
LE, in the Appendix, we present quantitative results for the
fidelity-induced first time derivative of the rate function in the
case of the one-dimensional (1D) Su-Schrieffer-Heeger (SSH)
topological insulator and the two-dimensional (2D) massive
Dirac (MD) model of a Chern insulator [58].

II. DYNAMICAL (QUANTUM) PHASE TRANSITIONS
AND ASSOCIATED SUSCEPTIBILITIES

The authors in [25] introduce the concept of DQPTs and illus-
trate their properties on the case of the transverse-field Ising
model. They observe a similarity between the partition function
of a quantum system in equilibrium, Z(β) = Tr(e−βH ), and the
overlap amplitude of some time-evolved initial quantum state
|ψi〉 with itself, G(t) = 〈ψi |e−iH t |ψi〉. During a temperature-
driven PT, the abrupt change of the properties of the system
is indicated by the nonanalyticity of the free energy density
f (β) = − limN→∞ 1

N
ln Z(β) at the critical temperature (N

being the number of degrees of freedom). It is then possible to
establish an analogy with the case of the real-time evolution of
a quantum system out of equilibrium, by considering the rate
function

g(t) = − 1

N
log |G(t)|2, (1)

where |G(t)|2 is a mixed-state LE, as we detail below. The
rate function g(t) may exhibit nonanalyticities at some critical
times tc, after a quantum quench. This phenomenon is termed
DPT.

We study DPTs for mixed states using the fidelity and the
interferometric LEs. We first investigate the relation between
the two approaches for DQPTs at zero temperature. More
concretely, we perform analytical derivations of the corre-
sponding susceptibilities in the general case of a family of
static Hamiltonians, parametrized by some smooth manifold
M, {H (λ) : λ ∈ M}.

A. DQPTs for pure states

At zero temperature, the LE G(t) from (1) between the ground
state for λ = λi ∈ M and the evolved state with respect to the
Hamiltonian for λ = λf ∈ M is given by the fidelity between
the two states

F(t ; λf ,λi) ≡ |〈ψ(λi)|e−itH (λf )|ψ(λi)〉|. (2)

For λi = λf , the fidelity is trivial since the system remains in
the same state. Fixing λi ≡ λ and λf = λ + δλ, with δλ � 1,
in the t → ∞ limit Eq. (2) is nothing but the familiar S matrix
with an unperturbed Hamiltonian H (λ) and an interaction
Hamiltonian V (λ), which is approximated by

V (λ) ≡ H (λf ) − H (λ) ≈ ∂H

∂λa
(λ)δλa. (3)

After applying standard perturbation theory techniques (see
Appendix), we obtain

F(t ; λf ,λ) ≈ 1 − χab(t ; λ)δλaδλb, (4)

where the dynamical susceptibility χab(t ; λ) is given by

χab(t ; λ) =
∫ t

0

∫ t

0
dt2dt1

(
1

2
〈{Va(t2),Vb(t1)}〉

− 〈Va(t2)〉〈Vb(t1)〉
)

, (5)

with Va(t,λ) = eitH (λ)∂H/∂λa(λ)e−itH (λ) and 〈∗〉 =
〈ψ(λ)| ∗ |ψ(λ)〉. The family of symmetric tensors
{ds2(t) = χab(t,λ)dλadλb}t∈R defines a family of metrics in
the manifold M , which can be seen as pullback metrics of the
Bures metric (Fubini-Study metric) in the manifold of pure
states [59]. Specifically, at time t , the pullback is given by
the map �t : λf �→ e−itH (λf )|ψ(λ)〉〈ψ(λ)|eitH (λf ), evaluated
at λf = λ.

B. Generalizations at finite temperatures

The generalization of DQPTs to mixed states is not unique.
There are several ways to construct a LE for a general density
matrix. In what follows, we derive two finite-temperature
generalizations, such that they have the same zero-temperature
limit.

1. Fidelity Loschmidt echo at T > 0

First, we introduce the fidelity LE between the state
ρ(β; λi) = e−βH (λi )/Tr{e−βH (λi )} and the one evolved by the
unitary operator e−itH (λf ) as

F(t,β; λi,λf )=F
(
ρ(β; λi),e

−itH (λf )ρ(β; λi)e
itH (λf )), (6)

where F (ρ,σ ) = Tr{√√
ρσ

√
ρ} is the quantum fidelity be-

tween arbitrary mixed states ρ and σ . For λf close to λi = λ,
we can write

F(t,β; λf ,λ) ≈ 1 − χab(t,β; λ)δλaδλb, (7)

with χab(t,β,λ) being the dynamical fidelity susceptibility
(DFS). Notice that limβ→∞ χab(t,β; λ) = χab(t ; λ), where
χab(t ; λ) is given by Eq. (5). At time t and inverse temper-
ature β, we have a map �(t,β) : λf �→ e−itH (λf )ρ(β; λ)eitH (λf ).
The two-parameter family of metrics defined by ds2(β,t) =
χab(t,β; λ)dλadλb is the pullback by �(t,β) of the Bures metric
on the manifold of full-rank density operators, evaluated at
λf = λ (see Appendix).

The fidelity LE is closely related to the Uhlmann connec-
tion: F (ρ1,ρ2) equals the overlap between purifications W1

and W2, 〈W1,W2〉 = Tr{W †
1 W2}, satisfying discrete parallel

transport condition (see, for instance, [60]).

094110-2



DYNAMICAL PHASE TRANSITIONS AT FINITE … PHYSICAL REVIEW B 97, 094110 (2018)

2. Interferometric Loschmidt echo at T > 0

Here, we consider an alternative definition of the LE for
mixed states [G(t) from Eq. (1)]. In particular, we define the
interferometric LE as

L(t,β; λf ,λi) =
∣∣∣∣Tr{e−βH (λi )eitH (λi )e−itH (λf )}

Tr{e−βH (λi )}
∣∣∣∣. (8)

The eitH (λi ) factor does not appear at zero temperature since
it just gives a phase which is canceled by taking the absolute
value. This differs from previous treatments in the literature
[36] (see Sec. 5.5.4 of [59], where the variation of the interfer-
ometric phase, Tr{ρ0e

−itH }, exposes this structure). However,
it is convenient to introduce it in order to have the usual form
of the perturbation expansion, as will become clear later.

For λf close to λi = λ, we get

L(t,β; λf ,λ) ≈
∣∣∣∣∣Tr{e−βH (λ)T e−i

∫ t

0 dt ′Va (t,λ)δλa }
Tr{e−βH (λ)}

∣∣∣∣∣, (9)

so that the perturbation expansion goes as in Eq. (5), yielding

L(t,β; λf ,λ) ≈ 1 − χ̃ab(t,β; λ)δλaδλb, (10)

with the dynamical susceptibility given by

χ̃ab(t,β; λ) =
∫ t

0

∫ t

0
dt2dt1

(
1

2
〈{Va(t2),Vb(t1)}〉

− 〈Va(t2)〉〈Vb(t1)〉
)

, (11)

where 〈∗〉 = Tr{e−βH (λ)∗}/Tr{e−βH (λ)}. Notice that Eqs. (11)
and (5) are formally the same with the average over the
ground state replaced by the thermal average. This justifies the
extra eitH (λi ) factor. Since this susceptibility comes from the
interferometric LE, we call it dynamical interferometric sus-
ceptibility (DIS). The quantity ds2(β,t) = χ̃ab(t,β; λ)dλadλb

defines a two-parameter family of metrics over the manifold
M , except that they cannot be seen as pullbacks of metrics on
the manifold of density operators with full rank. However, it
can be interpreted as the pullback by a map from M to the
unitary group associated with the Hilbert space of a particular
Riemannian metric. For a detailed analysis, see the Appendix.
Additionally, we point out that this version of LE is related
to the interferometric geometric phase introduced by Sjöqvist
et al. [57,61].

C. Two-band systems

Many representative examples of topological insulators and su-
perconductors can be described by effective two-band Hamil-
tonians. Therefore, we derive closed expressions of the pre-
viously introduced dynamical susceptibilities for topological
systems within this class.

The general form of such Hamiltonians is {H (λ) = �x(λ) ·
�σ : λ ∈ M}, where �σ is the Pauli vector. The interaction
Hamiltonian V (λ), introduced in Eq. (2), casts the form

V (λ) ≈
(

∂ �x
∂λa

· �σ
)

δλa.

It is convenient to decompose ∂ �x/∂λa into one component
perpendicular to �x and one parallel to it:

∂ �x
∂λa

=
(

∂ �x
∂λa

)⊥
+

(
∂ �x
∂λa

)‖
= �ta + �na.

The first term is tangent, in R3, at �x(λ), to a sphere of constant
radius r = |�x(λ)|. Hence, this kind of perturbation does not
change the spectrum of H , only its eigenbasis. The second
term is a variation of the length of �x and, hence, it changes the
spectrum of H , while keeping the eigenbasis fixed. The DFS
and the DIS are given by (for the details of the derivation, see
Appendix)

χab = tanh2(β|�x(λ)|) sin2(|�x(λ)|t)
|�x(λ)|2 �ta·�tb (12)

χ̃ab = sin2(|�x(λ)|t)
|�x(λ)|2 �ta · �tb + t2[1− tanh2(β|�x(λ)|)]�na · �nb.

(13)

While the DIS (13) depends on the variation of both the
spectrum and the eigenbasis of the Hamiltonian, the DFS (12)
depends only on the variations which preserve the spectrum,
i.e., changes in the eigenbasis. This is very remarkable; in
general, the fidelity between two quantum states, being their
distinguishability measure, does depend on both the variations
of the spectrum and the eigenbasis. In our particular case
of a quenched system, the eigenvalues are preserved [see
Eq. (6)], as the system is subject to a unitary evolution. The
tangential components of both susceptibilities are modulated
by the function sin2(Et)/E2, where E is the gap. This captures
the Fisher zeros, i.e., the zeros of the (dynamical) partition
function which here is given by the fidelity F from (6) (see
[62–64]). Observe that whenever t = (2n + 1)π/2E, n ∈ Z,
this factor is maximal and, hence, both LEs decrease abruptly.
The difference between the two susceptibilities is given by

χ̃ab − χab = [1 − tanh2(β|�x(λ)|)]

×
(

sin2(|�x(λ)|t)
|�x(λ)|2 �ta · �tb + t2�na · �nb

)
.

The quantity [1 − tanh2(βE)] is nothing but the static sus-
ceptibility (see [65]). Therefore, the difference between DIS
and DFS is modulated by the static susceptibility at finite
temperature.

To illustrate the relationship between the two suscepti-
bilities, in Fig. 1 we plotted the modulating function for
the tangential components of both. We observe that at zero
temperature they coincide. As the temperature increases, in
the case of the fidelity LE, the gap-vanishing points become
less important. On the contrary, for the interferometric LE, the
associated tangential part of the susceptibility does not depend
on temperature, thus, the gap-vanishing points remain promi-
nent. The DFS from Eq. (12) thus predicts gradual smearing of
critical behavior, consistent with previous findings that showed
the absence of phase transitions at finite temperatures in the
static case [14,15]. The DIS from Eq. (13) has a tangential
term that is not coupled to the temperature, persisting at higher
temperatures and giving rise to abrupt changes in the finite-
temperature system’s behavior. This is also consistent with
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FIG. 1. The susceptibility modulating function for the tangential
components at t = 1.

previous studies in the literature, where DPTs were found even
at finite temperatures [49,50]. Additionally, the interferometric
LE depends on the normal components of the variation of �x. In
other words, the finite-temperature phase transitions inferred
by the behavior of the interferometric LE occur due to the
change of the parameters of the Hamiltonian and not due to
temperature.

D. Comparing the two approaches

The above analysis of the two dynamical susceptibilities
(metrics) reflects the essential difference between the two
distinguishability measures, one based on the fidelity, the other
on interferometric experiments. From the quantum information
theoretical point of view, the two quantities can be interpreted
as distances between states, or between processes, respectively.
The Hamiltonian evaluated at a certain point of parameter
space M defines the macroscopic phase. Associated to it we
have thermal states and unitary processes. The fidelity LE is
obtained from the Bures distance between a thermal state ρ1 in
phase 1 and the one obtained by unitarily evolving this state,
ρ2 = U2ρ1U

†
2 , with U2 associated to phase 2. Given a thermal

state ρ1 prepared in phase 1, the interferometric LE is obtained
from the distance between two unitary processes U1 and U2

(defined modulo a phase factor), associated to phases 1 and 2.
The quantum fidelity between two states is in fact

the classical fidelity between the probability distribu-
tions obtained by performing an optimal measurement on
them. Measuring an observable M on the two states ρ1

and ρ2, one obtains the probability distributions {p1(i)}
and {p2(i)}, respectively. The quantum fidelity FQ be-
tween the two states ρ1 and ρ2 is bounded by the
classical fidelity FC between the probability distribu-
tions {p1(i)} and {p2(i)}, FQ(ρ1,ρ2) = Tr

√√
ρ1ρ2

√
ρ1 �∑

i

√
p1(i)p2(i) = Fc(p1(i),p2(i)), such that the equality is

obtained by measuring an optimal observable, given by Mop =
ρ

−1/2
1

√√
ρ1ρ2

√
ρ1ρ

−1/2
1 (note that optimal observable is not

unique). For that reason, one can argue that the fidelity is
capturing all order parameters (i.e., measurements) through
its optimal observables Mop. Fidelity-induced distances, the

Bures distance DB(ρ1,ρ2) = √
2[1 − FQ(ρ1,ρ2)], the sine

distance DS(ρ1,ρ2) =
√

1 − F 2
Q(ρ1,ρ2) and the F distance

DF (ρ1,ρ2) = 1 − FQ(ρ1,ρ2) satisfy the following set of in-
equalities:

DF (ρ1,ρ2) � DT (ρ1,ρ2) � DS(ρ1,ρ2) � DB(ρ1,ρ2),

where the trace distance is given by DT (ρ1,ρ2) = 1
2 Tr|ρ1 −

ρ2|. In other words, the fidelity-induced distances and the trace
distance establish the same order on the space of quantum
states. This is important, as the trace distance is giving the
optimal value for the success probability in ambiguously
discriminating in a single-shot measurement between two a
priori equally probable states ρ1 and ρ2, given by the so-called
Helstrom bound PH (ρ1,ρ2) = [1 + DT (ρ1,ρ2)]/2 [66].

On the other hand, the interferometric phase is based on
some interferometric experiment to distinguish two states ρ1 =∑

i ri |i〉〈i| and ρ2 = U2ρ1U
†
2 : it measures how the intensities

at the outputs of the interferometer are affected by applying U2

to only one of its arms [57]. Therefore, to set up such an exper-
iment, one does not need to know the state ρ1 that enters the
interferometer, as only the knowledge of U2 is required. Note
that this does not mean that the output intensities do not depend
on the interferometric LE: indeed, the inner product 〈U1,U2〉ρ1

is defined with respect to the state ρ1. This is a different type
of experiment, not based on the observation of any physical
property of a system. It is analogous to comparing two masses
with weighing scales, which would show the same difference
of �m = m1 − m2, regardless of how large the two masses m1

and m2 are. For that reason, interferometric distinguishability
is more sensitive than the fidelity (fidelity depends on more
information, not only how much the two states are different,
but in what aspects this difference is observable). Indeed, the
interferometric LE between ρ1 and ρ2 can be written as the
overlap L(ρ1,ρ2) = |〈ρ1|ρ2〉| between the purifications |ρ1〉 =∑

i

√
ri |i〉|i〉 and |ρ2〉 = (U ⊗ I )|ρ1〉. On the other hand, the

fidelity satisfies F (ρ1,ρ2) = max|ψ〉,|ϕ〉 |〈ψ |ϕ〉|, where |ψ〉 and
|ϕ〉 are purifications of ρ1 and ρ2, respectively, i.e., L(ρ1,ρ2) �
F (ρ1,ρ2). Moreover, what one does observe in interferometric
experiments are the mentioned output intensities, i.e., one
needs a number of identical systems prepared in the same
state to obtain results in interferometric measurements. This
additionally explains why interferometric LE is more sensible
than the fidelity one, as the latter is based on the observations
performed on single systems. The fact that interferometric LE
is more sensitive than the fidelity LE is consistent with the
result that the former is able to capture the changes of some of
the system’s features at finite temperatures (thus they predict
DPTs), while the latter cannot.

In terms of experimental feasibility, the fidelity is more
suitable for the study of many-body macroscopic systems and
phenomena, while the interferometric measurements provide
a more detailed information on genuinely quantum (micro-
scopic) systems. Finally, interferometric experiments involve
coherent superpositions of two states. Therefore, when applied
to many-body systems, one would need to create genuine
Schrödinger catlike states, which goes beyond the current, and
any foreseeable, technology (and could possibly be forbidden
by more fundamental laws of physics; see for example objec-
tive collapse theories [67]).
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FIG. 2. We plot the time derivative of the rate function dg/dt as
a function of time for different values of the inverse temperature β =
1/T . We consider a quantum quench from a trivial phase (m = 1.2)
to a topological phase (m = 0.8).

III. DPTs OF TOPOLOGICAL INSULATORS AT FINITE
TEMPERATURES

Our general study of two-band Hamiltonians showed that
the fidelity-induced LE predicts a gradual smearing of DPTs
with temperature. In order to test this result, we study the
fidelity LE on concrete examples of two topological insu-
lators (as noted in the main text, the analogous study for

0.5 1.0 1.5 2.0 2.5

0.1

0.2

0.3

0.4

FIG. 3. The time derivative of the rate function dg/dt as a
function of time for different values of the inverse temperature. The
quench is from a topological (m = 0.8) to a trivial phase (m = 1.2).

the interferometric LE on concrete examples has already been
performed, and is consistent with our findings [49,50]). In
particular, we present quantitative results obtained for the first
derivative of the rate function dg/dt , where g(t) = − 1

N
logF ,

and

F(t,β; λi,λf )=F
(
ρ(β; λi),e

−itH (λf )ρ(β; λi)e
itH (λf )).

The fidelityF is obtained by taking the product of the single-
mode fidelities, each of which has the form

F
(
ρ(β; λi),e

−itH (λf )ρ(β; λi)e
itH (λf )) =

√
1 + cosh2(βEi) + sinh2(βEi){cos(2Ef t) + [1 − cos(2Ef t)](�ni · �nf )2}

2 cosh2(βEi)
,

with Ha = Ea �na · �σ and a = i,f . This expression can be
obtained by using Eq. (A4) and the result found in the
Supplemental Material of [14]. The quantity dg/dt is the figure
of merit in the study of the DQPTs, therefore, we present
the respective results that confirm the previous study: the
generalization of the LE with respect to the fidelity shows
the absence of finite-temperature dynamical PTs. We consider
two paradigmatic models of topological insulators, namely, the
SSH [68] and the MD [58] models.

A. SSH model (1D)

The SSH model was introduced in [68] to describe poly-
acetylene, and it was later found to describe diatomic polymers
[69]. In momentum space, the Hamiltonian for this model is
of the form H (k,m) = �x(k,m) · �σ , with m being the parameter
that drives the static PT. The vector �x(k,m) is given by

�x(k,m) = (m + cos(k), sin(k),0).

By varying m we find two distinct topological regimes. For
m < mc = 1 the system is in a nontrivial phase with winding
number 1, while for m > mc = 1 the system is in a topologi-
cally trivial phase with winding number 0.

We consider both cases in which we go from a trivial to a
topological phase and vice versa (Figs. 2 and 3, respectively).
We notice that nonanalyticities of the first derivative appear

1 2 3 4 5

−1.0

−0.5

0.5

FIG. 4. The time derivative of the rate function dg/dt as a
function of time for different values of the inverse temperature. We
quench the system from a trivial to a topological regime (regimes
from I to II and from IV to III).
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−0.5

0.5

1.0

FIG. 5. The time derivative of the rate function dg/dt as a
function of time for different values of the inverse temperature. The
quench is from a topological to a trivial regime (regimes from II to I
and from III to IV).

at zero temperature, and they are smeared out for higher
temperatures.

B. MD model (2D)

The massive Dirac model (MDM) captures the physics of
a 2D Chern insulator [58], and shows different topologically
distinct phases. In momentum space, the Hamiltonian for the
MDM is of the form H (�k,m) = �x(�k,m) · �σ , with m being the
parameter that drives the static PT. The vector �x(�k,m) is given
by

�x(�k,m) = (sin(kx), sin(ky),m − cos(kx) − cos(ky)).

By varying m, we find four different topological regimes:
(i) For −∞ < m < mc1 = −2 it is trivial (the Chern num-

ber is zero): regime I.
(ii) For −2 = mc1 < m < mc2 = 0 it is topological (the

Chern number is −1): regime II.

1 2 3 4 5

−1

1

2

3

FIG. 6. The time derivative of the rate function dg/dt as a
function of time for different inverse temperatures. The quantum
quench is from a topological to a topological regime (regimes from
II to III and vice versa).
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−20

−10
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30

FIG. 7. The time derivative of the rate function dg/dt as a
function of time for different values of the inverse temperature, in
the case that we quench the system from a trivial to a topological
regime (regimes from I to III and from IV to II).

(iii) For 0 = mc2 < m < mc3 = 2 it is topological (the
Chern number is +1): regime III.

Iiv) For 2 = mc3 < m < ∞ it is trivial (the Chern number
is zero): regime IV.

In Figs, 4, 5, and 6 we plot the first derivative of the rate
function g(t), as a function of time for different temperatures.
We only consider quenches that traverse a single-phase transi-
tion point.

We observe that at zero temperature there exist nonanalyt-
icities at the critical times: the signatures of DQPTs. As we
increase the temperature, these nonanalyticities are gradually
smeared out, resulting in smooth curves for higher finite
temperatures. We note that the peak of the derivative dg(t)/dt

is drifted when increasing the temperature, in analogy to the
usual drift of nondynamical quantum phase transitions at finite
temperature [70].

Next, we proceed by considering the cases in which we
cross two phase transition points, as shown in Figs. 7 and 8.

1 2 3 4 5

−40

−20

20

40

60

FIG. 8. The time derivative of the rate function dg/dt as a
function of time for different values of the inverse temperature. The
system is quenched from a topological to a trivial regime (regimes
from III to I and from II to IV).
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At zero temperature, we obtain a nonanalytic behavior, which
gradually disappears for higher temperatures.

Finally, we have also studied the case in which we move
inside the same topological regime from left to right and vice
versa. We obtained smooth curves without nonanalyticities,
which we omit for the sake of briefness.

IV. CONCLUSIONS

We analyzed the fidelity and the interferometric generaliza-
tions of the LE for general mixed states, and applied them to the
study of finite-temperature DPTs in topological systems. We
showed that the dynamical fidelity susceptibility is the pullback
of the Bures metric in the space of density matrices, i.e., states.
On the other hand, the dynamical interferometric susceptibility
is the pullback of a metric in the space of unitaries (i.e.,
quantum channels).

The difference between the two metrics reflects the fact that
the fidelity is a measure of the state distinguishability between
two given states ρ and σ in terms of observations, while the
“interferometric distinguishability” quantifies how a quantum
channel (a unitary U ) changes an arbitrary state ρ to UρU †.

Therefore, while the “interferometric distinguishability” is
in general more sensitive, and thus appropriate for the study
of genuine (microscopic) systems, it is the fidelity that is the
most suitable for the study of many-body system phases.

Moreover, interferometric experiments involve coherent
superpositions of two states, which for many-body systems
would require creating and manipulating genuine Schrödinger
catlike states. This seems to be experimentally beyond current
technology.

We presented analytic expressions for the dynamical sus-
ceptibilities in the case of two-band Hamiltonians. At finite
temperature, the fidelity LE indicates gradual disappearance
of the zero-temperature DQPTs, while the interferometric LE
predicts finite-temperature DPTs. We have performed finite-
temperature study on two representatives of topological insula-
tors: the 1D SSH and the 2D MD models. In perfect agreement
with the general result, the fidelity-induced first derivatives
gradually smear down with temperature, not exhibiting any
critical behavior at finite temperatures. This is consistent
with recent studies of 1D symmetry-protected topological
phases at finite temperatures [14,15]. On the contrary, the
interferometric LE exhibits critical behavior even at finite
temperatures (confirming previous studies on DPTs [49,50]).

Note added. Recently, we became aware of a recent related
work [39].
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APPENDIX: ANALYTICAL DERIVATION OF THE
DYNAMICAL SUSCEPTIBILITIES

1. Zero-temperature case

Let H be a Hilbert space. Suppose we have a family of
Hamiltonians {H (λ) : λ ∈ M} where M is a smooth compact
manifold of the Hamiltonian’s parameters. We assume that
aside from a closed finite subset of M,C = {λi}ni=1 ⊂ M , the
Hamiltonian is gapped and the ground-state subspace is one
dimensional. Locally, on M − C, we can find a ground state
(with unit norm) described by |ψ(λ)〉. Takeλi ∈ C, and letU be
an open neighborhood containing λi . Of course, for sufficiently
small U , on the open set U − {λi} one can find a smooth
assignment λ �→ |ψ(λ)〉. Consider a curve [0,1] � s �→ λ(s) ∈
U , with initial condition λ(0) = λ0, such that λ(s0) = λi for
some s0 ∈ [0,1]. The family of Hamiltonians H (s) := H (λ(s))
is well defined for every s ∈ [0,1]. The family of states
|ψ(s)〉 ≡ |ψ(λ(s))〉 is well defined for s �= s0 and so is the
ground-state energy

E(s) := 〈ψ(s)|H (s)|ψ(s)〉.
The overlap

A(s) := 〈ψ(0)| exp[−itH (s)]|ψ(0)〉
is well defined. We can write

exp[−itH (s)] = exp[−itH (0)]T exp

{
−i

∫ t

0
dτ V (s,τ )

}
.

If we take a derivative with respect to t of the equation, we find

H (s) = H (0) + exp[−itH (0)]V (s,t) exp[itH (0)]

so

V (s,t) = exp[itH (0)][H (s) − H (0)] exp[−itH (0)].

We can now write, since |ψ(0)〉 is an eigenvector of H (0),

A(s) = e−itE(0)〈ψ(0)|T exp

{
−i

∫ t

0
dτ V (s,τ )

}
|ψ(0)〉.

We now perform an expansion of the overlap

〈ψ(0)|T exp

{
−i

∫ t

0
dτ V (s,τ )

}
|ψ(0)〉

in powers of s. Notice that

T exp

{
−i

∫ t

0
dτ V (s,τ )

}
= I − i

∫ t

0
dτ V (s,τ )

− 1

2

∫ t

0

∫ t

0
dτ2dτ1T {V (s,τ2)V (s,τ1)} + · · ·

and hence

d

ds

(
T exp

{
−i

∫ t

0
dτ V (s,τ )

})∣∣∣∣
s=0

= −i

∫ t

0
dτ

∂V

∂s
(0,τ )
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and

d2

ds2

(
T exp

{
−i

∫ t

0
dτ V (s,τ )

})∣∣∣∣
s=0

= −i

∫ t

0
dτ

∂2V

∂s2
(0,τ ) −

∫ t

0

∫ t

0
dτ2dτ1T

{
∂V

∂s
(0,τ2),

∂V

∂s
(0,τ1)

}
.

Therefore,

〈ψ(0)|T exp

{
−i

∫ t

0
dτ V (s,τ )

}
|ψ(0)〉 = 1 − is〈ψ(0)|

∫ t

0
dτ

∂V

∂s
(0,τ )|ψ(0)〉 + s2

2

[
− i〈ψ(0)|

∫ t

0
dτ

∂2V

∂s2
(0,τ )

× |ψ(0)〉 − 〈ψ(0)|
∫ t

0

∫ t

0
dτ2dτ1T

{
∂V

∂s
(0,τ2),

∂V

∂s
(0,τ1)

}
|ψ(0)〉

]
+ O(s3).

Thus, by using the identity θ (τ ) + θ (−τ ) = 1 of the Heaviside theta function, we obtain

|A(s)|2 = 1 − s2

[ ∫ t

0

∫ t

0
dτ2dτ1〈ψ(0)|1

2

{
∂V

∂s
(0,τ2),

∂V

∂s
(0,τ1)

}
|ψ(0)〉

− 〈ψ(0)|∂V

∂s
(0,τ2)|ψ(0)〉〈ψ(0)|∂V

∂s
(0,τ1)|ψ(0)〉

]
+ O(s3).

If we denote the expectation value 〈ψ(0)| ∗ |ψ(0)〉 ≡ 〈∗〉, we can write

|A(s)|2 = 1 − s2
∫ t

0

∫ t

0
dτ2dτ1

[〈
1

2

{
∂V

∂s
(0,τ2),

∂V

∂s
(0,τ1)

}〉
−

〈
∂V

∂s
(0,τ2)

〉〈
∂V

∂s
(0,τ1)

〉]
+ O(s3) = 1 − χs2 + O(s3),

where

χ ≡
∫ t

0

∫ t

0
dτ2dτ1

[〈
1

2

{
∂V

∂s
(0,τ2),

∂V

∂s
(0,τ1)

}〉
−

〈
∂V

∂s
(0,τ2)

〉〈
∂V

∂s
(0,τ1)

〉]

is the dynamical susceptibility and is naturally non-negative.
In fact, defining Va(τ ) = eiτH (0)∂H/∂λa(λ0)e−iτH (0) such that,
by the chain rule

∂V

∂s
(0,τ ) = Va(τ )

∂λa

∂s
(0),

we can write

χ = gab(λ0)
∂λa

∂s
(0)

∂λb

∂s
(0),

with the metric tensor given by

gab(λ0) =
∫ t

0

∫ t

0
dτ2dτ1

[〈
1

2
{Va(τ2),Vb(τ1)}

〉
−〈Va(τ2)〉〈Vb(τ1)〉

]
. (A1)

2. Dynamical fidelity susceptibility χ at finite temperature

A possible generalization of the zero-temperature LE to
finite temperatures is through the Uhlmann fidelity since the
zero temperature |A(s)| is precisely the fidelity between the
states |ψ(0)〉 and exp[−itH (s)]|ψ(0)〉. Since the Uhlmann
fidelity between two close mixed states is determined by the
Bures metric, we begin by revisiting the derivation of the latter
for the case of interest, i.e., two-level systems.

3. Bures metric for a two-level system

Take a curve of full-rank density operators t �→ ρ(t) and a
horizontal lift t �→ W (t), with W (0) = √

ρ(0). Then, the Bures

metric is given by

gρ(t)

(
dρ

dt
,
dρ

dt

)
= Tr

{
dW †

dt

dW

dt

}
.

The horizontality condition is given by

W † dW

dt
= dW

dt

†
W

for each t . In the full-rank case, we can find a unique Hermitian
matrix G(t), such that

dW

dt
= G(t)W

solves the horizontality condition

W † dW

dt
= W †GW = dW

dt

†
W.

Also, G is such that

dρ

dt
= d

dt
(WW †) = Gρ + ρG.

If Lρ (Rρ) is left (right) multiplication by ρ, we have, formally,

G = (Lρ + Rρ)−1 dρ

dt
.

Therefore,

gρ(t)

(
dρ

dt
,
dρ

dt

)
= Tr

{
dW †

dt

dW

dt

}
= Tr{G2ρ}

= 1

2
Tr{G(ρG + Gρ)}

= 1

2
Tr

{
G

dρ

dt

}
= 1

2
Tr

{
(Lρ + Rρ)−1 dρ

dt

dρ

dt

}
.
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If we write ρ(t) in the diagonal basis,

ρ(t) =
∑

i

pi(t)|i(t)〉〈i(t)|

we find

gρ(t)

(
dρ

dt
,
dρ

dt

)
= 1

2
Tr

{
(Lρ + Rρ)−1 dρ

dt

dρ

dt

}
= 1

2

∑
i,j

1

pi(t) + pj (t)
〈i(t)|dρ

dt
|j (t)〉〈j (t)|dρ

dt
|i(t)〉.

Hence, using the diagonal basis of ρ, we can read off the metric
tensor at ρ as

gρ = 1

2

∑
i,j

1

pi + pj

〈i|dρ|j 〉〈j |dρ|i〉.

This is the result for general full-rank density operators. For
two-level systems, writing

ρ = 1
2 (1 − Xμσμ),

and defining variables |X| = r and nμ = Xμ/|X|, we can
express gρ as

gρ =
[

1

1 + r
+ 1

1 − r

]
dρ2

11 + dρ12dρ21

= 1

1 − r2
dρ2

11 + dρ12dρ21,

where we used dρ11 = −dρ22. Notice that

dρ11 = 1
2 Tr{dρUσ3U

−1} = 1
2 Tr{dρnμσμ},

where U is a unitary matrix diagonalizing ρ,Uσ3U
−1 =

nμσμ. Now,

dρ = − 1
2dXμσμ,

and hence

dρ11 = − 1
2dXμnμ = − 1

2dr.

On the other hand,

dρ12dρ21 = 1
4 Tr{dρU (σ1 − iσ2)U−1}Tr{dρU (σ1 − iσ2)U−1}

= 1
4 [Tr{dρUσ1U

−1}Tr{dρUσ1U
−1}

+ Tr{dρUσ2U
−1}Tr{dρUσ2U

−1}]
= 1

4δμν(dXμ − nμnλdXλ)(dXν − nνnσ dXσ )

= 1
4 r2dnμdnμ,

where we used the fact that the vectors (u,v) defined by
the equations Uσ1U

−1 = uμσμ and Uσ2U
−1 = vμσμ form an

orthonormal basis for the orthogonal complement in R3 of the
line generated by nμ (which corresponds to the tangent space to
the unit sphere S2 at nμ). Thus, we obtain the final expression
for the squared line element

ds2 = 1

4

(
dr2

1 − r2
+ r2δμνdnμdnν

)
. (A2)

The above expression is ill defined for the pure state case
of r = 1. Nevertheless, the limiting case of r → 1 as the
metric is smooth as we will now show by introducing another
coordinate patch. The set of pure states is defined by r = 1,
i.e., they correspond to the boundary of the three-dimensional
ball B = {X : |X| = r � 1} which, topologically, is the set
of all density matrices in dimension 2. Introducing the change
of variable r = cos u, with u ∈ [0,π/2), the metric becomes

ds2 = 1
4 [du2 + (cos u)2δμνdnμdnν],

which is well defined also for the pure-state case of r =
cos(0) = 1. Restricting it to the unit sphere, the metric coin-
cides with the Fubini-Study metric, also known as the quantum
metric, on the space of pure states CP 1 ∼= S2, i.e., the Bloch
sphere. Therefore, there is no problem on taking the pure-state
limit of this metric on the space of states since it reproduces
the correct result.

4. Pullback of the Bures metric

We have a map

M � λ �→ ρ(λ) = U (λ)ρ0U (λ)−1

= 1
2U (λ)(I − Xμσμ)U (λ)−1,

with

U (λ) = exp[−itH (λ)],

and we take

ρ0 = exp[−βH (λ0)]

Tr{exp[−βH (λ0)]} , for some λ0 ∈ M.

We use the curve [0,1] � s �→ λ(s), with λ(0) = λ0, to obtain
a curve of density operators

s �→ ρ(s) := ρ(λ(s)).

Notice that ρ(0) = ρ0. The fidelity we consider is then

F (ρ(0),ρ(s)) = Tr(
√√

ρ(0)ρ(s)
√

ρ(0)).

Recall that for 2 × 2 density operators of full rank the Bures
line element reads as

ds2 = 1

4

(
dr2

1 − r2
+ r2δμνdnμdnν

)
,

where

nμ = Xμ/|X| and r = |X|,
with

ρ = 1
2 (I − Xμσμ).

Now,

ρ(λ) = 1
2 [I − Rμ

ν(λ)Xνσμ],
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with Rμ
ν(λ) being the unique SO(3) element satisfying

U (λ)σμU (λ)−1 = Rν
μ(λ)σν.

We then have, pulling back the coordinates,

r(λ) = |X| = const and nμ(λ) = Rμ
ν(λ)nν.

Therefore,

ds2 = 1

4
r2δμν

∂nμ

∂λa

∂nν

∂λb
dλadλb

= 1

4
r2δμνn

σnτ ∂Rμ
σ

∂λa

∂Rν
τ

∂λb
dλadλb,

which in terms of the Euclidean metric on the tangent bundle
of R3, denoted by 〈∗,∗〉, takes the form

gab(λ) = 1

4
r2

〈
R−1 ∂R

∂λa
n,R−1 ∂R

∂λb
n

〉
,

written in terms of the pullback of the Maurer-Cartan form in
SO(3), R−1dR. We can further pull back by the curve s �→ λ(s)

and evaluate at s = 0

χ := gab(λ0)
∂λa

∂s
(0)

∂λb

∂s
(0)

= 1

4
r2

〈
R−1 ∂R

∂λa
n,R−1 ∂R

∂λb
n

〉
∂λa

∂s
(0)

∂λb

∂s
(0),

which gives us the expansion of the fidelity

F (s) ≡ F (ρ(0),ρ(s)) = 1 − 1
2χs2 + · · · .

We now evaluate χ . Note that

dUσμU−1 + UσμdU−1

= U [U−1dU,σμ]U−1 = dRν
μσν.

Now, we can parametrize

U = y0I + iyμσμ, with |y|2 = 1.

Therefore,

U−1dU = (y0 − iyμσμ)(dy0 + idyνσν) = i(y0dyμ − yμdy0)σμ + i

2
(yμdyν − yνdyμ)ελ

μνσλ;

[U−1dU,σκ ] = −2
[
(y0dyμ − yμdy0)ετ

μκ + 1
2 (yμdyν − yνdyμ)ελ

μνε
τ
λκ

]
στ

= −2
[
(y0dyμ − yμdy0)ετ

μκ + 1
2 (yμdyν − yνdyμ)

(
δμκδ

τ
ν − δτ

μδν
κ

)]
στ

= −2
[
(y0dyμ − yμdy0)ετ

μκ + (yκdyτ − yτdyκ )
]
στ

= 2
[
(y0dyμ − yμdy0)ε τ

μκ + (yτdyκ − yκdyτ )
]
στ ≡ (R−1dR)τ κστ .

Observe that for H (λ) = xμ(λ)σμ, we have

y0(λ) = cos(|x(λ)|t) and yμ = − sin(|x(λ)|t)x
μ(λ)

|x(λ)| .

Therefore,

dy0 = − sin(|x(λ)|t)d|x(λ)|,

dyμ = − cos(|x(λ)|t)x
μ(λ)

|x(λ)|d|x(λ)| − sin(|x(λ)|t)d
(

xμ(λ)

|x(λ)|
)

.

After a bit of algebra, we get

y0dyμ − yμdy0 = xμ(λ)

|x(λ)|d|x(λ)| − sin(|x(λ)|) cos(|x(λ)|)d
(

xμ(λ)

|x(λ)|
)

,

yμdyν − yνdyμ = 2 sin2(|x(λ)|t)x
[μ(λ)

|x(λ)| d

(
xν](λ)

|x(λ)|
)

.

Thus,

(R−1dR)τκ = 2
xμ(λ)

|x(λ)|d|x(λ)|ε τ
μκ − sin(2|x(λ)|t)d

(
xμ(λ)

|x(λ)|
)

ε τ
μκ + 4 sin2(|x(λ)|t)x

[τ (λ)

|x(λ)| d
(

xκ](λ)

|x(λ)|
)

.

At s = 0, λ(0) = λ0 and the coordinate nμ(λ(0)) = xμ(λ0)/|x(λ0)|, so the previous expression reduces to

(R−1dR(λ0))τκn
κ = (R−1dR(λ0))τκ

xκ (λ0)

|x(λ0)|

= − sin(2|x(λ0)|t) 1

|x(λ0)|2 ετ
μκx

μ(λ0)dxκ (λ0) − [1 − cos(2|x(λ0)|t)]d
(

xμ

|x|
)

(λ0).
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Notice that the first term is perpendicular to the second. Therefore, we find

χds2 = 1

4
r2|R−1dRn|2

= 1

4
r2

[
sin2(2|x(λ0)|t) 1

|x(λ0)|4
(
δλ
μδσ

κ − δσ
μδλ

κ

)
xμ(λ)dxk(λ)xλ(λ0)dxσ (λ0) + [1 − cos(2|x(λ0)|t)2〈Pdx(λ0),P dx(λ0)〉]

]
= r2 sin2(|x(λ0)|t)

|x(λ0)|2
〈
P

∂x

∂λa
(λ0),P

∂x

∂λb
(λ0)

〉
∂λa

∂s
(0)

∂λb

∂s
(0)ds2,

where we have introduced the projector P : TxR3 = TxS
2
|x| ⊕ NxS

2
|x| → TxS

2
|x| onto the tangent space of the sphere of radius |x|

at x. In other words, the pullback metric by ρ of the Bures metric at λ0 is given by

gab(λ0) = r2 sin2(|x(λ0)|t)
|x(λ0)|2

〈
P

∂x

∂λa
(λ0),P

∂x

∂λb
(λ0)

〉
= tanh2(β|x(λ0)|) sin2(|x(λ0)|t)

|x(λ0)|2
〈
P

∂x

∂λa
(λ0),P

∂x

∂λb
(λ0)

〉
.

5. Dynamical interferometric susceptibility χ̃ at finite temperature

We can replace the average 〈e−itH (s)〉 ≡ 〈ψ(0)|e−itH (s)|ψ(0)〉 by the corresponding average of eitH (0)e−itH (s) on the mixed
state ρ(λ0) = ρ(0) = exp[−βH (0)]/Tr{exp[−βH (0)]} (note its implicit temperature dependence):

A(s) = Tr

(
ρ(0)T exp

{
−i

∫ t

0
dτ V (s,τ )

})
.

It is easy to see that |A(s)|2 has the same expansion as before with the average on |ψ(0)〉 replaced by the average on ρ(0).
We now proceed to compute χ̃ , or equivalently g̃ab(λ0), in the case of a two-level system, where we can write

ρ(λ) = e−βH (λ)

Tr{e−βH (λ)} = 1

2
[I − Xμ(λ)σμ],

and define variables r(λ) = |X(λ)| and nμ(λ) = Xμ(λ)/|X(λ)|. Writing H (λ) = xμ(λ)σμ [and H (s) ≡ H (λ(s))], we have

Va(τ ) = ∂xμ

∂λa
(λ0)eiτH (0)σμe−iτH (0).

Hence, its expectation value is

〈Va(τ )〉 = 1

Tr{e−βH (λ)}Tr{e−βH (0)σμ}∂xμ

∂λa
(λ0) = r(λ0)nμ(λ0)

∂xμ

∂λa
(λ0) = Xμ(λ0)

∂xμ

∂λa
(λ0),

which is independent of τ . We then have

〈Va(τ2)〉〈Vb(τ1)〉 = (r(λ0))2nμ(λ0)
∂xμ

∂λa
(λ0)nν(λ0)

∂xν

∂λb
(λ0) = tanh2(β|x(λ0)|) xμ

|x(λ0)|
∂xμ

∂λa
(λ0)

xν

|x(λ0)|
∂xν

∂λb
(λ0),

where we used Xμ(λ0) = tanh(β|x(λ0)|)xμ(λ0)/|x(λ0)|. Now, using the cyclic property of the trace, we get

1

2 Tr{e−βH (0)}Tr{e−βH (λ){Va(τ2),Vb(τ1)}} = 1

2 Tr{e−βH (0)}Tr{e−βH (0){σμ,σν}}Rμ
λ(τ2)Rν

σ (τ1)
∂xλ

∂λa
(λ0)

∂xσ

∂λb
(λ0)

= δμνR
μ
λ(τ2)Rν

σ (τ1)
∂xλ

∂λa
(λ0)

∂xσ

∂λb
(λ0), (A3)

where Rμ
ν(τ ) is the rotation matrix defined by the equation

eiτH (0)σνe
−iτH (0) = Rμ

ν(τ )σμ. (A4)

We can explicitly write Rμ
ν(τ ) as

Rμ
ν (τ ) = cos(2τ |x(λ0)|)δμ

ν + [1 − cos(2τ |x(λ0)|)]nμ(λ0)nν(λ0) + sin(2τ |x(λ0)|)nλ(λ0)εμ
λν.

Using the previous equation, and because {R(τ )} forms a one-parameter group, we can write

δμνR
μ
λ(τ2)Rν

σ (τ1) = δκλR
κ
σ (τ2 − τ1).

Since χ̃ [i.e., the metric g̃ab; recall its zero-temperature expression (A1)] has to be symmetric under the label exchange a ↔ b,
the relevant symmetric part of (A3) is

cos[2(τ2 − τ1)|x(λ0)|]δμν

∂xμ

∂λa
(λ0)

∂xν

∂λb
(λ0) + (1 − cos[2(τ2 − τ1)|x(λ0)|]) xμ

|x(λ0)|
∂xμ

∂λa
(λ0)

xν

|x(λ0)|
∂xν

∂λb
(λ0).
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Putting everything together gives〈
1

2
{Va(τ2),Vb(τ1)}

〉
− 〈Va(τ2)〉〈Vb(τ1)〉 = cos [2(τ2 − τ1)|x(λ0)|]

〈
P

∂x

∂λa
(λ0),P

∂x

∂λb
(λ0)

〉

+ [1 − tanh2(β|x(λ0)|)]
〈

x(λ0)

|x(λ0)| ,
∂x

∂λa
(λ0)

〉〈
x(λ0)

|x(λ0)| ,
∂x

∂λb
(λ0)

〉
.

The integral on τ1 and τ2 can now be performed, using∫ t

0

∫ t

0
dτ2dτ1 cos[2(τ2 − τ1)ε] =

∫ t

0

∫ t

0
dτ2dτ1[cos(2τ2ε) cos(2τ1ε) + sin(2τ2ε) sin(2τ1ε)]

= 1

4ε2

[
sin2(2tε) + [cos(2tε) − 1][cos(2tε) − 1]

]
= 1

4ε2
[2 − 2 cos(2tε)] = sin2(tε)

ε2
.

So, the interferometric metric is

g̃ab(λ0) = sin2(|x(λ0)|t)
|x(λ0)|2

[〈
P

∂x

∂λa
(λ0),P

∂x

∂λb
(λ0)

〉]
+ t2[1 − tanh2(β|x(λ0)|)]

〈
x(λ0)

|x(λ0)| ,
∂x

∂λa
(λ0)

〉〈
x(λ0)

|x(λ0)| ,
∂x

∂λb
(λ0)

〉
.

The dynamical interferometric susceptibility is then given by

χ̃ = g̃ab(λ0)
∂λa

∂s
(0)

∂λb

∂s
(0) =

∫ t

0

∫ t

0
dτ2dτ1

[〈
1

2

{
∂V

∂s
(0,τ2),

∂V

∂s
(0,τ1)

}〉
−

〈
∂V

∂s
(0,τ2)

〉〈
∂V

∂s
(0,τ1)

〉]

=
{

sin2(|x(λ0)|t)
|x(λ0)|2

[〈
P

∂x

∂λa
(λ0),P

∂x

∂λb
(λ0)

〉]
+ t2[1− tanh2(β|x(λ0)|)]

〈
x(λ0)

|x(λ0)| ,
∂x

∂λa
(λ0)

〉〈
x(λ0)

|x(λ0)| ,
∂x

∂λb
(λ0)

〉}
∂λa

∂s
(0)

∂λb

∂s
(0),

with the average taken with respect to the thermal state ρ0 = ρ(0) ≡ ρ(λ0). Also, as mentioned previously, we have the expansion

|A(s)|2 = |Tr[ρ(0) exp[itH (0)] exp[−itH (s)]]|2 =
∣∣∣∣Tr

[
ρ(0)T exp

(
−i

∫ t

0
dτV (s,τ )

)]∣∣∣∣2

= 1 − χ̃s2 + · · · .

The difference between the two susceptibilities is given by

χ̃ − χ = [1 − tanh2(β|x(λ0)|)]
{

sin2(|x(λ0)|t)
|x(λ0)|2

[〈
P

∂x

∂λa
(λ0),P

∂x

∂λb
(λ0)

〉]

+ t2

〈
x(λ0)

|x(λ0)| ,
∂x

∂λa
(λ0)

〉〈
x(λ0)

|x(λ0)| ,
∂x

∂λb
(λ0)

〉}
∂λa

∂s
(0)

∂λb

∂s
(0).

As β → +∞, i.e., as the temperature goes to zero, the two susceptibilities are equal. Now, the function

f (t) = sin2(εt)

ε2

is well approximated by t2 for small enough ε. In that case, the sum of the two terms appearing in the difference between
susceptibilities is just proportional to the pullback Euclidean metric on TR3.

6. Pullback of the interferometric (Riemannian) metric on the space of unitaries

We first observe that each full-rank density operator ρ defines a Hermitian inner product in the vector space of linear maps of
a Hilbert space H , i.e., End(H ), given by,

〈A,B〉ρ ≡ Tr{ρA†B}.
This inner product then defines a Riemannian metric on the trivial tangent bundle of the vector space End(H ). Since the unitary
group U(H ) ⊂ End(H ), by restriction we get a Riemannian metric on U(H ). If we choose ρ to be e−βH (λ)/Tr{e−βH (λ)}, then
take the pullback by the map �t : M � λf �→ e−itH (λf ) ∈ U(H ) and evaluate at λf = λ, to obtain the desired metric.

Next, we show that this version of LE is closely related to the interferometric geometric phase introduced by Sjöqvist et al.
[57,61]. To see this, consider the family of distances in U(H ), dρ , parametrized by a full-rank density operator ρ, defined as

d2
ρ(U1,U2) = Tr{ρ(U1 − U2)†(U1 − U2)} = 2(1 − Re〈U1,U2〉ρ),
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where 〈∗,∗〉ρ is the Hermitian inner product defined previously. In terms of the spectral representation of ρ = ∑
j pj |j 〉〈j |, we

have

〈U1,U2〉ρ =
∑

j

pj 〈j |U †
1U2|j 〉.

The Hermitian inner product is invariant under Ui �→ Ui · D, i = 1,2, where D is a phase matrix

D = eiα
∑

j

|j 〉〈j |.

For the interferometric geometric phase, one enlarges this gauge symmetry to the subgroup of unitaries preserving ρ, i.e., the
gauge degree of freedom is U(1) ⊗ · · · ⊗ U(1). However, since we are interested in the interferometric LE previously defined,
we choose not to do that, as we only need the diagonal subgroup, i.e., we only have a global phase. Next, promoting this global
U(1)-gauge degree of freedom to a local one, i.e., demanding that we only care about unitaries modulo a phase, we see that, upon
changing Ui �→ Ui · Di, i = 1,2, we have

〈U1,U2〉ρ �→〈U1 · D1,U2 · D2〉ρ =
∑

j

pj 〈j |U †
1U2|j 〉ei(α2−α1).

We can choose gauges, i.e., D1 and D2, minimizing d2
ρ(U1 · D1,U2 · D2), obtaining

d2
ρ(U1 · D1,U2 · D2) = 2(1 − |〈U1 · D1,U2 · D2〉ρ |) = 2(1 − |〈U1,U2〉ρ |).

Now, if {Ui = U (ti)}1�i�N were the discretization of a path of unitaries t �→ U (t), t ∈ [0,1], applying the minimization process
locally, i.e., between adjacent unitaries Ui+1 and Ui , in the limit N → ∞ we get a notion of parallel transport on the principal
bundle U(H ) → U(H )/U(1). In particular, the parallel transport condition reads as

Tr

{
ρU †(t)

dU

dt
(t)

}
= 0, for all t ∈ [0,1].

If we take ρ = exp[−βH (λi)]/Tr{e−βH (λi )}, U1 = exp[−itH (λi)] and U2 = exp[−itH (λf )], then the interferometric LE is

L(t,β; λf ,λi) = |〈U1,U2〉ρ | = 〈Ũ1,Ũ2〉ρ,
where Ũi = Ui · Di (i = 1,2) correspond to representatives satisfying the discrete version of the parallel transport condition.
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