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Second-harmonic phonon spectroscopy of α-quartz
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We demonstrate midinfrared second-harmonic generation as a highly sensitive phonon spectroscopy technique
that we exemplify using α-quartz (SiO2) as a model system. A midinfrared free-electron laser provides direct
access to optical phonon resonances ranging from 350 to 1400 cm−1. While the extremely wide tunability and
high peak fields of a free-electron laser promote nonlinear spectroscopic studies—complemented by simultaneous
linear reflectivity measurements—azimuthal scans reveal crystallographic symmetry information of the sample.
Additionally, temperature-dependent measurements show how damping rates increase, phonon modes shift
spectrally and in certain cases disappear completely when approaching Tc = 846 K where quartz undergoes a
structural phase transition from trigonal α-quartz to hexagonal β-quartz, demonstrating the technique’s potential
for studies of phase transitions.
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I. INTRODUCTION

Nonlinear optical spectroscopy has proven to be a powerful
tool to study crystalline solids [1], offering additional exper-
imental degrees of freedom compared to linear optical tech-
niques since the symmetry properties of the crystal enter into
the nonlinear signals through the nonlinear susceptibility ten-
sor [2–4], providing unique insight into both, crystallographic
and electronic symmetries of the given system [3–7]. Addi-
tionally, nonlinear approaches often provide improved contrast
and sensitivity [8], in particular upon symmetry changes across
order-to-order phase transitions. While employed extensively
for the study of electronic transitions [3,4], this idea could
be similarly useful when considering the symmetry properties
of zone-center optical phonons in polar crystals. Here, linear
optical techniques like reflectance spectroscopy typically only
provide access to frequency, amplitude, and linewidth changes
of the phonon resonance [9,10].

For nonlinear optical studies of optical phonons, vibrational
sum-frequency generation (SFG) spectroscopy is the most
well-established technique [11], which, due to its even order,
can probe noncentrosymmetric media [12] or surface and
interface phonons in inversion-symmetric crystals [12–15]. In
principle, second-harmonic generation (SHG) constitutes an
attractive alternative even-order technique, which is widely
used in the visible and near-infrared [3–7,13,16,17]. However,
only few studies were performed investigating optical phonon
resonances in the midinfrared (mid-IR) to terahertz (THz)
spectral region [8,18–20], owing to the scarcity of respective
intense and narrow-band laser sources and the lack of single-
photon detectors in the infrared. Mid-IR free-electron lasers
(FELs) are in fact highly suitable for such investigations thanks
to their broad wavelength tunability, narrow bandwidth, and
high peak power [20,21].

Notably, for the study of optical phonon resonances, SHG
in the mid-IR has several potential advantages over SFG: (i)
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higher symmetry of the nonlinear susceptibility tensor [1], (ii)
improved phonon enhancement due to doubly resonant mid-
IR excitation [8], and (iii) access to higher order resonances
and different mode symmetries due to different selection rules
[22]. To explore these mechanisms and evaluate the potential
of mid-IR SHG as a phonon spectroscopy, we have chosen a
suitable model system that is well-studied with SFG and other
vibrational spectroscopy techniques.

The lattice dynamics of quartz has been subject to var-
ious studies, which include SFG [12], Raman [23,24], and
IR spectroscopy [25] as well as neutron [26,27] and x-ray
scattering [28]. Mostly due to its piezoelectricity, quartz is of
great technological importance [29], while at the same time
constituting a well-studied model system for nonlinear optical
techniques [7,12]. Its broken inversion symmetry supports
even-order nonlinear processes, in particular, formidable SHG
yields, and its numerous vibrational modes present a rich test
ground for phonon spectroscopies.

Here, we introduce mid-IR SHG phonon spectroscopy and
exemplify the technique for α-quartz (SiO2). Making use of
the large tunability of the FEL, we are able to investigate
essentially all optical phonon resonances of α-quartz [27],
spanning a broad frequency range from 350 to 1400 cm−1.
We observe an enhancement of the SHG yield over several
orders of magnitude at numerous phonon resonances, well
correlated with characteristic features in the reflectivity spec-
trum, which is measured simultaneously. Additionally, the
trigonal crystal structure of the sample causes a pronounced
azimuthal angle dependence of the SHG signal, which we use
to gain information about the contributing χ (2) tensor elements.
Finally, temperature-dependent measurements indicate that
second-harmonic phonon spectroscopy is highly sensitive to
the α → β phase transition of quartz.

II. EXPERIMENT

The experimental arrangement and concept of mid-IR
SHG are described in detail elsewhere [8,20]. In short,
our experimental setup (Fig. 1) resembles a noncollinear
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FIG. 1. (a) Schematic of the experimental setup and definition of
the coordinate systems. Noncollinear two-beam excitation with the
FEL generates two-pulse correlated SHG in reflection. Rotation of
the sample about the z axis provides the azimuthal behavior of the
SHG signal. (b) Crystal structure of α-quartz (view along the optic c

axis). Oxygen atoms (red) form tetrahedra around the silicon atoms
(blue).

autocorrelator geometry in reflection where two focused FEL
beams impinge on the α-quartz sample at incidence angles
of 30◦ and 60◦, respectively. They generate the spatially and
temporally correlated SHG signal which emerges between
both reflected excitation beams and is detected by a liquid ni-
trogen cooled mercury cadmium telluride/indium antimonide
(MCT/InSb) sandwich detector (InfraRed Associates). Addi-
tionally, the sample is mounted on a motorized rotation stage
(Newport) which allows to turn the sample about the surface
normal and thereby facilitates scans of the azimuthal angle
ϕ. In order to prevent light at the fundamental wavelength to
be scattered onto the detector, a variety of short-pass spectral
filters is used, comprising MgF2, CaF2 (Thorlabs), and ZnS/ms
(Korth) windows, depending on the spectral range investigated.
Additionally, 7-, 9-, and 13.5-μm long-pass filters (LOT) are
used selectively to block intrinsic higher harmonics generated
by the FEL itself.

Details on the FEL are given elsewhere [21]. In short,
the electron gun is operated at a micropulse repetition rate
of 1 GHz with an electron macropulse duration of 10 μs
and a macropulse repetition rate of 10 Hz. For these mea-
surements, the electron energy was set to 23.5 or 31 MeV,
allowing to tune the FEL output wavelength λ from ∼12 to
28μm (350 to 850 cm−1) and from ∼7 to 18 μm (550 to
1400 cm−1), respectively, by varying the motorized undulator
gap. In order to display the resulting measurements in one
spectrum covering the whole frequency range from 360 to
1400 cm−1, multiple overlapping measurements with different
FEL electron energies and optical filter configurations were
merged. The cavity desynchronism �L is set to 2λ, causing
narrow-band operation [21] with typical full width at half
maximum (FWHM) of ∼0.5%. Polarization rotation by 90◦

of the linearly P-polarized FEL beam is achieved by two
subsequent wire-grid polarizers (Thorlabs) set to 45◦ and 90◦

with respect to the incoming polarization, respectively. A third
polarizer in front of the detector allows to selectively measure
a specific polarization component of the SHG signal. Scanning
the FEL frequency ω = 2πc/λ via the FEL undulator gap
results in a spectroscopic measurement of the SHG intensity,
while scanning the angle ϕ at fixed ω provides the azimuthal
SHG behavior. Additionally, the reflected fundamental beam

incident at 60◦ is detected with a pyroelectric detector, allowing
to simultaneously obtain the IR reflectivity spectra.

The sample investigated here is an optically polished sin-
gle crystal c-cut window of α-quartz (Crystal GmbH) with
the [0001] crystal axis, i.e., the optic c axis, perpendicular
to the surface. For temperature-dependent measurements, the
sample was mounted on a sample heating stage allowing for
a restricted azimuthal rotation (∼100◦) for temperatures up to
1025 K. We note that the temperature sensor was placed on
the backside of the sample, leading to an overestimation of the
actual sample temperature.

III. THEORETICAL DESCRIPTION

The general theory of SHG is well-established [11]. Here,
we specifically treat resonant mid-IR SHG in reflection with
noncollinear, correlated two-pulse excitation (see Fig. 1).
Two tunable IR beams, both at frequency ω, with incoming
wave vectors ki

1 and ki
2 at angles of incidence αi

1 = 30◦ and
αi

2 = 60◦, respectively, impinge on the sample. The generated
second-harmonic radiation at frequency 2ω emerges at an angle
αr

SHG = arcsin [(sin αi
1 + sin αi

2)/2] ≈ (αi
1 + αi

2)/2. For crys-
tals with broken inversion symmetry, the surface contribution
to the second-order nonlinear signal is typically negligible
[11]. Therefore the symmetry properties of the second-order

nonlinear susceptibility tensor
↔
χ

(2)
are given by the bulk

crystal symmetry and we here solely consider the bulk SHG
polarization of the form

P(2ω) ∝ ↔
χ

(2)
(2ω,ω,ω) :

(↔
L1(ω)E1(ω)

)(↔
L2(ω)E2(ω)

)
, (1)

where
↔
L1(2)(ω) is the Fresnel transmission tensor [20,30] for

the first (second) incident beam, accounting for macroscopic
local field corrections [11], and E1(2)(ω) its respective incident
electric field vector. Projecting the nonlinear polarization onto
the electric field direction of the reflected SHG beam, êSHG,
and considering the Fresnel transmission of the nonlinear
polarization components at 2ω back into air gives the reflected
SHG intensity [11],

I (2ω) ∝ ∣∣(↔
L̃SHG(2ω)P(2ω)

) · êSHG

∣∣2
/�k2, (2)

where
↔
L̃SHG denotes the Fresnel tensor for the reflected

SHG beam coming out of the sample into air and êSHG its

field direction. Additionally, �k2 = |kSiO2
SHG − kSiO2

1 − kSiO2
2 |2

accounts for the wave vector mismatch in reflection, with kSiO2
1(2)

being the first (second) transmitted fundamental and kSiO2
SHG the

reflected SHG wave vector inside the crystal, respectively.

The Fresnel transmission tensor
↔
L(ω), which determines

the local fields inside the sample, is diagonal and its elements
are highly dispersive [20]. These are straightforwardly derived
from Maxwell’s equations and for uniaxial crystals with the
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optic axis along z read

Lxx(ω,αi) = 2kSiO2,e
z (ω,αi)

ε⊥(ω)kair
z (ω,αi) + k

SiO2,e
z (ω,αi)

,

Lyy(ω,αi) = 2kair
z (ω,αi)

kair
z (ω,αi) + k

SiO2,o
z (ω,αi)

,

Lzz(ω,αi) = ε⊥(ω)

ε‖(ω)

2kair
z (ω,αi)

ε⊥(ω)kair
z (ω,αi) + k

SiO2,e
z (ω,αi)

,

L̃xx(2ω,αr) = 2kair
z (2ω,αr)

ε⊥(2ω)kair
z (2ω,αr) + k

SiO2,e
z (2ω,αr)

,

L̃yy(2ω,αr) = 2kSiO2,o
z (2ω,αr)

kair
z (2ω,αr) + k

SiO2,o
z (2ω,αr)

,

L̃zz(2ω,αr) = kSiO2,e
z (2ω,αr)

ε⊥(2ω)kair
z (2ω,αr) + k

SiO2,e
z (2ω,αr)

,

(3)

where L and L̃ denote the Fresnel factors for the incoming
fundamental and outgoing SHG beams, respectively. Here,
εxx = εyy = ε⊥ and εzz = ε‖ are the elements of the diagonal
dielectric tensor perpendicular and parallel to the optic (c) axis,
respectively, which have been calculated using a multioscilla-
tor model [31]. Also, kair

z (ω,αi(r)) = 2πω cos αi(r) is the z com-
ponent of the complex wave vector of the incoming (reflected)

waves in air, while kSiO2,o
z (ω,αi(r)) = 2πω

√
ε⊥ − ε⊥

ε‖
sin2 αi(r)

and kSiO2,e
z (ω,αi(r)) = 2πω

√
ε⊥ sin2 αi(r) are the z components

of the complex wave vectors of the ordinary and extraor-
dinary incoming (reflected) waves inside the quartz sample,
respectively [30]. Note the occurrence of the anisotropy factor
ζ = ε⊥/ε‖ in Lzz [8].

The trigonal crystal structure of α-quartz with point group
32 (Schoenflies D3) results in the following two unique,
nonvanishing components of the second-order susceptibility
tensor χ (2) for SHG [1]:

χ (2)
aaa = −χ

(2)
abb = −χ

(2)
bba = −χ

(2)
bab,

χ
(2)
acb = −χ

(2)
bac = χ

(2)
abc = −χ

(2)
bca.

(4)

In contrast, four unique χ (2) components contribute to SFG
[12] where for instance χ

(2)
acb 
= χ

(2)
abc and χ

(2)
cab 
= 0 for two-color

visible/IR excitation. Therefore the higher symmetry of SHG
with fewer unique χ (2) tensor elements will generally make it
easier to disentangle the different contributions as compared
to SFG.

In order to theoretically describe the azimuthal behavior of
the SHG, a transformation of the χ (2) tensor from the crystal
frame into the laboratory frame is required. In general, the χ (2)

tensor elements in the laboratory frame (x,y,z) can be derived
from the contributing χ (2) tensor elements given in terms of
crystal coordinates (a,b,c) using [1]

χ
(2)
ijk =

∑
lmn

χ
(2)
lmn(î · l̂)(ĵ · m̂)(k̂ · n̂), (5)

where (î,ĵ ,k̂) and (l̂,m̂,n̂) are the basis vectors of the laboratory
and crystal frame, respectively. For a c-cut crystal and a rota-
tion about the surface normal, the coordinate transformation
takes the simple form â = x̂ cos ϕ + ŷ sin ϕ, b̂ = −x̂ sin ϕ +
ŷ cos ϕ, and ĉ = ẑ, i.e., rotation about ẑ.

Applying the crystal to laboratory frame transformation
[Eq. (5)] and summing over all contributing χ (2) elements
for each given polarization configuration yields the azimuthal
behavior of the SHG signal, which is nonzero for all possible
polarization conditions. Exemplarily, we here show the expres-
sions for the SHG intensity for an SPP polarization geometry
(denoting an S-polarized SHG beam and two P-polarized
incoming beams) and PPP, respectively,

ISPP(2ω,ϕ) ∝∣∣L̃yy

(
2ω,αr

SHG

)[ ≡Leff
acb︷ ︸︸ ︷(

Lzz

(
ω,αi

1

)
Lxx

(
ω,αi

2

) + Lxx

(
ω,αi

1

)
Lzz

(
ω,αi

2

))
χ

(2)
acb(2ω,ω,ω) · · ·

+ Lxx

(
ω,αi

1

)
Lxx

(
ω,αi

2

)
︸ ︷︷ ︸

≡Leff
aaa

χ (2)
aaa(2ω,ω,ω) sin(3ϕ)

]∣∣2
/�k2,

(6)

IPPP(2ω,ϕ) ∝∣∣L̃xx

(
2ω,αr

SHG

)[
Lxx

(
ω,αi

1

)
Lxx

(
ω,αi

2

)]
χ (2)

aaa(2ω,ω,ω) cos(3ϕ)
∣∣2/

�k2. (7)

Here, the 3φ dependence is a result of the trigonal symmetry
of χ

(2)
lmn in Eq. (5) for a c-cut crystal. For example, χ (2)

xxx =
χ (2)

aaa(cos3 ϕ − 3 sin2 ϕ cos ϕ) = χ (2)
aaa cos(3ϕ). From Eqs. (6)

and (7), it becomes clear that for PPP, a sixfold azimuthal
angle dependence is expected due to the χ (2)

aaa cos(3ϕ) term,
whereas in the SPP configuration the χ (2)

aaa sin(3ϕ) term
interferes with the angle-independent χ

(2)
acb term, resulting

in a threefold azimuthal angle-dependence with relative
lobe amplitudes depending on the ratio χ (2)

aaa/χ
(2)
acb. SHG

intensities for other polarization conditions can be derived
analogously.

A. Origin of the χ (2) enhancement

The χ (2)(ω) dispersion in the vicinity of optical phonon
resonances has been theoretically described by Flytzanis for
zinc-blende-type crystals which have a single optical phonon
resonance [22]. In his work, he shows that three resonant am-
plitudes, C1,2,3, contribute to the second-order susceptibility,
namely, the Faust-Henry coefficient [32] as well as electrical
and mechanical anharmonicity [22,33], respectively. In order
to apply this model to crystals with multiple phonon resonances
like α-quartz, a generalized χ (2)(ω) expression is required.
In analogy to Flytzanis, the multioscillator expressions of the
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two unique tensor elements χ
(2)
acb and χ (2)

aaa take the following general form:

χ
(2)
acb(2ω,ω,ω) = χ

(2)
∞,acb

[
1 +

∑
j,k

(
Ck

1

Dk(2ω)
+ C

j

1

Dj (ω)
+ Ck

1

Dk(ω)

)
· · ·

+
∑

j

∑
k

(
C

k,j

2

Dk(2ω)Dj (ω)
+ C

k,k
2

Dk(2ω)Dk(ω)
+ C

j,k

2

Dj (ω)Dk(ω)

)
· · ·

+
∑

k

∑
j

∑
k′

C
k,j,k′
3

Dk(2ω)Dj (ω)Dk′(ω)

]
,

χ (2)
aaa(2ω,ω,ω) = χ (2)

∞,aaa

[
1 +

∑
k

Ck
1

(
1

Dk(2ω)
+ 1

Dk(ω)
+ 1

Dk(ω)

)
· · ·

+
∑

k

∑
k′

C
k,k′
2

(
1

Dk(2ω)Dk′(ω)
+ 1

Dk(2ω)Dk′(ω)
+ 1

Dk′(ω)Dk′(ω)

)
· · ·

+
∑

k

∑
k′

∑
k′′

C
k,k′,k′′
3

Dk(2ω)Dk′(ω)Dk′′(ω)

]
, (8)

where Di(ω) = 1 − ω2/(
TO
i )

2 − iγiω/(
TO
i )

2
is the resonant

denominator of the ith phonon resonance and indices j and
k(′,′′) run through the extraordinary and ordinary phonon modes
of quartz, respectively.

According to Flytzanis and later work by Roman et al.
[33], the resonant amplitudes can be written in our generalized
model as

Ck
1 = αk

TO

2vχ
(2)
∞

(
Z∗

Mωk
TO

)
, (9)

which is the Faust-Henry coefficient of mode k,

C
k,j

2 = μ
(2)
k,j

2vχ
(2)
∞

(
Z∗

Mωk
TO

)2

(10)

and

C
k,j,k′
3 = φ

(3)
k,j,k′

2vχ
(2)
∞

(
Z∗

Mωk
TO

)3

. (11)

Here, Z∗ is the effective charge, v is the volume of the unit cell,
and M is the reduced mass. The three important parameters
in these equations are the polarizability αk

TO, the electrical
anharmonicity μ

(2)
k,j , and the mechanical anharmonicity φ

(3)
k,j,k′ .

Notably, SFG spectroscopy only probes the first-order polariz-
ability, i.e., Raman term [12], because of the different selection
rules for mixed visible-IR excitation which is singly resonant in
the IR response, i.e., does not probe the anharmonicity of vibra-
tional potentials. In contrast, IR-only SHG is doubly resonant
in the IR response and thereby provides access to mechanical
and electrical anharmonicities of vibrational modes and does
not require Raman-type interaction. In particular, the latter was
argued to be dominant for III-V semiconductors [33] and was
experimentally shown to be significant for the single-mode
polar crystal SiC [8]. Specifically for anisotropic multimode
materials like α-quartz, these higher order anharmonic terms
are of particular importance since they contain information
about anharmonic coupling between the different phonon
modes. For instance for χ

(2)
acb, Eq. (8) predicts only cross

terms between planar (k) and axial (j ) phonons to contribute

to incoming resonances in the higher-order resonance terms.
Therefore the quantification of these resonant amplitudes
would provide a unique experimental access to anharmonic
mode coupling in polar crystals.

IV. EXPERIMENTAL RESULTS

A. SHG phonon spectrum at room temperature

In Fig. 2(a), we show the experimental SHG spectrum of
α-quartz for the SPP polarization geometry measured at room
temperature at an azimuthal angle ϕ = 30◦.

We observe sharp resonances ranging over about three
orders of magnitude at spectral positions ωSHG

j that can be
attributed to transversal optical (TO) phonons of α-quartz,
most prominently at frequencies 
TO

j of the IR-active E-type
TO phonon modes as indicated by the left borders of the
orange shades in Fig. 2 (values taken from Ref. [31]). The
strong enhancements are primarily due to a combination of
resonances in the nonlinear susceptibility χ (2) [Eq. (8)] as well
as in the local field magnitudes, which enter in the form of
Fresnel transmission tensor elements (Eq. (3)) and the wave-
vector mismatch �k in Eq. (2). The interplay of these highly
dispersive quantities makes up the essence of mid-IR SHG
as a phonon spectroscopy. The spectral features in the range
from 445 to 620 cm−1, labeled I-IV, cannot be unambiguously
assigned to E-type phonon resonances, due to the very low
signal levels and unusual temperature dependence, see Sec.
IV B. Unlike the strong TO phonon resonances, longitudinal
optical (LO) phonons only cause subtle signatures in quartz’s
SHG spectrum as discussed in detail in Sec. V A, where we
analyze the SHG spectrum quantitatively.

Simultaneous reflectivity measurements at an angle of
incidence αi = 60◦ reveal two distinct regions of particularly
high reflectance between corresponding TO and LO phonon
frequencies, i.e., 
TO(LO)

4 and 

TO(LO)
7 , respectively (see orange

shade in Fig. 2). These so-called Reststrahlen bands emerge
for strong modes between the respective TO and LO phonon
frequencies where the real part of the dielectric function takes
negative values, resulting in strongly attenuated evanescent
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FIG. 2. (a) Experimental SHG spectrum of α-quartz for SPP polarization conditions at an azimuthal angle ϕ = 30◦. Strong SHG
enhancements at TO phonon frequencies are observed. (b) Reflectivity spectrum for P-polarization measured at an angle of incidence αi = 60◦

with respect to the surface normal, demonstrating the correlation between nonlinear and linear spectroscopy. Shaded orange boxes mark the
phonon modes, ranging from the respective lower frequency TO phonons to the corresponding higher frequency LO phonons, indicating the
formation of Reststrahlen regions. SHG peaks appear at spectral positions marked by blue arrows and are labeled ωSHG

j .

waves and thus high reflectivity [34]. The other phonon modes
have a smaller TO-LO frequency splitting and thus smaller
oscillator strengths [34], such that no full Reststrahlen bands
are formed. Instead, less intense peaklike features appear in
the reflectivity spectrum.

Additionally, we have measured the azimuthal behavior of
the SHG intensity at room temperature at spectral positions
ωSHG

j of all SHG resonances that are marked in Fig. 2 for
two different polarization conditions, SPP and PPP, at room
temperature. Figure 3 shows the azimuthal scans at four
exemplary spectral positions, i.e., at ωSHG

3 , ωSHG
6 , ωSHG

7 , and
ωSHG

8 . Model fits (solid lines) using Eqs. (6) and (7) are in
good agreement with the experimental data. While SPP scans
depend on both uniquely contributing χ (2) tensor elements,
χ (2)

aaa and χ
(2)
acb, PPP scans solely depend on χ (2)

aaa , resulting in the
observed threefold and sixfold symmetric azimuthal behavior
as expected from theory, Eqs. (6) and (7), respectively. The
quantitative knowledge of the Fresnel factors as described in
Sec. III, allows for extraction of relative magnitudes of the
tensor elements χ

(2)
acb/χ

(2)
aaa from SPP scans (Table I).

It should be noted that the azimuthal behavior of the
TO6 mode in PPP polarization is highly sensitive to slight
misalignment of the detection polarizer, which leads to an
interference of the S-polarized SHG component with the
P-polarized signal. Because of the relatively large isotropic
component [∝ Leff

acbχ
(2)
acb, cf. Eq. (6)] entering the SPP signal

for this phonon and a generally stronger signal for SPP than
for PPP, a small polarization angle offset in detection has a
significant impact on the measured azimuthal behavior. This
effect becomes critical especially at the TO6 mode where the
SPP signal is nonzero at angles where the PPP component

also yields signal. For the other measured phonon resonances,
however, this interference is less pronounced since SPP signals
are zero at angles where PPP yields the largest SHG signal.

B. Temperature-dependence of the SHG phonon spectrum

In order to investigate the temperature sensitivity of second-
harmonic phonon spectroscopy, measurements using a sample
heating stage have been conducted. In these measurements,
the α → β phase transition of quartz was of particular in-
terest. During this displacive phase transition at nominally
Tc = 846 K [31], quartz changes from the trigonal crystal
symmetry to a hexagonal one (point group 622, Schoenflies
D6). In the β phase, the E-type phonon modes labeled 
3, 
5,

TABLE I. Fit parameters from all acquired SPP azimuthal scans.
Quantitative knowledge of the Fresnel transmission coefficients
allows for an extraction of the ratio χ

(2)
acb/χ

(2)
aaa .

Label ωSHG
j ω [cm−1] χ

(2)
acb/χ

(2)
aaa

3 400 0.186 ± 0.014
5 690 0.22 ± 0.05
6 795 1.46 ± 0.19
7 1069 2.6 ± 0.3
8 1171 0.11 ± 0.08

I 445 0.32 ± 0.05
II 498 30 ± 4
III 545 2.5 ± 1.2
IV 620 0.654 ± 0.014
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0◦

ωSHG
3

SP
P

ϕ

0◦

ωSHG
6

0◦

ωSHG
7

0◦

ωSHG
8

0◦0◦0◦0◦

P
P

P

FIG. 3. Azimuthal behavior of the SHG at four exemplary TO phonon resonances for SPP and PPP polarization conditions. Solid lines
represent model fits using Eqs. (6) and (7), respectively. While PPP measurements exhibit a clear sixfold symmetry, SPP measurements show
a threefold symmetry due to the two uniquely contributing χ (2) elements, χ

(2)
acb and χ (2)

aaa .

and 
8 become IR-forbidden due to structural changes in the
crystal [35].

Figure 4(a) shows SHG spectra measured in SPP polariza-
tion at 300, 500, 700, 875, and 950 K. Notably, the different
azimuthal behavior of the modes, see Fig. 3, limited the
dynamic range for some modes, e.g., TO3 or TO7, if the spectra
were taken at a single azimuth. Therefore we acquired the data
in two parts: at azimuthal angle ϕ = 30◦ in the low-frequency
region from 350 to 850 cm−1, and at ϕ = 90◦ in the high-
frequency region from 750 to 1350 cm−1, see Figs. 4(a), 4(b)
and 4(c), 4(d), respectively.

From the temperature-dependent spectra, two observations
become apparent. Firstly, a clear decrease of the resonant
amplitudes (SHG peak height) as well as increased dampings
(SHG peak width) at higher temperatures are observed. Sec-
ondly, SHG peak positions shift with temperature. This be-
havior is due to temperature-dependent changes of the phonon
damping rates, γ TO, and frequencies, 
TO. Remarkably, some
TO phonon resonances show a particularly sudden drop in SHG
intensity close to the nominal phase transition at Tc = 846 K,
most notably TO5, while other resonant features exhibit a
gradual decrease up to the highest measured temperature,
e.g., TO6, or until the SHG signal falls below detection
level, e.g., TO7. This behavior likely originates from the
α → β phase transition, where the phonon modes TO3, TO5,
and TO8 become IR-inactive, while TO6 and TO7 remain
active [31].

The corresponding reflectivity spectra are shown in
Figs. 4(b) and 4(d). Like the peaks in the SHG spectra,
Reststrahlen edges and peaks in the reflectivity soften and shift
spectrally as temperature increases. Near the phase transition
temperature, the peaklike features associated with the TO3 and
TO5 modes nearly disappear as does the diplike feature in the
upper Reststrahlen band at the TO8 mode frequency, thereby

being consistent with the SHG data. Note that the reflectivity
data are plotted on a linear scale as opposed to the SHG spectra,
which are plotted logarithmically to cover the large dynamic
range in these signals. This representation of the data masks
the fact that the SHG peak heights are much more susceptible
to phonon damping than any of the reflectivity features.

Notably, in the frequency range from ∼420 to 570 cm−1,
the SHG intensity of modes I-IV even increases with higher
sample temperature. The plateaulike feature labeled IV shows
some peculiar behavior with a pronounced signal drop above
the phase transition temperature. While these observations
are very interesting and not understood at this stage, we also
note that we observed a signal contribution due to black-body
radiation by FEL-induced heating of the sample, getting more
pronounced at elevated sample temperatures. This effect has
been accounted for by taking background spectra that were
measured at a large time delay between the pulses in both
excitation arms and subtracted from the SHG signals. Still, due
to the low signal levels in this frequency range, the possibility
of a thermal contribution to the measured SHG signal cannot
be ruled out entirely.

V. ANALYSIS AND DISCUSSION

A quantitative analysis of the SHG spectra is challenging
due to the numerous resonances that introduce a multitude of fit
parameters to the χ (2) description discussed in Sec. III [Eq. (8)].
Furthermore, strongly temperature-dependent damping rates
cause a rapid drop of SHG intensities at high temperatures
which makes it difficult to assess features close to and above Tc.
Nevertheless, we here attempt to fit the SHG spectrum at room
temperature by simplifying the fit model described above to a
reduced number of parameters. For the temperature-dependent
spectra, we empirically fit the SHG peaks in order to perform a
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FIG. 4. Temperature-dependent SHG and reflectivity spectra for temperatures ranging from room temperature up to 950 K. Due to the
different azimuthal shapes of the SHG in SPP polarization, these data were taken at ϕ = 30◦ in the low-frequency range [(a) and (b)] and at
ϕ = 90◦ in the high-frequency range [(c) and (d)]. The SHG resonances in (a) and (c) decrease and broaden, while spectral positions shift with
higher temperatures. Note the logarithmic scale. The corresponding reflectivity spectra [(b) and (d)] were taken at an angle of incidence of 60◦

and in P polarization. Spectral features in the reflectivity behave in accordance with their respective SHG peaks.

quantitative analysis of the observed features, particularly with
regard to quartz’s α → β phase transition.

A. Origin of the SHG enhancement

The origin of the observed SHG enhancement is threefold.
First, the highly dispersive second-order nonlinear susceptibil-
ity χ (2)(ω) typically peaks at TO phonon frequencies, causing
a strong enhancement of the SHG signal over several orders of
magnitude [20]. Secondly, the signals are strongly modulated
by the dispersing Fresnel factors. The latter can be accurately
calculated using Eq. (3), and we plot the results in Fig. 5(c)
for both contributing terms in SPP geometry. Finally, also the
wave vector mismatch �k is strongly dispersive as shown
in Fig. 5(d), defining the effective escape depth δp = 1/�k

of the SHG light. For nonabsorbing materials in a reflective
geometry, this is typically about half the wavelength of the SHG
light [1] and therefore largely nondispersive. Here, however,
the dispersion of �k2 arises due to strong absorption of the
TO phonons, i.e., through the large imaginary part of k

SiO2
1,2

at phonon resonances dominating �k2 in these cases. The
resulting effective escape depth δp is also shown in Fig. 5(d).

For the dispersion of χ (2)(ω) with the numerous phonon
resonances in quartz, the generalization of Flytzanis’s model
as described above [Eq. (8)] results in a very large number of
independent parameters C

j,k

1,2,3. Therefore, in order to apply a
model fit to the measured data, we simplify the generalized
model by reducing the fit parameters to C1 terms as well as C3

cross-terms, which only contain spectrally proximate phonon
resonances, as those are assumed to be the main contributing
terms to the χ (2)(ω) function. This leaves a reduced number of
19 independent C1,3 coefficients which enter as fit parameters.

This strongly simplified model, applied to Eq. (6), while
lacking quantitative accuracy, already reproduces nearly every
feature observed in the SHG spectrum at least qualitatively as
shown by the fit in Fig. 5(a) (orange line). From the fit results,
it is possible to extract the substantial spectral shapes of the
contributing χ (2)(ω) functions [plotted in Fig. 5(b)].

Figure 5 illustrates the interplay of all dispersing contribu-
tions to the SHG signals, i.e., the χ (2)(ω) [Fig. 5(b)], Fresnel
dispersion [Fig. 5(c)] as well as the wave vector mismatch
[Fig. 5(d)], resulting in the SHG spectrum [Fig. 5(a)]. Here,
compensating effects become apparent as can be clearly seen
by taking the TO7 mode as an example: Fresnel factors
and the wave vector mismatch suppress the SHG signal
significantly (∼10−3 and ∼10−1, respectively) such that the
χ (2) enhancement (∼106) must outdo this effect in order
to allow for a measurable SHG peak at 
TO

7 . Furthermore,
Fresnel factors can cause a spectral shift of the SHG peak
position relative to the phonon frequency as observed at the
TO3 mode where a Fresnel suppression of the SHG signal
at 
TO

3 and a simultaneous enhancement at a slightly higher
frequency (∼403 cm−1) cause this offset between SHG peak
position ωSHG

3 and phonon frequency 
TO
3 , showing that a

thorough treatment of the linear optical effects is necessary
when interpreting the SHG spectra.

However, and in contrast to previous work on single-mode
SiC [8], we here only observe subtle signatures of LO phonon
resonances in the SHG data, owing to a combination of effects.
First, weaker modes, e.g., 
5 or 
8, reside on the tails of
strong mode resonances in the dielectric function, strongly sup-
pressing Fresnel resonances at their LO frequencies. Secondly,
out-of-plane Fresnel resonances (Lzz) are generally found to be
stronger than in-plane resonances (Lxx and Lyy), see Fig. 5(c).
Since for trigonal α-quartz, we are mostly sensitive to Lxx
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FIG. 5. Composition of the measured SHG spectrum: The highly dispersive χ (2) tensor elements (b), the Fresnel factors (c) as well as the
inverse squared wave vector mismatch 1/�k2 (d) enter the measured SHG signal (a). The latter also determines an effective escape depth δp of
the SHG light (d). Note the logarithmic scales in all four graphs.

and Lyy [see Eqs. (6) and (7)], Fresnel resonance effects are
reduced as compared to, e.g., hexagonal SiC [8]. However,
peaks at ωSHG

3 , ωSHG
II , and ωSHG

6 are likely to be, at least in part,
due to LO phonon resonances.

B. Temperature dependence of the phonon resonances

For a quantitative analysis of the observed spectral features,
especially at high temperatures, we compare the SHG peak
positions and widths with temperature-dependent phonon data
acquired by linear IR reflectivity measurements by Gervais
and Piriou [31]. Thereto, resonant features in the SHG spectra
have been fitted with a Lorentzian function, yielding the center
frequencies and linewidths, ωSHG and �SHG (half width at half
maximum, HWHM), respectively, as well as their amplitudes.
The fit results for all temperatures are plotted in Fig. 6(a)
together with the phonon data as measured in Ref. [31] for
comparison.

In Fig. 6(a), it can be seen how the TO phonon frequencies,

TO, and damping constants, γ , compare to the peak character-
istics observed in the SHG spectrum. The SHG peak positions
mimic the temperature-dependent trends of their respective
phonon frequencies reasonably well, although offsets of up
to 10 cm−1 are observed due to the influence of Fresnel factors
and �k2 as discussed above. This is also apparent in the data

for TO6, which was taken for two values of the azimuthal
angle, ϕ = 30◦ and 90◦ (Fig. 6), shown as closed and open dots,
respectively, since here the two relevant Fresnel components
Leff

acb and Leff
aaa in Eq. (6), both having a different temperature

dependence, contribute differently to the total SHG signal.
The effect of phonon damping constants directly translates

to SHG peak widths, in large parts even in remarkable quan-
titative agreement with �SHG. This is nontrivial, as the SHG
spectra are modulated by the highly dispersive Fresnel factors,
especially at phonon resonances. Still, the data in Fig. 6(a)
show that the SHG peak widths provide a reasonably accurate
estimation of phonon damping constants for all modes.

Figure 6(b), on the other hand, shows the fitted SHG peak
amplitudes. The data clearly show a continuous decrease of
SHG intensity with higher temperatures for all resonances,
with all but the TO6 resonance amplitudes vanishing above
the phase transition temperature. The amplitude of the latter
exhibits—as its corresponding spectral position and width—a
kinklike behavior at the phase transition.

In order to estimate the expected behavior of the
resonant SHG amplitudes with temperature, we evaluated the
temperature dependence of the amplitude of each phonon
resonance to S/γ , where S is the oscillator strength and γ the
damping of the respective phonon, using the multioscillator
model [34] with data from Ref. [31]. Since S/γ enters
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FIG. 6. (a) Fitted peak positions (blue) and damping constants (orange) from the SHG spectrum (dots with error bars) compared to TO
phonon frequencies and dampings, respectively, as measured by Gervais and Piriou [31] (diamonds and squares). Lines are a guide to the eye.
The α → β phase transition of quartz presumably takes place in the temperature interval indicated by the gray shaded area. (b) Fitted SHG peak
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oscillator strengths S and damping constants γ . For TO6 in (a) and (b), the closed and open dots correspond to the data taken at ϕ = 30◦ and
90◦ in Figs. 4(a) and 4(c), respectively.

the Fresnel factors [Eq. (3)] through the resonances in the
dielectric function to different orders, and similarly, it also
contributes to χ (2)(ω) [Eq. (8)] linearly and quadratically,
we plot several powers (S/γ )N , N = 1–4, alongside the
data in Fig. 6(b). Here, we normalized (S/γ )N to match the
experimental data at room temperature.

Below the phase transition, the experimental amplitudes
linearly follow S/γ for TO3, TO5, and TO8, while the
amplitudes of TO6 and TO7 appear to decay more quickly.
Near the phase transition temperature Tc = 846 K, expected
in the range marked by the gray-shaded area in Fig. 6, S/γ

rapidly drops to zero for the modes TO3, TO5, and TO8, since
these modes become IR-forbidden in the β phase such that

their oscillator strength S vanishes. Indeed, no SHG signal
is observed for these modes above Tc. For TO6 and TO7,
on the other hand, S/γ predicts appreciable amplitudes also
above Tc since these modes persist through the phase transition.
In the experiment, we do, indeed, observe TO6 above Tc,
while TO7 also vanishes—in contradiction to our expectation.
However, a careful examination of noise levels [dotted line
in Fig. 6(b)], reveals that the amplitude of TO7 in fact would
fall below detection level as crossing the 875 K measurement
point, assuming that it shares the same trend with S/γ as
TO6, which continues to drop more rapidly than predicted
by the power laws above Tc. It is striking that those modes
which happen to persist through the phase transition exhibit a
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temperature-dependent behavior distinct from the other modes.
Although this empirical observation is very interesting, it is at
this point not possible to isolate a single cause for this effect
due to the numerous contributions to the χ (2) line shape.

C. Discussion

A quantitative analysis of the SHG spectra turned out
to be a challenging task, in particular if two contributions
with many phonon resonances interfere as for the data in
Fig. 2, leading to a number of fit parameters so large that
quantitative fitting is not feasible. With sufficient signal-to-
noise, a potential solution to this problem could be achieved
by making use of the symmetry properties of Eq. (6). The data
in Fig. 2 were recorded at an azimuthal angle ϕ = 30◦, i.e.,
at maximum signal magnitude for many of the resonances,
cf. Fig. 3. If instead one would acquire spectra at ϕ = 0◦,
one would exclusively probe χ

(2)
acb, and could divide out the

linear quantities L and �k to directly measure the χ (2) line
shape. At room temperature, this is challenging due to low
signal levels, however, at low temperatures, < 100 K, such
an experiment becomes feasible. Similarly, SHG spectra taken
in PPP geometry would exclusively yield the line shape of
χ (2)

aaa . Respective experiments are currently under way and will
provide direct access to anharmonic mode coupling.

At high temperatures where the α → β phase transition
takes place, however, such an approach is not applicable. Due
to the highly temperature-dependent damping rates, signals
around Tc are generally weak and for some resonances even fall
below detection level. In consequence, temperature-dependent
azimuthal scans are not sufficiently meaningful [36]. Other-
wise, those would have been the tool of choice to study the
structural phase transition: considering β-quartz’s hexagonal
crystal symmetry where no azimuthal dependence is expected
in contrast to the trigonal α-phase (cf. Fig. 3), we expected
extreme sensitivity of our technique to the α → β phase
transition, which unfortunately was completely washed out by
the weak SHG signals at high temperatures.

However, when comparing resonant features in the
temperature-dependent SHG spectra to their respective
χ

(2)
acb/χ

(2)
aaa ratios at room temperature (Table I), one correlation

stands out: β-forbidden phonon resonances consistently ex-
hibit a χ

(2)
acb/χ

(2)
aaa ratio smaller than 1, while for TO6 and TO7,

which persist through the phase transition, χ
(2)
acb/χ

(2)
aaa > 1.

In fact, the SHG intensity for β-quartz (point group 622,

Schoenflies D6) in SPP geometry reads

I
β

SPP(2ω) ∝ ∣∣L̃yy(2ω,αr
SHG)Leff

acbχ
(2)
acb(2ω,ω,ω)

∣∣2
/�k2, (12)

which is identical to the second term in Eq. (6), i.e., the SHG
component that—according to the azimuthal—dominates the
SHG for β-allowed phonon resonances (∝ χ

(2)
acb) at room

temperature. Note, however, that for β-forbidden modes, both
χ (2) symmetry components vanish upon entering the higher
symmetry of the β-phase. This suggests that already at room
temperature the azimuthal scans give an indication of which
phonon modes will persist above Tc and which will not. It
remains to be shown how general this effect is, and if a similar
behavior is found for other phase transitions, for instance in
ferroelectrics or multiferroics [4,37].

Our observation reflects the structural and symmetry in-
formation intrinsically contained in the resonant contributions
of the χ (2) tensor elements, potentially making SHG phonon
spectroscopy an excellent spectroscopic technique for studies
of phase transitions. This holds true especially for phase tran-
sitions that take place below room temperature where damping
rates are typically low, therefore allowing generally larger
SHG signals and making azimuthal scans a promising tool
to study symmetry changes during phase transitions. In fact,
the sensitivity to symmetry changes makes an obvious case for
SHG over linear spectroscopy. Additionally, the pronounced
peaks in the SHG make phonon resonances considerably easier
to extract than, e.g., from Reststrahlen edges in IR reflec-
tivity spectra [20] while its nonlinearity causes an improved
contrast.

VI. CONCLUSION

We have demonstrated second-harmonic phonon spec-
troscopy as a highly sensitive tool to study phonon resonances
in noncentrosymmetric polar crystals, using α-quartz as a
model system. Its second-order nonlinearity makes it very
sensitive to phonon resonances which can be detected across
several orders of magnitude. It opens up additional experimen-
tal degrees of freedom compared to linear techniques which can
be exploited using polarization control to selectively access
information related to the crystal symmetry as seen in the
azimuthal behavior of the SHG signal via the χ (2)(ω) tensor el-
ements. Furthermore, second-harmonic phonon spectroscopy
has also been shown to be temperature-sensitive, allowing to
track phonon frequencies and linewidths as well as detecting
symmetry changes in the sample across a structural phase
transition.
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