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Tensile and shear loading of four fcc high-entropy alloys: A first-principles study
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Ab initio density-functional calculations are used to investigate the response of four face-centered-cubic (fcc)
high-entropy alloys (HEAs) to tensile and shear loading. The ideal tensile and shear strengths (ITS and ISS) of
the HEAs are studied by employing first-principles alloy theory formulated within the exact muffin-tin orbital
method in combination with the coherent-potential approximation. We benchmark the computational accuracy
against literature data by studying the ITS under uniaxial [110] tensile loading and the ISS for the [112̄](111) shear
deformation of pure fcc Ni and Al. For the HEAs, we uncover the alloying effect on the ITS and ISS. Under shear
loading, relaxation reduces the ISS by ∼50% for all considered HEAs. We demonstrate that the dimensionless
tensile and shear strengths are significantly overestimated by adopting two widely used empirical models in
comparison with our ab initio calculations. In addition, our predicted relationship between the dimensionless
shear strength and shear instability are in line with the modified Frenkel model. Using the computed ISS, we
derive the half-width of the dislocation core for the present HEAs. Employing the ratio of ITS to ISS, we discuss
the intrinsic ductility of HEAs and compare it with a common empirical criterion. We observe a strong linear
correlation between the shear instability and the ratio of ITS to ISS, whereas a weak positive correlation is found
in the case of the empirical criterion.
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I. INTRODUCTION

The development of high strength structural materials with
good ductility has long been a main topic of experimental
as well as theoretical interest. In real materials, strength and
ductility are usually influenced by complex microstructural
properties associated with defects, e.g., dislocations, cracks,
and grain boundaries. However, if such defects were not
present, the strength would be limited by the stress at which the
lattice itself becomes unstable with respect to a homogeneous
strain. This maximum stress is referred to as the ideal (or
theoretical) strength, which has been recognized as a key
parameter in understanding the mechanical behavior of solid
materials [1–3]. The ideal strength has been involved in deter-
mining intrinsic ductility/brittleness [4,5], in modern theories
of plasticity and fracture [3,6–8], prediction of the Peierls-
Narbarro stress [9], estimating the length of twin bands [10],
calibration of semiempirical interatomic potentials that are
used for the study of extended defects [11–13], and identifying
gum metals [14].

Theoretically, several approaches have been proposed to
assess the ideal strength. For instance, the earliest estimations
assumed simple analytic forms for the stress-strain relation,
which made it possible to predict the ideal strength in terms
of elastic constants [3,15]. Later, semiempirical pair potential
and embedded atom models were adopted to predict them
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[16,17]. With the advent of density-functional theory (DFT)
and efficient electronic structure methods, calculations of the
ideal strength have become routine for a wide variety of
bulk materials (pure metals, semiconductors, and compounds)
and yield reliable values [2,5,18–24]. On the experimental
side, recent material processing techniques allow to make
nanocrystalline or microcrystalline metals containing a low
defect density, such as whiskers, nanowires, and nanopillars.
This offers the opportunity to observe ultrahigh strength and
large elastic strains close to the theoretical limits [3,25–28]. For
example, the maximum shear strength of single-crystalline Mo
nanopillars determined from nanoindentation measurement is
15.8–16.7 GPa [26], which agrees very well with the theoretical
value 17.6–18.8 GPa [29]. However, the ideal strength of alloys
is still a young and mostly unexplored research area.

The recently developed high-entropy alloys (HEAs) con-
taining several equimolar or near equimolar elements represent
a new field in material design [30,31]. The solid solution
phases of HEAs are often face-centered cubic (fcc), body-
centered cubic (bcc), or hexagonal-close packed. It was found
that some HEAs in fcc solid solution phase composed of
the elements Cr, Mn, Fe, Co, and Ni, such as CrCoNi and
CrMnFeCoNi, normally exhibit many appealing properties
[31–34], e.g., high hardness, high yield strength, excellent
resistance to irradiation damage, good wear resistance, and
stable microstructure against heat treatment, which make
them attractive for a wide range of applications. For these
HEAs, despite the investigations of phase stability [35–37],
mechanisms of defect dynamics [38], and the deformation
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FIG. 1. Schematic for the bco structure used to model the uniaxial tension of an fcc crystal in the [110] direction: (a) the employed bco
unit cell embedded in the fcc structure (coincides with the body-centered tetragonal representation of the fcc cell), (b) unstrained bco structure,
(c) strained bco structure. The high-symmetry directions refer to the fcc structure.

mechanisms responsible for mechanical properties [33,39,40],
the exploration of their intrinsic strength and ductility is still
lacking. In this work, we make an attempt to fill this gap by
studying the alloying effect on the ideal tensile strength (ITS)
and ideal shear strength (ISS), and intrinsic ductility of four
paramagnetic (PM) fcc HEAs, CrCoNi, CrFeCoNi, CrMnFe-
CoNi, and Cr10Mn40Fe40Co10, by means of DFT calculations.
These four 3d transition metal HEAs were selected because
they were successfully synthesized as single-phase solid solu-
tions in the fcc structure, and their magnetic properties were
characterized [31,34,41–44]. Using the obtained ISS, we lend
further fundamental insight into the alloying effect on the
half-width of the dislocation core that is involved in studying
the plastic deformation behavior of materials.

Our work will facilitate a broader use of the ideal strength,
for example, in previously established theories of intrinsic
ductility. Furthermore, since the ideal strength sets the upper
limit to the attainable strength, our results enable researchers
to assess the gap remaining between the ideal strength and
the best achievable strength of HEAs. Our investigations
are expected to provide a guideline for further optimizing
HEAs.

II. COMPUTATIONAL METHOD

A. Ideal tensile strength

In this study, we are concerned with the ITS of fcc HEAs
loaded in the [110] direction. From previous studies for
fcc elements [17,45,46], it is expected that the minimum
ITS occurs in this direction. Figure 1 shows the employed
body-centered orthorhombic (bco) computational cell in the
unstrained state [Figs. 1(a) and 1(b)] and the strained state
[Fig. 1(c)]. In the absence of strain, the three lattice parameters
of the bco cell are (a0

bco,b
0
bco,c

0
bco) = (

√
2/2,

√
2/2, 1) afcc,

where afcc is the fcc equilibrium lattice parameter. It should be
noted that the bco cell in the zero-strain state coincides with the
body-centered tetragonal representation of the fcc cell. Under
distortion, a uniaxial tensile strain ε was applied along the [110]
direction (parallel to �a), and at each applied ε, the two unit-cell
lattice vectors perpendicular to the [110] direction (�b and �c)
were relaxed [Fig. 1(c)]. From this quasistatic procedure, we
obtained energy versus strain curves and derived stress versus
strain data. The true stress σ (ε) versus engineering strain ε

relation is given by

σ (ε) = 1 + ε

�(ε)

∂E

∂ε
, (1)

here �(ε) is the volume per atom at a given tensile strain ε,
and E is the strain energy. The engineering strain ε of the
simulation cell in the [110] direction is defined as

ε = abco − a0
bco

a0
bco

, (2)

where abco and a0
bco denote the lengths of the cell parallel to

the applied force in the strained and initial states (without
distortion), respectively. The first maximum on the stress-strain
curve (1) defines the ITS σm with corresponding maximum
strain εm.

The relevant tensile modulus E relating stress and strain in
the linear regime along the [110] direction is defined as [47]

E[110] = ν[110]

C12

[
C11(C11 + C12) − 2C2

12

]
, (3)

with

ν[110] = 4C12C44

C11(C11 + C12 + 2C44) − 2C2
12

. (4)

Here, the Cij (in Voigt notation) are the single-crystal elastic
constants for the cubic crystal.

B. Ideal shear strength

For the ISS investigation, we performed an affine shear
deformation on the close-packed (111) plane along the [112̄]
direction, typically the weakest slip system, i.e., all the atomic
planes were involved in the shear deformation. Figure 2 shows
the employed monoclinic computational cell in the undistorted
state [Fig. 2(a)] and the distorted state [Fig. 2(b)]. In the
undistorted state, the three lattice parameters of the monoclinic
cell are (a0

mc,b
0
mc,c

0
mc) = (

√
2/2,

√
6/2,

√
3) afcc. It should

be noted that the monoclinic cell in the zero-strain state
coincides with the orthorhombic representation of the fcc cell
(the monoclinic/orthorhombic cell contains six atoms). The
lattice vectors �a and �b spanning the basal plane are parallel to
the [11̄0] and [112̄] directions of the fcc structure, respectively,
and the lattice vector �c is perpendicular to this basal plane
and parallel to the [111] direction of the fcc structure. In this
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FIG. 2. Monoclinic lattice used for (111)[112̄] pure/simple affine
shear. The high-symmetry directions refer to the fcc structure, (a)
unstrained, (b) sheared.

work, two modes of shearing were considered following Ogata
et al. [48]: (i) no relaxation is allowed after shearing, which is
defined as simple affine shear; (ii) relaxation is allowed after
each shear step, the only constraint being the shearing angle,
which is identified as pure affine shear. The shear stress τ (γ )
is given by

τ (γ ) = 1

�(γ )

∂E

∂γ
, (5)

where �(γ ) is the volume at each shear strain γ . We define the
engineering shear strain γ in the same way as Ref. [49]:

γ = proj[112̄](�c)

proj[111](�c)
, (6)

where proj[112̄](�c) and proj[111](�c) denote the projection of
the lattice vector �c onto the [112̄] and [111] directions of
the undistorted fcc lattice, respectively. The first maximum
on the stress-strain curve (5) determines the ISS τm with
corresponding engineering maximum shear strain γm.

The shear modulus G relating stress and strain in the linear
regime along the [112̄] direction in the (111) plane is given as
[49]

Gu = 1
3 (C11 − C12 + C44) (7)

and

Gr = 3C44(C11 − C12)

4C44 + C11 − C12
. (8)

Gu and Gr govern the unrelaxed and relaxed cases, respec-
tively.

C. Half-width of dislocation core

Due to the important role that the dislocation core structure
plays in many phenomena of crystal plasticity, considerable
interest has been paid to study it [50–52]. Frequently employed
theoretical approaches are based on the framework of the
Peierls-Nabarro model [53,54]. In these approaches, the half-
width of the dislocation core ζ , representing the competition
between elastic energy and nonlinear misfit energy (for more
details, see Ref. [55]), becomes an important input parameter
for the prediction of the Peierls stress [9,55,56]. Following
Joós et al. [9], the relationship between the half-width of the

dislocation core ζ and the ISS τm can be described as

ζ = Kb

4πτm

. (9)

Here, K is an energy factor of the dislocation, which depends
on the type of dislocation and the crystalline direction of the
Burgers vector [56], and b is the magnitude of the Burgers
vector. An edge dislocation in the (111) glide plane with dislo-
cation line parallel to the [11̄0] direction and a Shockley partial
Burgers vector b = afcc

6 [112̄] was considered in this work. This
type of dislocation is very common in fcc crystals [56]. Here,
the energy factor K was obtained following Ref. [57].

D. Total-energy calculations

The employed ab initio approach is based on DFT [58]. We
used the generalized-gradient approximation of the Perdew-
Burke-Ernzerhof [59] functional to describe exchange and
correlation. The Kohn-Sham equations were solved using the
exact muffin-tin orbitals (EMTO) method [60,61]. The scalar-
relativistic approximation and the soft-core scheme were used.
The problem of chemical disorder in HEAs alloys was treated
within the coherent-potential approximation (CPA) and the to-
tal energy was computed via the full charge-density technique
[62–64]. Since the Curie temperatures of the studied HEAs are
well below room temperature [42–44], all calculations were
performed in the PM state. The PM state was described by the
disordered-local moment model [65] in the CPA framework.

III. RESULTS

A. Lattice constants, elastic moduli, ideal tensile and shear
strengths of fcc Ni and Al

Our previous work has shown that the EMTO approach
provides an efficient and accurate theoretical tool to study the
ITS of bcc crystals [24,66]. To evaluate the accuracy of the
present employed method for fcc crystals, we first performed
investigations for pure ferromagnetic Ni and nonmagnetic Al.
The reason to choose these two elements is the large number
of available data from previous investigations.

1. Lattice constants and elastic moduli

The obtained lattice parameter, relaxed tensile modulus
for tension along the [110] direction, and the shear modulus
relating stress and strain along the [112̄] direction in the (111)
plane together with values computed from experimental and
theoretical elastic constants are summarized in Table I. For
both metals, we can see that our calculated lattice parameters
agree very well with the presented experimental and theoretical
data. Compared with the experimental results, the deviation is
smaller than 1% for Ni, whereas theory and experiment coin-
cide for Al. The predicted tensile modulus E[110], unrelaxed
shear modulus Gu, and relaxed shear modulus Gr are in good
agreement with those derived from the experiments and theory.

2. Ideal tensile and shear strengths

Turning to the large strain regime, we calculated the ITS for
uniaxial loading along the [110] direction and the ISS for the
[112̄](111) shear system. In Table II, the calculated (relaxed)
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TABLE I. Lattice constant a (in Å), relaxed tensile modulus E[110]

(in GPa), and relaxed and unrelaxed shear moduli (in GPa) for Ni and
Al from our calculations and available theoretical and experimental
data.

System Method a E[110] Gr Gu

Ni This work 3.53 256.8 64.3 84.7
Ref. [67] 3.53 250.8 60.1 79.6
Ref. [45] 3.52 259.6 . . . . . .

Expt. Ref. [68] 3.51 250.0 68.7 80.7
Al This work 4.05 80.9 21.3 25.2

Ref. [67] 4.04 78.6 25.4 25.4
Ref. [23] 4.12 . . . 22.0 27.0
Ref. [49] 4.05 81.1 29.1 29.2

Expt. Ref. [69] 4.05 80.1 24.5 24.8

ITS σm, unrelaxed (simple affine) ISS τu
m, relaxed (pure affine)

ISS τ r
m, as well as the corresponding ideal strains are listed

and compared with previous theoretical data. It can be seen
that the σm and εm for both Ni and Al from our calculations
are very close to the reported values from the literature. For
Ni, our calculated unrelaxed ISS τu

m is somewhat larger than
the other theoretical data. However, for the relaxed ISS τ r

m we
note very good agreement. We find that both τu

m and τ r
m of Al

are in good agreement with previous calculations. Overall, our
calculated ideal shear strains for Ni and Al agree very well
with the previously reported data.

The above assessments show that the present method yields
a very accurate description of the elastic properties and ideal
strengths, which provide the support for the approach used in
this paper, and we continue with HEAs.

B. Ideal tensile strength of PM fcc HEAs

Figure 3 displays the tensile stress-strain relation-
ships for fcc CrCoNi, CrFeCoNi, CrMnFeCoNi, and
Cr10Mn40Fe40Co10 under [110] tension. The corresponding
ITSs are tabulated in Table III. The calculated equilibrium
lattice constants for these four fcc HEAs are listed in the
Appendix. For the ternary alloy CrCoNi, we find that the ITS

FIG. 3. The tensile stress curves of fcc CrCoNi, CrFeCoNi,
CrMnFeCoNi, and Cr10Mn40Fe40Co10 under [110] tension as a
function of applied strain.

σm is about 11.3 GPa. Compared to CrCoNi, the addition of
the fourth element Fe reduces the strength to 10.3 GPa. By
adding both Fe and Ni, the strength of CrCoNi decreases to
10.0 GPa. However, if Ni in CrCoNi is substituted with 40 at.%
Mn and Fe, we obtain an enhanced ITS amounting to 11.6 GPa
for Cr10Mn40Fe40Co10. Furthermore, from Fig. 3, we can see
that Cr10Mn40Fe40Co10 has the smallest ideal tensile strain,
whereas CrCoNi has the largest one.

The changes in the lattice parameters of the employed bco
computational cell (Fig. 1) as a function of applied tensile strain
for Cr10Mn40Fe40Co10 under [110] tension are shown in Fig. 4.
As is evident, abco displays a linear increase with increasing
strain, whereas bbco and cbco show a nonlinear increase and
decrease, respectively. The other three HEAs possess similar
lattice parameter changes, and we omit to show them.

Together with the E[110] derived from the computed elastic
constants (see the Appendix), we now analyze the dimension-
less ITS [73]

σ ∗ = σm/E[110]. (10)

TABLE II. Ideal tensile and shear strengths (in GPa) as well as the corresponding strains (%) for Ni and Al from our calculations and
available theoretical data.

Simple affine shear/ Pure affine shear/
Tension/[110] [112̄](111) [112̄](111)

System Method σm εm τu
m γ u

m τ r
m γ r

m

Ni This work 10.1 7.9 7.1 16.2 5.0 15.1
Ref. [45] 10.5 8.0 . . . . . . 5.1 12.0
Ref. [46] 9.5 8.0 . . . . . . . . . . . .

Ref. [67] . . . . . . 6.3 16.0 5.1 14.0
Ref. [70] . . . . . . 6.3 15.0 5.2 15.0

Al This work 5.4 14.1 3.8 21.3 3.3 20.2
Ref. [71] 4.9 14.0 · · · · · · 3.3 18.5
Ref. [49] . . . . . . 3.8 21.2 2.8 19.0
Ref. [67] . . . . . . 3.8 . . . 3.0 . . .

Ref. [72] . . . . . . . . . . . . 3.1 . . .
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TABLE III. Ideal tensile strength σm (in GPa), tensile modulus
E[110] (in GPa), dimensionless strength σ ∗, and resolved shear stress
(RSS) for the [112̄](111) shear system from our calculations (in GPa).

HEAs σm E[110] σ ∗ RSS

CrCoNi 11.3 270.0 0.042 5.3
CrFeCoNi 10.3 275.7 0.037 4.8
CrMnFeCoNi 10.0 262.4 0.038 4.7
Cr10Mn40Fe40Co10 11.6 328.1 0.035 5.4

The values are shown in Table III. We find that CrCoNi has the
largest σ ∗ and Cr10Mn40Fe40Co10 exhibits the smallest one.
We notice that our predicted σ ∗ for all considered alloys are
smaller than the “ideal” value σ ∗

ideal = 0.05, which is often
used to estimate the ITS of fcc systems [73] on the basis of
calculated E[110]. For σ ∗

ideal = 0.05, the deformation is assumed
to follow a sinusoidal stress-strain curve at a constant unit-cell
volume [73]. The estimated σ ∗

ideal differs from our computed
value by 20%–40%. This observation indicates that the use of
σ ∗

ideal will lead to a large overestimation of the ITS for HEAs
in comparison with the ab initio calculations.

C. Ideal shear strength of PM fcc HEAs

The shear stress-strain curves under [112̄](111) shear de-
formation are plotted in Fig. 5, and the corresponding ISS
values are presented in Table IV. For the pure affine shear
mode (relaxed), Cr10Mn40Fe40Co10 has the largest maximum
strength τ r

m = 5.3 GPa, and CrMnFeCoNi has the smallest one
τ r

m = 4.4 GPa. Interestingly, we find that the alloying effects

FIG. 4. Variation in the lattice parameters of the bco computa-
tional cell (in units of afcc) for Cr10Mn40Fe40Co10 as a function of
engineering tensile strain under [110] tension.

on the ISS are the same as on the ITS, i.e., CrFeCoNi and
CrMnFeCoNi have smaller ISSs than that of CrCoNi, but the
ISS of Cr10Mn40Fe40Co10 is the largest. From Fig. 5, we can see
that the significantly higher ideal shear strength and strain on
the simple affine shear mode are clearly different from those
corresponding to the pure affine shear deformation path for
each HEA. Compared to τ r

m, τu
m is found to be about two times

larger for all considered HEAs. This reflects that the relaxation
has a significant effect on the ISS of HEAs.

FIG. 5. The shear stress of fcc CrCoNi, CrFeCoNi, CrMnFeCoNi, and Cr10Mn40Fe40Co10 under [112̄](111) shear deformation as a function
of applied shear strain.
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TABLE IV. Unrelaxed τu
m and relaxed τ r

m ideal shear strengths (in GPa), unrelaxed Gu and relaxed Gr shear moduli (in GPa) for the
[112̄](111) slip system, unrelaxed τ ∗

u and relaxed τ ∗
r dimensionless strengths, the ratios σm/τ r

m and B/G, the half-width of the dislocation core
(in Å) for an edge dislocation, and the length of the partial Burgers vectors b (in Å). The data in parentheses were derived from the initial slope
of the stress-strain curves.

HEAs τu
m τ r

m Gu Gr τ ∗
u τ ∗

r σm/τ r
m B/G ζ ζG b

CrCoNi 9.1 4.8 89.6 (93.0) 61.5 (61.4) 0.104 0.078 2.35 2.20 3.70 2.63 1.44
CrFeCoNi 8.8 4.5 92.6 (95.2) 65.9 (66.5) 0.095 0.068 2.29 1.86 3.90 2.41 1.44
CrMnFeCoNi 9.1 4.4 90.8 (97.4) 61.7 (70.6) 0.100 0.071 2.28 1.68 3.89 2.45 1.44
Cr10Mn40Fe40Co10 10.8 5.3 112.0 (112.9) 85.3 (89.6) 0.097 0.062 2.18 1.53 3.70 2.09 1.43

With the above obtained ITSs σm under [110] direction
(shown in Table III), we derived the maximum resolved shear
stresses on [112̄](111) via σresol. = σm × S, where S is the
Schmid factor of the [112̄](111) slip system. The calculated
data are summarized in Table III. Compared with the obtained
ISS τ r

m on [112̄](111), we find that the resolved shear stress is
smaller for each HEA. This suggests that slip intrudes prior to
tensile failure for the [110] direction [74]. In other words, all
considered HEAs shear in preference to cleaving under [110]
tension.

The variation in the lattice parameters of the employed
monoclinic computational cell under pure affine shear (Fig. 2)
is illustrated in Fig. 6 for Cr10Mn40Fe40Co10. One can see that
the lattice parameter amc increases with increasing shear strain,
whereas the lattice parameter bmc reduces. Shearing naturally
leads to a stretching of the lattice constant cmc. We observe that
the projection of �c onto the [111] direction remains virtually
unchanged (the filled symbols in Fig. 6). This indicates that the
close-packed layer distance is hardly affected by relaxation up
to γ r = 21%. It should be noted that the other three HEAs
exhibit similar lattice variations, and we omit to show them.

In Table IV, the calculated relaxed and unrelaxed shear
moduli Gr and Gu, respectively, obtained from the fcc elastic
constants are compared with the values derived from the
initial slope of the stress-strain curves. The results from the

FIG. 6. Variation in the lattice parameters of the monoclinic com-
putational cell (in units of afcc) for Cr10Mn40Fe40Co10 as a function
of engineering shear strain under [112̄](111) shear deformation. The
solid symbols denote the projection of �c onto the [111] direction of
the undistorted fcc lattice.

two approaches are in reasonable agreement with each other.
Using the shear moduli obtained from the elastic constants, we
calculated the dimensionless ISS [15]

τ ∗
r/u = τ r/u

m /Gr/u, (11)

for both relaxed (index r) and unrelaxed (index u) cases.
From the data collected in Table IV, we find that the τ ∗

u are
close to the classic Frenkel estimate τ ∗ ≈ 0.11 [15,75]. For
the relaxed state, the obtained τ ∗

r are about 0.06–0.07. Our
results demonstrate that the estimates of the ISS through the
Frenkel model lead to much larger strengths than the ab initio
calculated ones. For example, if the Frenkel estimate (0.11)
were employed, the obtained strength would be up to two times
larger than the calculated data.

Using DFT, Ogata et al. recently studied the ISS of many
crystalline solids exhibiting different crystal structures and
bonding types [67], among them simple and transition metals
and ceramics. They found that the intrinsic shearability, defined
by the maximum shear strain γ r

m of a crystal, correlates with the
degree of directionality of the bonding, i.e., larger shearability
corresponds to more directional bonding. Furthermore, they
reported a modified Frenkel model, which gives a universal
correlation between the ISS and shearability according to

τ r
m ≈ 2Grγ

r
m/π. (12)

The obtained τ r
m/Gr versus γ r

m from our calculations for the
four considered HEAs together with the reported data from
Ogata et al. are plotted in Fig. 7. Interestingly, in contrast
to the classical Frenkel model, our values are nearly on the
universal line reported by Ogata et al. Moreover, it can be
seen that CrCoNi and Cr10Mn40Fe40Co10 exhibit the largest
and smallest intrinsic shearability, respectively. In other words,
CrCoNi may sustain the largest range of shear deformation
among these four considered HEAs. The results in Fig. 7 may
also indicate that the bonds in CrCoNi are more directional
than in Cr10Mn40Fe40Co10.

D. Half-width of dislocation core

With the help of the obtained ISS τ r
m, we derived the

half-width of the dislocation core ζ using Eq. (9) for an edge
dislocation. The values of ζ for the present four HEAs are listed
in Table IV. Our results show that CrFeCoNi and CrMnFeCoNi
exhibit similar ζ ∼ 3.90 Å, which are about 0.2 Å larger than
those of CrCoNi and Cr10Mn40Fe40Co10. Furthermore, we find
that the values of ζ are approximately 2.6–2.7 times larger
than the length of the corresponding Burgers vector b. This
indicates that these four HEAs have wide dislocation cores. In
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FIG. 7. The obtained τ r
m/Gr and γ r

m from our calculations together
with the data reported from Ogata et al. [67] (open blue circles,
selected elements indicated).

Table IV, we also present the estimated ζG using τm ≈ 0.11Gr

on the basis of the classical Frenkel model. Compared to ζ ,
the estimated ζG are smaller. The largest difference in the
half-width occurs in Cr10Mn40Fe40Co10 and amounts to 44%.
The smallest change is in CrCoNi, which is ∼29%. Since the
half-width of the dislocation core is involved in many models
that are used to obtain critical stresses, our results indicate that
large discrepancies regarding the evaluation of the stress may
be obtained. For example, if we adopt the analytic formula of
Joós et al. [9] for wide dislocations, the use of the estimated ζG

will lead to a larger critical stress compared to that associated
with ζ .

E. Intrinsic ductility/brittleness

Ductility is a crucial parameter for the performance of
structure materials. Its important role in engineering and
materials science has motivated a lot of research intended to
develop various types of criteria characterizing the ductility
of crystals. For instance, a widely used empirical criterion
follows Pugh [76] and involves the ratio of polycrystalline
bulk modulus (B) to polycrystalline shear modulus. These
moduli are easily obtained from ab initio calculations of
single-elastic constants through averaging methods [77]. A
fracture-related and physically based criterion that involves the
ITS and the ISS for assessing intrinsic ductility of a material
was introduced by Kelly et al. [4]. This criterion attempts to
capture the competition between the ease to brittle cleavage
fracture (characterized by the ITS) versus the ease to plastic
flow (characterized by the ISS) at the tip of a sharp crack.

Using the above obtained ITS and ISS, we calculated the
strength ratio

υ = σm/τ r
m (13)

for the four HEAs, which are presented in Table IV. We observe
that the order of υ is CrCoNi > CrFeCoNi > CrMnFeCoNi >

Cr10Mn40Fe40Co10. A smaller υ is interpreted as an increased
probability for crack propagation from the crack tip relative to
crack blunting and suggests a reduced ductility. The obtained

FIG. 8. Correlation between the strength ratio υ and the shear
instability γ r

m. The inset shows the ratio B/G against the shear
instability γ r

m.

order indicates that CrCoNi is the most ductile alloy among
these four HEAs. In Table IV, we list the values of B/G for
comparison. The larger the B/G ratio is, the more ductile is
the material [76]. We find that the order of B/G is consistent
with the order of υ. In order to confirm the observed trend in
the intrinsic ductility, one may envisage transmission electron
microscopy experiments of precracked and cross-sectioned
specimens to investigate damage and microstructure near and
ahead of a sharp crack tip.

Interestingly, we notice that there is a strong linear correla-
tion between strength ratio υ and shear instability γ r

m, whereas
a weak positive correlation is found between B/G and γ r

m (see
Fig. 8). Since γ r

m measures the bond directionality of materials
[67], the observed correlation may indicate that υ not only
reveals the ductility, but may also distinguish the directional
characteristics of the bonding. The above analysis suggests
that υ may be a better indicator of ductility/brittleness for fcc
HEAs than previously employed measures. Nevertheless, more
studies are needed to further verify this observed correlation.

IV. CONCLUSIONS

Ab initio alloy theory as formulated in the coherent-potential
approximation and implemented in the EMTO code was
employed to study the ITS and ISS of four random HEAs with
fcc structure and PM state. To benchmark the computational
accuracy, the ITS and ISS of fcc Ni and Al were calculated.
The obtained data for both Ni and Al agree very well with
the available theoretical values and thus confirm that our
methodology has the accuracy needed for such calculations.

For the HEAs, we found that the ITS of CrCoNi was reduced
by adding the fourth element Fe, and was decreased even
more when both Fe and Mn were introduced. However, if
Ni in CrCoNi was substituted with 40 at.% Mn and Fe to
form a nonequimolar HEA Cr10Mn40Fe40Co10, the ITS was
enhanced. The alloying effects on the ISS are the same as on
the ITS. Compared to the unrelaxed ISS, a ∼50% reduction
of the ISS was found after relaxation for all considered HEAs.
We showed that the derived dimensionless tensile and shear
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strengths from our ab initio calculations are significantly
smaller than the data estimated from two widely used empirical
models. We noted that the linear correlation between the
dimensionless shear strength and shear instability is consistent
with the modified Frenkel model. We observed that CrCoNi
has the largest shear instability, whereas Cr10Mn40Fe40Co10

has the smallest one. With the help of the computed ISS,
we derived the half-width of the dislocation core for an edge
dislocation in the (111) plane with dislocation line along the
[11̄0] direction and partial Burgers vector afcc/6[112̄]. The
estimated values from the empirical model were found to be
about 29% to 44% smaller than those predicted from our
ab initio calculations. The alloying effect on the intrinsic
ductility was investigated using the strength ratio υ and the
empirical criterion B/G. Both criteria suggested that CrCoNi
is intrinsically more ductile in comparison with the other three
HEAs. Furthermore, we revealed a strong linear correlation
between υ and the shear instability, whereas a weak positive
correlation was found between B/G and the shear instability.
Our observation indicates that υ may be a better measure of
ductility compared to B/G for the fcc HEAs.

Our study offers a consistent starting point for further
theoretical modeling of the micromechanical properties of the
investigated fcc HEAs. In addition, the present results demon-
strate that the EMTO-CPA approach provides an efficient and
accurate theoretical tool to design both the ITS and the ISS of
fcc random solid solutions and uncover the alloying effect on
these fundamental physical parameters.
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APPENDIX: LATTICE CONSTANTS AND SECOND-ORDER
ELASTIC CONSTANTS OF HEAs

Table V lists the calculated equilibrium lattice constants
and elastic constants of the four HEAs using the methodology
detailed in Ref. [78].

TABLE V. Computed equilibrium lattice constant (in Å) and
second-order elastic constants (in GPa) for HEAs.

HEAs afcc C11 C12 C44

CrCoNi 3.526 290.1 197.3 175.9
CrFeCoNi 3.526 266.6 166.4 177.6
CrMnFeCoNi 3.526 240.0 146.9 179.3
Cr10Mn40Fe40Co10 3.505 286.6 154.3 203.6
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