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Nonlinear coupled mode approach for modeling counterpropagating solitons in the presence
of disorder-induced multiple scattering in photonic crystal waveguides
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We present the analytical and numerical details behind our recently published article [Phys. Rev. Lett. 118,
253901 (2017)], describing the impact of disorder-induced multiple scattering on counterpropagating solitons in
photonic crystal waveguides. Unlike current nonlinear approaches using the coupled mode formalism, we account
for the effects of intraunit cell multiple scattering. To solve the resulting system of coupled semilinear partial
differential equations, we introduce a modified Crank-Nicolson-type norm-preserving implicit finite difference
scheme inspired by the transfer matrix method. We provide estimates of the numerical dispersion characteristics
of our scheme so that optimal step sizes can be chosen to either minimize numerical dispersion or to mimic
the exact dispersion. We then show numerical results of a fundamental soliton propagating in the presence of
multiple scattering to demonstrate that choosing a subunit cell spatial step size is critical in accurately capturing
the effects of multiple scattering, and illustrate the stochastic nature of disorder by simulating soliton propagation
in various instances of disordered photonic crystal waveguides. Our approach is easily extended to include a wide
range of optical nonlinearities and is applicable to various photonic nanostructures where power propagation is
bidirectional, either by choice, or as a result of multiple scattering.

DOI: 10.1103/PhysRevB.97.085432

I. INTRODUCTION

Photonic crystals (PCs) are periodic dielectric structures
offering strong light confinement, thereby enhancing light-
matter interactions. As manufacturing technologies continue to
improve, there has been a great deal of interest in investigating
enhanced nonlinear effects in PCs for a wealth of applications
such as on-chip all-optical switching and optical memory [1].
A photonic crystal waveguide (PCW) is a crucial component in
PC-based integrated circuits and is created by introducing a line
defect in a PC slab, which is capable of slowing down light by
orders of magnitude compared to standard optical waveguides
due to the presence of slow-light modes.

In recent years, there has been considerable experimental
progress in PC devices exploiting second- and third-order non-
linearities. Second harmonic generation (SHG) was exploited
by Liu et al. [2] to experimentally realize a diffraction-free
beam using a two-dimensional (2D) PC. In typical experi-
ments, one uses PCWs to achieve slow light ranging between
c/10 and c/60, which is exploited to enhance the optical
Kerr effect and other higher-order nonlinearities. Self-phase
modulation (SPM) in the presence of two-photon absorption
(2PA) and free-carrier absorption (FCA) was observed by
Monat et al. [3], while a nontrivial scaling of SPM and three-
photon absorption (3PA) was investigated by Husko et al. [4].
Dispersion-engineered PCWs (where the lattice parameters
are adjusted in comparison to the usual W1 PCW, which
simply has a row of holes removed) with a region of constant
group index were used to further enhance third-order nonlinear
effects as observed by Shinkawa et al. [5], while Colman
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et al. [6] utilized dispersion-engineered PCWs to suppress
3PA which was critical in the demonstration of temporal pulse
compression of higher-order solitons. Giant anomalous self-
steepening of optical pulses has been predicted and observed
by Husko et al. [7]. Spectral blueshifts and a temporal pulse
advance due to increased free-carrier dispersion (FCD) and
FCA were demonstrated using an advanced experimental tech-
nique to obtain time-resolved pulse measurements [8]. Other
demonstrated nonlinear optical (NLO) effects include third
harmonic generation and highly efficient four-wave mixing
[9–11].

Most theoretical approaches for modeling the Kerr effect
rely on the nonlinear Schrödinger equation (NLSE), developed
to study soliton propagation in optical fibers [12]. Since Bloch
modes of a PCW have a much smaller effective mode area when
compared to traditional waveguides, new effects such as 3PA,
FCD, or self-steepening have since been added to the NLSE to
make it more accurate, but unfortunately the term that models
linear loss due to manufacturing imperfections in PCWs
remains unchanged. Neglecting all such terms except losses,
all of the aforementioned experiments still use the model
c′(x) = −αx, where c(x) denotes the slowly varying mode
envelope and α(vg) � 0 is a constant that incorporates details
of the linear propagation loss mechanism. Disorder-induced
losses in PCWs can be divided into two main categories,
multiple scattering and radiation losses [13]. Radiation losses
arise as a result of coupling to the continuum of radiation modes
above the light line while multiple scattering losses arise from
the stochastic coupling between the counterpropagating modes
traveling forwards and backwards which distorts both the am-
plitude and phase of the incident wave. Radiation losses usually
dominate in standard (i.e., not periodic) optical waveguides,
and hence α simply denotes the radiation loss [14]. In PCWs,
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however, it is well established that multiple scattering is the
dominant loss mechanism [13], and this is particularly true for
the following: (i) the slow-light regime [15,16], (ii) long PCWs
containing thousands of unit cells, and (iii) when introducing
large amounts of deliberate disorder. Since including multiple
scattering would require solving two coupled NLSEs for the
counterpropagating modes which inherently is more complex,
all the previous NLSE models attempt to resolve this issue by
approximating multiple scattering with backscattering which
can easily be incorporated as an incoherent average within
α [17]; in this case, where backscattering refers to only
one irreversible multiple scattering event, so once power is
scattered into the counterpropagating mode, it is assumed that
it cannot be recycled back into the propagating mode.

The consequence of the above approximation is that it
leads to the Beer-Lambert law for power attenuation, which is
known to break down in the slow-light regime of PCWs [18].
To address this critical issue of multiple scattering, Patterson
et al. [15,19] and Mazoyer et al. [16] used a coupled mode
theory (CMT) formalism in the frequency domain to account
for the effects of disorder-induced multiple scattering; their
numerical analyses were performed using the transfer matrix
method (TMM), and were limited to the linear regime; these
works associated the fine spectral resonances present in ex-
perimental linear spectra with multiple scattering, and similar
effects can also be clearly seen in the nonlinear spectra of
Refs. [3–5,7], yet are unaccounted for in their NLSE models.
Although some previous works have partly studied coupling
between counterpropagating modes in the context of examin-
ing nonlinear bistability in finite periodic media [20,21], they
made the assumptions of weak scattering and neglecting the
effects of group velocity dispersion (GVD). For PCWs, neither
of these assumptions remains valid.

Recently, we introduced a new coupled mode approach
to describe nonlinear optical interactions in the presence of
disorder-induced multiple scattering [22]. To compliment that
Letter, here we present the full derivation of the equations
presented in Ref. [22] and describe the numerical implemen-
tation in detail. In particular, we address the shortcoming of
current approaches by deriving coupled mode equations in the
presence of anomalous GVD, that include both linear coupling
between the counterpropagating modes due to multiple scat-
tering and nonlinear coupling due to optical nonlinearities. As
an example, we consider the influence of multiple scattering
on third-order Kerr effects, namely, SPM and cross-phase
modulation (XPM), as shown schematically in Fig. 1. Most
importantly, however, since our main equations [Eqs. (26)
and (27)] cannot be numerically solved using traditional finite-
difference schemes for NLSEs [23], we extend the TMM to
the time domain by using a modified Crank-Nicolson-type
implicit scheme. Our numerical scheme is unconditionally
stable, obeys the power conservation law, and we provide
estimates of third and fourth-order numerical dispersion, so one
is able to choose the appropriate step sizes for the simulation.

The layout of the rest of our paper is as follows: In Sec. II A,
we express the common CMT formalism used by the optics
community using a reformulation of Maxwell’s equations
that specializes in dealing with power flow. In Sec. II B, we
combine multiple scattering and the Kerr effect, respectively, to
derive the coupled equations describing the evolution of mode
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FIG. 1. Top down view of a W1 PCW with disorder shown
schematically by the displaced red holes. As disorder breaks spatial
symmetry, scattering between the forward (c+) and backward (c−)
mode envelopes is shown at a transverse cross section (y-z plane)
represented by the vertical black line. The nonlinear SPM/XPM
interactions are caused by the enhanced intensity represented by the
thickness of the orange arrows.

envelopes of counterpropagating modes, along with providing
analytical expressions for the coupling coefficients in terms of
the ideal Bloch modes. In Sec. III, we compare our approach to
Bhat and Sipe’s [24] to highlight the weaknesses and strengths
of both approaches and discuss how to choose between them
depending upon the problem of interest. In Sec. IV, we outline
the development of our implicit finite-difference scheme used
to solve the coupled system presented previously. Lastly, in
Sec. V, we provide numerical examples that highlight the
numerical dispersion characteristics and the convergence of
the scheme. In particular, our numerical results illustrate the
stochastic nature of disorder-induced multiple scattering and
show that a subunit cell spatial step size must be chosen in
order to accurately capture the effects of multiple scattering.

II. THEORY

A. CMT formalism

Denoting x as the propagation direction of the Bloch mode
(see Fig. 1), Maxwell’s equations can be reformulated as a
Schrödinger-like equation in the frequency domain [25] as

Aψ(ω) = −iB∂xψ(ω), (1)

with A,B,ψ given by

A =
[
ωε − 1

ω
∇t × 1

μ0
∇t× 0

0 ωμ0 − 1
ω
∇t × 1

ε
∇t×

]
, (2)

B =
[

0 −x̂×
x̂× 0

]
, ψ =

[
Et

Ht

]
, (3)

where A,B are Hermitian operators that contain the curl
and divergence operations, ε = ε0ε where ε0 is the vacuum
permittivity, ε is the relative dielectric permittivity, and ψ plays
the similar role of a wave function composed of Et ,Ht , which

085432-2



NONLINEAR COUPLED MODE APPROACH FOR MODELING … PHYSICAL REVIEW B 97, 085432 (2018)

denote the transverse components of the electromagnetic fields.
This Schrödinger-like equation allows us to use the language of
operator theory to express our results more elegantly without
being bogged down by tedious operations of multivariate
calculus. Since PCWs possess discrete translational symmetry
in x, ψ has the Bloch mode form

ψ(ω) = eikxϕ(x,ω), ϕ(x + a) = ϕ(x), (4)

where ϕ = [Et Ht ]T and E,H represent the periodic part of
the Bloch mode at wave vector k. Using the Bloch mode form
in Eq. (1) yields a generalized eigenvalue problem (GEP),

Cϕk = kBϕk, C = A + i∂xB. (5)

The operator C was shown to be Hermitian by Song et al. [26],
but since B is not positive definite [27], one derives a general-
ized orthogonality condition as [28,29]

〈ϕk,Bϕk′ 〉 = δk∗k′ x̂ ·
∫

(E ′∗
t × Ht + Et × H′∗

t ) · da, (6)

where k∗ denotes the complex conjugate and we abbreviate
E ′∗

t ≡ E∗
tk′ , Et ≡ Etk (similarly for the H field). For k∗ = k′, we

must have Re[k] = Re[k′], Im[k] = −Im[k′]. For a transverse
electric (TE)-like (z-even) guided mode in a PCW, Im[k] = 0
(below the light line), so one gets 〈ϕk,Bϕk〉 = 4Sx , where Sx

denotes the x component of the time-averaged Poynting vector.
Therefore, the generalized orthogonality condition Eq. (6)
measures the power flow in the propagation direction. The
key feature in Eq. (6) is da, an infinitesimal area element of
the transverse cross section of the PCW. While this relation
is well known for optical waveguides possessing continuous
translational symmetry [28], the fact that such a relation also
holds in PCWs seems to have been first noticed by Michaelis
et al. [29] and has been in common use throughout PC-related
literature [15,26,30]. It essentially states that despite the spatial
variations of the Bloch mode within the unit cell, the power
flow through any transverse cross section is constant. Lastly,
the guided modes can be grouped into two disjoint half spaces,
U+ and U−, where ± represents the direction of power flow,
so U+ contains all the forward traveling modes and vice versa
for U−.

We now use this reformulation to tackle both spatially
varying linear and nonlinear perturbations in PCWs. Let the
perturbation be denoted by 
A(x), so we write the operator A

as

A(x) = A(0) + 
A(x), (7)

where A(0) denotes the unperturbed operator. We now restrict
ourselves to purely guided modes (k ∈ R), so we can express
ψ as

ψ(x,ω) =
∑
m

c+
m(x,ωm)ψ+

m (ωm) + c−
m(x,ωm)ψ−

m (ωm), (8)

where c±
m(x,ωm) are the expansion coefficients whose spatial

evolution we desire, and ψ±
m are the unperturbed guided modes

from both the half spaces U±, respectively, corresponding
to eigenvalues k±

m . We note that due to the time-reversal
symmetry of Maxwell’s equations, two counterpropagating
modes, although traveling in opposite directions, must oscillate
at the same frequency, which we denote by ωm [31]. In the
optics literature, these expansion coefficients are often called

slowly varying mode envelopes. Inserting Eqs. (7) and (8)
along with the Bloch mode form of the unperturbed modes
ψ±

m = eik±
mxϕ±

m into Eq. (5), we adapt the time-dependent
perturbation technique from quantum mechanics [32] and use
the orthogonality relation Eq. (6) to derive the following set of
coupled ordinary differential equations (ODEs) for the mode
envelopes c±

n (x,ωn),

dc+
n

dx
= i

‖ϕ+
n ‖2

∑
m

〈ϕ+
n ,
Aϕ+

m〉ei(k+
m−k+

n )xc+
m

+〈ϕ+
n ,
Aϕ−

m〉ei(k−
m−k+

n )xc−
m, (9)

dc−
n

dx
= −i

‖ϕ−
n ‖2

∑
m

〈ϕ−
n ,
Aϕ+

m〉ei(k+
m−k−

n )xc+
m

+〈ϕ−
n ,
Aϕ−

m〉ei(k−
m−k−

n )xc−
m, (10)

where ‖·‖ denotes the norm of the wave function given by
‖ϕ+

n ‖2 = |〈ϕ+
n ,Bϕ+

n 〉| = 4|Sx |, and the inner products repre-
sent the coupling coefficients. The minus sign in Eq. (10) arises
due to the opposite direction of power flow of the backwards
mode, and since the magnitude of the power flow is the same in
both directions, one has ‖ϕ+

n ‖ = ‖ϕ−
n ‖. By using the relation

between the Poynting vector and the group velocity [31], we
can rewrite the norm as

‖ϕ±
n ‖2 = ε0

2vg

a
UE, (11)

where vg denotes the magnitude of the group velocity at wave
vector k±

n and UE is a measure of the electromagnetic energy
stored in the Bloch mode given by [31]

UE =
∫

cell
ε(r)E∗ · E dr. (12)

Since radiative modes (i.e., above the light line) are not
included in Eqs. (9) and (10), the coupled ODEs satisfy the
power conservation law [33],

d

dx

∑
n

(|c+
n |2 − |c−

n |2) = 0. (13)

The coupled system of ODEs above, and its different
representations, have seen widespread use in optics research.
In terms of studying linear perturbations, they were used as far
back as the late 1970’s to study propagation losses in optical
waveguides [28]; Johnson et al. used these equations to study
low-loss photonic crystal fibers and efficient taper transitions
in PCs [27,34], and, recently, Song et al. [26] perturbatively
solved these equations to gain analytical insight into disorder-
induced losses in PCWs. For nonlinear perturbations, these
equations (especially Eq. (9)), are the starting point for deriving
the NLSEs used in nonlinear fiber optics [12].

B. Disorder and the Kerr effect

An electromagnetic perturbation can be represented as a
change in the relative dielectric permittivity, so that

ε(r) = ε(0)(r) + 
ε(r), (14)

where ε(0) is the unperturbed relative dielectric permittivity
and 
ε represents the perturbation which could be linear or
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nonlinear. In operator form, this is expressed as


A =
[
ω
ε 0

0 1
ω
∇t × 
ε

ε(0)ε
∇t×

]
. (15)

Now, using this in Eqs. (9) and (10), we evaluate the inner
products by performing an integration by parts and using the
Taylor approximation 1

ε
= 1

ε(0) − 1
(ε(0))2 
ε + O(
ε2). To first

order in 
ε, the integral expressions are given by

〈ϕ±
n ,
Aϕ±

m〉 = ωnε0

∫
E±∗

n · 
εE±
mda, (16)

〈ϕ±
n ,
Aϕ∓

m〉 = ωnε0

∫
E±∗

n · 
εE∓
mda, (17)

which are similar to the ones derived by Marcuse for uni-
form (i.e., non-PC) optical waveguides [28]. These simple
expressions can be used to evaluate both linear and nonlin-
ear perturbations. We can generalize the above expressions
to dielectric perturbations that occur in high-index contrast
structures such as PCWs using the formalism provided by
Johnson et al. [35,36],

〈ϕ±
n ,
Aϕ±

m〉 = ωn

∫
E±∗

n · P[E±
m ]da, (18)

〈ϕ±
n ,
Aϕ∓

m〉 = ωn

∫
E±∗

n · P[E∓
m ]da, (19)

where P[E±
m ] now represents a polarization operator acting

on the field E±
m . Physically, this represents the external po-

larization that arises due to a linear or nonlinear dielectric
perturbation.

We now consider the linear perturbation to be caused by
fabrication disorder (or indeed deliberate structural disorder)
in PCWs which mainly couples the two counterpropagating
modes at ωn ≡ ω0, as shown in Fig. 1. Thus, in Eqs. (9)
and (10), we assume m = n, k+ = k, k− = −k, and denote
E±(ω0) as the forward and backward modes with c±(x,ω0) as
their mode envelopes. We shall use the weak-index contrast
model to represent disorder as [13]

Pdis[E±
m ] = ε0
εdisE±

m , (20)

where 
εdis represents the linear perturbation due to disorder
and is a dimensionless quantity. While other polarization mod-
els better suited to represent disorder in high-index contrast
structures have been introduced in previous works [36], they
introduce additional computational overhead in the numerical
calculations. Patterson et al. [15] have previously demonstrated
that the weak-index contrast model can be used to compute
transmission spectra that includes the effects of multiple scat-
tering and is in excellent agreement with experiments. From
our previous experience, the choice of a polarization model is

more relevant when dealing with disorder-induced resonance
shifts [37]. Therefore, the weak-index contrast model is a
reasonable starting choice to demonstrate our main formalism.

For the nonlinear perturbation, we consider the Kerr effect
at the frequency of the counterpropagating beams ω0. In
component form, the nonlinear operator can be approximated
as

P
(3)
i [E±(ω0)] ≈ ε0χ

(eff)±
ii (ω0)E±

i (ω0), (21)

where the Einstein summation convention is implied, and
χ

(eff)±
ii is the effective susceptibility tensor approximating the

Kerr nonlinear response and is derived to be [38]

χ
(eff)+
ii = χ (3)

[|c+|2(|E+|2 + 2|E+
i |2) + 2|c−|2|E−|2

+ 4e−i2kxc−c+∗E−
i E+∗

i

+ ei2kxc+c−∗(E+
l E−∗

l + 2E+
i E−∗

i )
]
,

χ
(eff)−
ii = χ (3)

[|c−|2(|E−|2 + 2|E−
i |2) + 2|c+|2|E+|2

+ 4ei2kxc+c−∗E+
i E−∗

i

+ e−i2kxc−c+∗(E−
l E+∗

l + 2E−
i E+∗

i )
]
, (22)

where |E±|2 = ∑
i |E±

i |2. In deriving the expressions above,
we have made the following approximations: (i) Since
|χ (eff)±

ii | � |χ (eff)±
ij |, i = j , we consider only diagonal com-

ponents of the effective susceptibility tensor; and (ii) since
most nonlinear experiments with PCWs operate far from
the electronic resonances of the system [3,4,6], a nonlinear
electronic response of the material is assumed, so we only need
to consider one tensor component of χ

(3)
ijkl because χ (3)

xxyy =
χ (3)

xyxy = χ (3)
xyyx = 1

3χ (3)
xxxx ≡ χ (3) and the rest are zero [38].

We next use the linear and nonlinear polarization operations
of Eqs. (20) and (21) in Eq. (9), and by choosing to normalize
the mode energy to unity UE = 1, we derive the ODE for
c+(ω0),

dc+

dx
= −Qradc

+ + i
aω0

2vg

[
Q(+,+)c

+ + Q
|+|
(+,+)|c+|2c+

+ (
Q

|−|
(+,+) + 2Q

(+,−)
(+,−)

)
2|c−|2c++Q

(+,−)
(+,+)e

i2kxc−∗(c+)2

+e−i2kx
(
Q(+,−)c

− + Q
|−|
(+,−)|c−|2c− + (

Q
|+|
(+,−)

+ 2Q
(−,+)
(+,+)

)
2|c+|2c− + Q

(−,+)
(+,−)e

−i2kxc+∗(c−)2
)]

, (23)

where Qrad is an additional term introduced to account for
the radiation loss due to coupling with the continuum of the
radiation modes. The coupling coefficients are grouped as
follows (where the frequency dependence of the fields is kept
implicit):

Multiple Scattering: Q(+,+)(x) = ω0

∫

εdisE+∗ · E+da, Q(+,−)(x) = ω0

∫

εdisE+∗ · E−da,

Radiation Loss: Qrad = −N

2
〈αrad〉 ,

SPM: Q
|+|
(+,+)(x) = ω0

∫
χ (3)

[|E+|4 + 2|E+
i |4]da,
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XPM: Q
|−|
(+,+)(x) = ω0

∫
χ (3)|E−|2|E+|2da, Q

(+,−)
(+,−)(x) = ω0

∫
χ (3)|E+

i |2|E−
i |2da,

XPE: Q
(+,−)
(+,+)(x) = ω0

∫
χ (3)(E+

l E−∗
l + 2E+

i E−∗
i )|E+

i |2da,

Q
|−|
(+,−)(x) = ω0

∫
χ (3)(|E−|2 + 2|E−

i |2)E+∗
i E−

i da,

Q
|+|
(+,−)(x) = ω0

∫
χ (3)|E+|2E+∗

i E−
i da, Q

(−,+)
(+,+)(x) = ω0

∫
χ (3)E−

i E+∗
i |E+

i |2da,

Q
(−,+)
(+,−)(x) = ω0

∫
χ (3)(E−

l E+∗
l + 2E−

i E+∗
i )E+∗

i E−
i da, (24)

where |E+
i |4 = ∑

i |E+
i |4, |E+

i |2|E−
i |2 = ∑

i |E+
i |2|E−

i |2,
〈αrad(ω0)〉 � 0, N is the number of unit cells, and we assume
that χ (3) is a piecewise constant defined as nonzero in the slab
only and vanishing in the air holes. Technically speaking, to
include coupling to radiation modes in our ansatz Eq. (8), we
must include an integral term that “sums” over the continuum
of the radiation modes. Since it is reasonable to assume that
while power can be scattered from a guided mode into a
radiation mode, the reverse process is negligible (especially
in the slow-light regime [15,16]), so it suffices to include the
incoherent radiation loss per unit cell 〈αrad〉 [19].

For a more rigorous derivation of this term including the
expression for 〈αrad〉 using a Green function formalism, see
Ref. [19]. We remark that the radiation loss term is included
here for completeness as its effect is trivial and not that
important in terms of studying the multiple scattering regime
(so we treat it here with an average Beer-Lambert law). We
can obtain the corresponding equation for c− by flipping all
the signs in the coupling coefficients Eqs. (24) and multiplying
the right-hand side (RHS) of Eq. (23) by a negative sign.

We elaborate below on the notation for the coupling coeffi-
cients Q

()
() that represent the different scattering mechanisms.

The subscripts denote the two modes involved in the linear per-
turbation so, for example, Q(+,+) denotes the linear coupling
between the forward mode and itself which only causes a phase
shift, while Q(+,−) denotes the coupling between the forward
and backward modes responsible for multiple scattering; and
the superscript is used when nonlinear coupling is involved
and indicates the fields involved. The coupling coefficients of
Eq. (23) have been divided into four categories: (i) disorder-
induced multiple scattering terms, (ii) radiation loss term, (iii)
SPM and XPM terms which carry their traditional meaning
as they are responsible for only the phase modulation of the
envelopes (no power exchange), and (iv) cross-power exchange
(XPE) terms responsible for nonlinear power exchange.

Since the Kerr effect is a parametric process, nonlinear
power transfer can occur via phase matching or quasi-phase
matching. Phase matching is not possible due to the large phase
mismatch 
k = 2k. Quasiphase matching is possible near the
mode edge (k ≈ π/a) due to the periodicity of the PCW,
however, in the presence of disorder-related terms, the complex
sequence of phase additions necessary for sufficient power
transfer is disturbed. Hence nonlinear power transfer caused
by the XPE terms is negligible relative to the effects of SPM
and XPM.

We now neglect all XPE terms and follow the standard
procedure to convert our coupled ODEs from the frequency
domain to the time domain. We assume the narrow bandwidth
approximation 
ω/ω0 � 1, which is valid for our work below.
In taking the relevant coupling coefficients from Eq. (24) to the
time domain, we only keep the zeroth-order term [(ω − ω0)0],
leaving the coupling coefficients unchanged.

The spatial derivative is converted to the time domain using
the following rule [39],

d

dx
→ ∂x + 1

n!

∑
n�1

βn(i∂t )
n, βn = ∂nk

∂nω

∣∣∣∣
ω=ω0

. (25)

The first two dispersion terms β1,β2 represent the group index
and GVD, respectively. Lastly, the transformation c±(x,ω) →
c±(x,t) shifts the zero frequency line to the center frequency
ω0. Hence, to second-order dispersion, the coupled equations
in the time domain read

∂xc
+ + β1∂tc

+ + i
β2

2
∂2
t c+ = −Qradc

+ + i
aω0

2vg

[Q(+,+)c
+

+ γ +
S |c+|2c+ + 2γ −

X |c−|2c+

+ e−i2kxQ(+,−)c
−], (26)

∂xc
− − β1∂tc

− − i
β2

2
∂2
t c− = Qradc

− − i
aω0

2vg

[Q(−,−)c
−

+ γ −
S |c−|2c− + 2γ +

X |c+|2c−

+ ei2kxQ(−,+)c
+], (27)

where γ +
S = Q

|+|
(+,+), γ −

X = Q
|−|
(+,+) + 2Q

(+,−)
(+,−), γ −

S = Q
|−|
(−,−),

γ +
X = Q

|+|
(−,−) + 2Q

(−,+)
(−,+). These equations are the main the-

oretical results, and model the effects of multiple scattering
on SPM and XPM in the presence of GVD in PCWs. We
note that while the coupling coefficients in Eqs. (26) and (27)
can be written in simpler form using the identity E−

i = E+∗
i

(which holds for counterpropagating modes), we have chosen
to leave our expressions in this form because they would also
hold for copropagating modes, given the change in notation
+ → (1),− → (2), where E (1)/(2) would now denote the two
copropagating modes. Also note that since the equations are
first order in x, we treat x as a “time” variable when numer-
ically solving the system above and state the standard initial
conditions unique to counterpropagating modes: c+(0,t) = 0,
c−(L,t) = 0. Treating t as the “space” variable, we choose
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periodic boundary conditions c(+)(x,t + T ) = c+(x,t), as they
minimize nonphysical numerical reflections.

We remark that our choice of normalizing the field energy
to unity UE = 1 means we are working in a non-SI unit
system more suited to perturbation theory techniques. Since
the value of nonlinear susceptibility is usually quoted in SI
units, which we denote as χ

(3)
SI , it can be trivially converted to

the appropriate constant in our unit system. Assuming a bulk
nonlinear material, the refractive index n due to the Kerr effect
has the form

n = nL + nNL
SI ISI, (28)

where n,nL are the modified and linear refractive indices,
respectively (both dimensionless) and nNL

SI ,ISI are the values
of the nonlinear refractive index and intensity in SI units. The
intensity in a bulk material is given by ISI = 2ε0cn

L|ESI|2 [38],
where ESI denotes the electric field in SI units. Denoting
the nonlinear refractive index in our unit system as nNL, the
relationship between nNL and nNL

SI is given by nNL
SI ISI = nNLI

from which we deduce that nNL = nNL
SI |ESI|2/|E|2 = nNL

SI UE .
Now using Eq. (11), we arrive at

nNL = nNL
SI nLaP

2ε0c
, (29)

where P ≡ ‖ϕ‖2 is the incident peak power on the bulk
material assuming max[|c+(0,t)|2] = 1. Now, using the rela-
tions [38]

nNL
SI = 3χ

(3)
SI

4(nL)2ε0c
, nNL = 3χ (3)

4(nL)2ε0c
, (30)

where the values of ε0,c remain unchanged between the two
unit systems since we are only renormalizing the electric fields,
we obtain the conversion formula

χ (3) = nLaP

2ε0c
χ

(3)
SI . (31)

III. COMPARISON TO CURRENT LITERATURE

Turning off nonlinearities, Eqs. (26) and (27) reduce to
the frequency-dependent equations derived by Patterson and
Hughes [15] (albeit now in the time domain) to describe
multiple scattering in PCWs. Following the earlier work of
Bhat and Sipe [24], the Kerr effect in PCs scales as n2

g , whereas
in our equations, every term (linear or nonlinear including the
radiation loss term) scales with the same factor of ng . This
is because we do not renormalize our mode envelopes using
C± = ‖ϕ±‖c± which causes |C±|2 to have units of power
and introduces an additional factor of ng in the SPM/XPM
terms. Recently, Colman has performed a detailed comparison
between using renormalized mode envelope C vs c when
numerically solving NLSEs, and has shown that using the
envelope c is more suitable for nanostructured systems such as
PCWs [39].

We briefly comment on the elegant perturbative approach
introduced by Bhat and Sipe [24] to study nonlinear pulse prop-
agation in PCs, which also reformulates Maxwell’s equations
as a Schrödinger-type equation, but now in the time domain as

iN ∂t�(r,t) = M�(r,t), (32)

where M,N are Hermitian operators and the pseudofield � is
also related to the electromagnetic fields. Assuming solutions
of the form � = �(r)e−iωt , the dynamical equation above is
converted to a generalized eigenvalue problem as

M�ω(r) = ωN�ω(r), (33)

where the eigenfunctions are all orthogonal because N is now
positive definite. The orthogonality relation is given by

〈�ω′ ,N�ω〉 = ε0

∫
cell

ε(r)E∗
ω′ · Eωdr, (34)

which involves an integration over the unit cell. One then
considers a time-dependent perturbation of the form

M = M(0) + 
M(t), (35)

and follows a very similar procedure to the one shown in
Sec. II A to derive coupled equations similar to Eq. (9), but
now the equations are first order in time instead of space.
Bhat and Sipe then use k · p expansion which is equivalent
to the narrow bandwidth approximation to introduce spatial
derivatives in their equations. Lastly, due to the above orthog-
onality relation, their coupling coefficients naturally involve
an integration over the unit cell, thereby assuming unit cell
averaged quantities.

In the end, both approaches are perturbative and the choice
between the two depends on the specific functional form of
the perturbation one wants to consider. In general, an arbitrary
perturbation of an operator will vary as a function of both
space and time 
M(r,t); if one desires to treat the temporal
response of 
M(r,t) as accurately as possible, then Bhat and
Sipe’s approach is more accurate as it is naturally first order
in time. On the other hand, if one desires to include the spatial
response of 
M(r,t), in Bhat and Sipe’s approach, one is
forced to do this perturbatively when the k · p expansion is
invoked. The exact opposite holds for our approach. Therefore,
our approach is naturally more suited to accurately capture
the effect of multiple scattering arising from manufacturing
imperfections in PCWs which are mainly spatial in nature.

IV. NUMERICAL SCHEME

The coupled mode equations (26) and (27) are a special case
of the following coupled partial different equations (PDEs),

ux = [Au(t,x)ut ]t + Bu(t,x)ut + Cu(t,x,u,v)u

+Du(t,x,u,v)v,

vx = [Av(t,x)vt ]t + Bv(t,x)vt + Cv(t,x,u,v)v

+Dv(t,x,u,v)u,

u(t,0) = 0, v(t,L) = 0,

u(t + T ,x) = u(t,x), v(t + T ,x) = v(t,x) ∀x, (36)

where Au/v,Bu/v,Cu/v,Du/v : R × R+ → C are complex val-
ued functions in general.

Moreover, in line with Eqs. (26) and (27), we assume the
nonlinear dependence of coefficients Cu,Du,Cv,Dv on u,v to
be semilinear.
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Denoting a vector valued function w = [u v]T , Eq. (36) can
be written in matrix form,

wx = [A(t,x)wt ]t + B(t,x)wt + C(t,x,w)w, (37)

where A,B are 2 × 2 diagonal matrices and the 2 × 2 matrix
C contains all the semilinear terms.

We discretize the (t,x) grid as tj = j
t , j =
0,1,2, . . . ,Nt − 1,Nt ,Nt + 1 and xn = n
x, n =
0,1,2, . . . ,Nt − 1,Nx,Nx + 1. We denote the discrete
approximation of w as w(tj ,xn) = wn

j = [un
j vn

j ]T . Treating
x as “time,” traditionally the initial condition w0

j ∀j is
assumed to be known, but for the specific initial conditions
for counterpropagating modes, w0

j is only partially known
since we do not know c−(t,x = 0). Treating t as “space,” the
periodic boundary condition is expressed as wn

0 = wn
Nt+1 ∀n.

We now use the finite-difference scheme introduced by Chan
and Shen [40], generalized to our semilinear PDE system as

wn+1
j − wn

j


x
= 1


t2

[
An+α

j+ 1
2

(
wn+α

j+1 − wn+α
j

)

− An+α

j− 1
2

(
wn+α

j − wn+α
j−1

)]

+ Bn+α
j

(
wn+α

j+1 − wn+α
j−1

2
t

)
+ Cn+α

j wn+α
j . (38)

For α ∈ [ 1
2 ,1], the scheme is implicit, and Chan and Shen

proved that the scheme is unconditionally stable and satisfies
the power conservation law Eq. (13) in the absence of the
radiation loss term.

When α = 1
2 , this scheme is of Crank-Nicolson type, and

for implementation convenience, we choose α = 1
2 . We then

rearrange the scheme above in the form of an update equation
as

m=1∑
m=−1

Qn+1
j+mwn+1

j+m =
m=1∑
m=1

Qn
j+mwn

j+m, (39)

where the coefficients Qn
j are 2 × 2 matrices and are given by

Qn+1
j−1 = − 1


t2

(
An+1

j− 1
2
+ An

j− 1
2

) + 1

2
t

(
Bn+1

j + Bn
j

)
,

Qn+1
j = 4I


x
+ 1


t2

(
An+1

j+ 1
2
+ An

j+ 1
2
+ An+1

j− 1
2
+ An

j− 1
2

)
− (

Cn+1
j + Cn

j

)
,

Qn+1
j+1 = − 1


t2

(
An+1

j+ 1
2
+ An

j+ 1
2

) − 1

2
t

(
Bn+1

j + Bn
j

)
,

Qn
j−1 = −Qn+1

j−1,

Qn
j = 4I


x
− 1


t2

(
An+1

j+ 1
2
+ An

j+ 1
2
+ An+1

j− 1
2
+ An

j− 1
2

)
+ (

Cn+1
j + Cn

j

)
,

Qn
j+1 = −Qn+1

j+1, (40)

where I is the identity matrix.

The update Eq. (39) can also be written in the following
matrix form,

Mn+1wn+1 = Nnwn, (41)

where Mn+1,Nn are mostly tridiagonal block matrices with
each entry given by a 2 × 2 matrix. Only the first and last rows
of these matrices are not tridiagonal since they express the
periodic boundary condition. The block vector wn is given by

wn := [
wn

0,w
n
1, . . . ,w

n
Nt

,wn
Nt+1

]T
.

If we know w0, we can iteratively solve for wNx+1 as

wNx+1 = M−1
Nx+1NNx

M−1
Nx

NNx−1 . . . M−1
1 N0w0

= P w0 =
[
P 11 P 12
P 21 P 22

]
w0, (42)

where we denote P as the transfer matrix and P ij denote its
block submatrices. For counterpropagating modes, we have
to tackle the problem of knowing both w0,wNx+1 partially as
we specify the incoming waves at the opposite ends of the
PCW. Hence, we have unknowns on both sides of Eq. (42), so
some rearrangement is required. We illustrate this by a simple
example, letting our time and space grids consist of three and
two points, respectively, so j = 0,1,2 and n = 0,1.

We can now write down Eq. (42) in terms of all its
elements and realize that because of the initial conditions,
we know the quantities corresponding to the incoming waves
[u0

0,v
1
0,u

0
1,v

1
1,u

0
2,v

1
2]

T
and we must solve for the outgoing

waves [u1
0,v

0
0,u

1
1,v

0
1,u

1
2,v

0
2]. By rearranging Eq. (42) using this

simple example, one gets

⎡
⎢⎢⎢⎢⎢⎣

1 −P12 0 −P14 0 −P16

0 −P22 0 −P24 0 −P26

0 −P32 1 −P34 0 −P36

0 −P42 0 −P44 0 −P46

0 −P52 0 −P54 1 −P56

0 −P62 0 −P64 0 −P66

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1
0

v0
0

u1
1

v0
1

u1
2

v0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

P11 0 P13 0 P15 0
P21 −1 P23 0 P25 0
P31 0 P33 0 P35 0
P41 0 P43 −1 P45 0
P51 0 P53 0 P55 0
P61 0 P63 0 P65 −1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u0
0

v1
0

u0
1

v1
1

u0
2

v1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

Additionally, for periodic boundary conditions, we have
u0

0 = u0
2, v0

0 = v0
2 and u1

0 = u1
2, v1

0 = v1
2 . Now, assuming the

matrix on the left-hand side is invertible [41], one can deter-
mine the outgoing counterpropagating waves at the opposite
ends of the PCW. There is a pattern in the matrices of Eq. (43)
which can be easily generalized to finer grids. Generally, we
can rewrite Eq. (43) as[

uNx+1

v0

]
= S

[
u0

vNx+1

]
, (44)

where in analogy with the TMM, we denote S as the scattering
matrix.

We briefly remark on the unavoidable choice of using an
implicit versus an explicit finite-difference scheme. It is well
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known that explicit schemes are generally faster because only
straightforward matrix multiplication is involved, which can be
easily multithreaded. In our implicit scheme, we must perform
both matrix inversions and multiplications at each propagation
step, including the final step, which is more computationally
expensive. But we argue that the choice of an implicit scheme is
unavoidable. To see this, we draw analogs with the well-known
TMM and note that the scattering matrix can be rewritten in
terms of the transfer matrix as [42]

S =
[
P 11 − P 12P

−1
22 P 21 P 12P

−1
22

P −1
22 P 21 P −1

22

]
, (45)

where P −1
22 denotes the inverse of the subblock matrix. There-

fore, the existence of S ultimately hinges on the nonsingularity
of P. For various explicit schemes given in Refs. [23,40], the
resulting transfer matrix is always singular because one finds
that P 22 ∝ 
x, which makes P 22 singular as 
x → 0. We
claim that this is a general property of any explicit scheme as
their representative transfer matrices are singular and are meant
only for matrix multiplication. This stands in direct contrast to
any implicit scheme because nonsingularity is typically built
into the scheme.

A. Method of iterations

We now use the method of iterations to address the semilin-
ear nature of the coupled PDEs in Eq. (36) [23]. The idea is to
start off with computing the linear solution assuming w = 0
in the nonlinear coefficient C(x,t,w = 0) and use that solution
to iteratively compute a new solution w until convergence is
obtained. To express this formally, denote w(s) as the solution at
the sth iteration obtained by using C(t,x,w(s−1)), where w(0) is
defined as the solution one obtains using C(t,x,0). To quantify
the change in the solution from an iteration s to s + 1, we use
the finite-difference norm defined as

‖
‖ =
√


t
x

[ ∑
j,n

∣∣∣(wn
j

)(s+1) − (
wn

j

)(s)
∣∣∣2

] 1
2

. (46)

As s → ∞, we expect ‖
‖ → 0 as the solution converges. The
rate of convergence depends on the initial conditions and the
magnitude of the coupling coefficients, which in turn depends
on the strength of disorder and nonlinearities.

B. Numerical dispersion

Two of the main consequences when numerically solv-
ing Schrödinger-type equations are numerical diffusion and
dispersion. Numerical diffusion and dispersion refer to the
artificial broadening and higher-order dispersive effects on
the underlying wave form due to constructing a discrete
approximation of Eq. (36). To quantify these quantities for our
scheme, we neglect disorder and nonlinearities in Eqs. (26)
and (27), leaving us with a prototype PDE of the form

ux + β1ut + i
β2

2
utt = 0. (47)

Discretizing this PDE using the Crank-Nicolson scheme de-
fined above in Eq. (38), Dehghan [43] constructed an equiv-
alent PDE to show that this scheme exhibits zero numerical

diffusion and that the third- and fourth-order numerical dis-
persion terms are given by

βnum
3 = −sgn(β1)

(
|β1|
t2 + 1

2
|β1|3
x2

)
,

βnum
4 = −sgn(β2)6

[|β2|
(

t2 + 3β2

1
x2
)]

, (48)

where sgn() denotes the sign function. These expressions
are extremely useful if the dispersion relation k(ω0) has the
property sgn(β1) = sgn(β3) and sgn(β2) = sgn(β4), for in this
case the step sizes can be cleverly chosen to simulate realistic
higher-order dispersive effects. Unfortunately, this is not the
case for a W1 PCW design, but other DE PCWs or photonic
structures could have this property. In the case of the W1,
one has no choice but to choose small step sizes so as to
minimize the effect of numerical dispersion. Additionally, one
can transform Eqs. (26) and (27) into normalized units given
by

x = x̃[Na], t = t̃

[
Na

vg

]
,

β1 = β̃1

[
1

vg

]
, β2 = β̃2

[
Na

v2
g

]
, (49)

where x̃, t̃ , β̃1 = ±1, and β̃2 are dimensionless quantities.
The numerical dispersion using these normalized variables is
lower because of the quadratic dependence of β̃num

3 ,β̃num
4 on

the normalized step sizes since 
x̃ < 
x, 
t̃ < 
t . So, when
numerically solving Eqs. (26) and (27), this transformation is
applied.

V. NUMERICAL RESULTS

We now show numerical results to demonstrate our
scheme’s dispersion characteristics, the need for using a
subunit cell spatial step size 
x̃ when modeling disorder, and
different instances of disorder to illustrate the stochastic nature
of the coupling coefficients Q(+,+),Q(+,−). We use a GaAs-
like (ε = 10.0489) W1 PCW with the following structural
parameters: a = 480 nm, r = 0.2a, h = 0.333a, where a,r,h

represent the pitch, hole radius, and slab thickness, respec-
tively, and we fix the number of unit cells at N = 101. For
initial conditions, we specify a forward propagating unchirped
hyperbolic-secant pulse at one end of the PCW with zero
backward pulse at the other end given by

c+(0,t) = sech(t/T0), c−(LW1,t) = 0, (50)

where T0 is a measure of the pulse width. As shown in Fig. 2,
we choose an operating frequency very close to the mode
edge with large first (group-index) and second-order (GVD)
dispersion parameters, β1 = 42.219, β2 = −56.770 ps2/mm.
The pulse width is fixed at T0 = 0.827 ps corresponding to a
narrow bandwidth approximation of 
ω/ω0 = 0.001.

Given the initial pulse width and step sizes, the length
scales for numerical third- and fourth-order dispersion are
given as Lnum

β3
= T 3

0 /βnum
3 , Lnum

β4
= T 4

0 /βnum
4 , respectively. We

first demonstrate the presence of numerical dispersion by
neglecting disorder and SPM/XPM and choosing a coarse
grid, 
t̃ = 0.01 (0.068 ps), 
x̃ = 0.1 (10.1[a]). By 10.1[a],
we mean the step size corresponds to 10.1 unit cells. This
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FIG. 2. Band-structure (left) and dispersion parameters (right) of
the W1 PCW near the mode edge with the markers indicating the
values considered in this work.

coarse grid yields the normalized length scales L̃num
β3

= 0.348,
L̃num

β4
= 0.020 which are much smaller than the PCW length

(L̃W1 = 1). Numerical dispersion will temporally reshape the
pulse beyond the broadening expected from GVD, which is
shown in Fig. 3, where we also show that the frequency/power
spectrum is unaffected, demonstrating that our scheme is
indeed norm preserving and satisfies the discrete version of the
power conservation law Eq. (13) [33]. Thus, to avoid numerical
dispersion, one should choose 
t̃,
x̃ such that L̃num

β3
� 1,

L̃num
β4

� 1.
Next we illustrate the method of iterations by enabling

SPM while still neglecting disorder-induced scattering. The
nonlinear susceptibility is chosen to approximate a GaAs-
like slab, χ

(3)
SI = 3 × 10−19 m2/V2 [6]. The soliton number

S is defined as S2 = Lβ2/LγS , where LγS was defined in
Ref. [22]. We fix the incident peak power P to study the
propagation of a fundamental soliton S ≈ 1 using a finer
grid, 
t̃ = 0.005 (0.034 ps), 
x̃ = 0.005 (0.505[a]) yielding
length scales L̃num

β3
= 47.265, L̃num

β4
= 6.062. As shown in

Fig. 4, the soliton largely retains its temporal and spectral
shape at the end of the waveguide and the logarithmic decrease

FIG. 3. An unchirped hyperbolic-secant pulse propagating in the
presence of large values of the group index β1 = 42.219 and GVD
β2 = −56.770 ps2/mm, respectively. Due to the choice of a coarse
grid size, numerical third- and fourth-order dispersion distorts the
temporal wave form while the frequency (power) spectra remains
unchanged, in agreement with power conservation.
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10−1

100

||Δ
||

FIG. 4. A fundamental soliton (S ≈ 1, unchirped hyperbolic-
secant pulse) near the mode edge propagating in a PCW using a fine
grid which minimizes numerical dispersion. The logarithmic decrease
of the difference norm demonstrates convergence of the solution using
the method of iterations. The line going through the markers is a guide
to the eye.

in the difference norm ‖
‖ shows that the nonlinear solution
has converged. A very slight reshaping of the pulse is due to
operating near the mode edge where dispersion is quite large.

We next combine the effects of first- and second-order dis-
persion, disorder-induced multiple scattering, and SPM/XPM.
To model disorder, we fix the correlation length at 0.083a [44],
and to observe multiple scattering effects with 101 unit cells,
we choose the rms roughness σ = 0.017a. Since disorder
is a stochastic process that varies rapidly within the unit
cell [22,44], the spatial step size 
x must be chosen to be
small enough to accurately capture multiple scattering effects.

Otherwise, this scheme tends to overestimate the amount
of disorder, as shown in Fig. 5, where we choose two values
for 
x̃ while keeping 
t̃ = 0.005 (0.034 ps) fixed. For 
x̃ =
0.005 (0.505[a]), which corresponds to roughly two points
per unit cell on the spatial grid, the “numerical” disorder is
large as there is very little transmission along with a large
backreflection. Because the transmission is negligible, the
difference norm oscillates (around ‖
‖ ≈ 0.2) as the number
of iterations increases. By decreasing the step size to 
x̃ =
0.0008 (0.0808[a]), which corresponds to roughly 12 points
per unit cell, we see that the difference norm converges and
the transmission is enhanced. For 
x̃ < 0.0008 (0.0808[a]),
we have verified that the change in the transmission profile is
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Δx̃=0.005 (0.505[a]) Δx̃=0.0008 (0.0808[a])
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FIG. 5. A fundamental soliton (S ≈ 1, unchirped hyperbolic-secant pulse) propagating in the presence of disorder-induced multiple
scattering for two different spatial step sizes and a fixed rms roughness of σ = 0.017a. Left: A large step size [
x̃ = 0.005 (0.505[a])] introduces
“numerical” disorder, thereby decreasing transmission and causing oscillations in the difference norm. Right: Since multiple scattering is a subunit
cell phenomena, the step size must be chosen small enough [
x̃ = 0.0008 (0.0808[a])] to accurately capture the effect of multiple scattering.
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FIG. 6. The transmittance (|c+(L)|2) and reflectance (|c−(0)|2) of
a fundamental soliton propagating in five different disordered W1 in-
stances where the rms roughness is fixed at σ = 0.017a. The temporal
and spectral pulse profiles of each instance are tiled, illustrating the
stochastic behavior of disorder-induced multiple scattering.

negligible. Therefore, in agreement with previous works in
the linear regime [15,19], we have shown that a subunit cell
spatial step size is crucial in accurately capturing the effects
of multiple scattering on optical nonlinear effects. The precise
value for 
x̃ depends on the disorder parameters, namely, the
rms roughness, but as a rule of thumb, we have found that
choosing 
x̃ such that there are at least 10–20 points per unit
cell is a good starting point. Lastly, fixing the spatial step size
and the disorder parameters, we compute the transmittance
(|c+(L)|2) and reflectance (|c−(0)|2) for five different disor-
dered W1 instances, as shown in Fig. 6. The qualitatively
different pulse profiles of each instance demonstrates the
stochastic nature of disorder-induced multiple scattering and
its associated coupling coefficients.

VI. CONCLUSIONS

We have provided the analytical and numerical details of our
recently developed CMT formalism used to combine disorder-
induced multiple scattering with the nonlinear Kerr effect [22].
Our estimates of the numerical dispersion allow one to choose
reasonable step sizes. Our numerical results also reinforce
the notion that multiple scattering is inherently a subunit cell
phenomenon which can only be accurately captured using a
transverse orthogonality relation Eq. (6) and a subunit cell
spatial step size. Future works could easily extend this general
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formalism to include other nonlinear effects such as 2PA, 3PA,
FCD, and self-steepening, to study the distortion of pulses in
more detail.
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