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Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field
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The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-
particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the
framework of the mean field approximation, the conditions for the observation of stable stationary regimes for
single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong
dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We
show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The
generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is
predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons

in the three-particle spaser system.
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I. INTRODUCTION

Recent rapid progress in the field of nanotechnology has
led to the practical possibility of the generation and control
of N-photon states using single quantum emitters [1] and
high-quality micro- [2] and nanoresonators [3]. The creation
of the nanolaser is key to the development of such devices [4].
The functional features of the nanolaser require a reformulation
of the known rules of laser generation for subwavelength
scales [5]. This can be done on the basis of the model of the
localized spaser [6]. In simple form, this device consists of
a semiconductor quantum dot (QD) and a metal nanoparticle
(NP) coupled by near-field interaction. The QD is used here as
apowerful near-field pump source, since the excitonic decay in
the QD leads to a strong perturbation of electronic density in the
NP. This perturbation leads to the generation of the plasmons
localized on the NP surface [7-9]. Reducing the distance
between the NP and QD results in an increase of nonradiative
energy exchange in the system. If the Rabi frequency of
interaction (for example, a dipole-dipole interaction) between
nano-objects becomes greater than the characteristic times of
decay, then a strong coupling arises in the system [10]. A
realistic model of the spaser can be based on a compound nano-
object consisting of a metal core and a semiconductor shell
[11] or on a distributed system of nanoparticles with complex
geometry [12-16]. Currently, both localized subwavelength [4]
and waveguide [17] spaserlike systems are implemented.

Chains of near-field coupled NPs and QDs are of significant
interest as a platform for quantum computing [18-20] with
single-photon and single-plasmon states [21]. For example,
the appearance of bunching (antibunching) effects for emitted
photons can be observed in self-assembled QD structures
[22] or in the mesoscopic chromophore ensemble strongly
coupled with a plasmonic cavity [23]. In another approach,
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a pair of coupled QDs can be used as a powerful source of
entangled photons due to the correlations between QD excitons
in biexcitonic states [24]. On the other hand, if QDs are
coupled with shared NP [25], direct transmission of quantum
correlations from bound excitons to plasmons can be achieved.
One of the main advantages of such correlated plasmons is
the possibility of simpler external control and manipulation
of their carriers—NPs. In particular, this addressing can be
carried out using the epifluorescence microscopy technique
for single quantum objects [26]. However, a very important
question arises: whether the nonclassical plasmon states will
survive if a strong dipole-dipole interaction between NPs is
realized.

The purpose of this paper is to optimize the chemical and
geometric characteristics of multiparticle dissipative spaser
systems in order to achieve a balance of gains and losses for
plasmons in accordance with the principles of PT symmetry
[27]. Starting from this paradigm, we consider the possibility of
control over the quantum statistical and correlation properties
of plasmons generated in such a spaser system.

This paper is structured as follows. In Sec. II we present
the model of a 2 x 2 spaser system as an extension of the
model suggested in Ref. [25]. Our model spaser system consists
of two closely located identical NPs with plasmon resonance
frequency w, and two two-level QDs with exciton energy
hiw. All particles in this system are coupled by dipole-dipole
interactions. Meanwhile, provided the nanoobjects are located
in the vertices of a square, the efficiency of dipole-dipole
interactions between the NPs significantly exceeds the effi-
ciency of the interactions between the QDs and for QD-NP
pairs. We found stable stationary solutions for this system and
investigated the quantum statistics of plasmons localized on
the NPs. We have shown that strong interaction between NPs
can significantly change the statistical properties of localized
plasmons.

©2018 American Physical Society
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In Sec. III we develop a model including a configuration of
three nano-objects (NP-QD-NP) coupled by nonlinear dipole-
dipole interactions in the presence of an external magnetic
field. The nonlinear regime of this ensemble corresponds to
the two-quantum processes of the QD biexciton decay in the
case |8] > Qi 2,|A|, where =& —w and A =b —w,, @
is the spasing frequency, and €2, are the Rabi frequencies
of dipole-dipole interactions between the QD and NPs. As a
result of this nonlinear process, one can expect the appearance
of strongly correlated plasmon pairs. The best regime will be
one in which each plasmon from such a pair can be localized
on its own NP. We focus on this regime because it is useful
for the generation of nonclassical N-particle states [28] and
entangled plasmon states [29] as in quantum optics [30-32].
The principal difference of our approach from previous studies
[25] is the presence of an external magnetic field, which leads
to a change in the QD energy levels and provides a means to
control the quantum properties of generated plasmons.

In the technical framework, the presented spaser systems
can be experimentally implemented on the basis of nanopar-
ticles assembled on a template patterned in a thin photoresist
film [33,34]. Such systems can be integrated in the individual
plasmonic waveguides [35] and plasmonic circuits for quantum
information processing [36—38].

II. THE FORMATION OF NONCLASSICAL STATES OF
PLASMONS IN THE SYSTEM OF TWO SPASERS
COUPLED BY STRONG DIPOLE-DIPOLE INTERACTIONS

Let us consider the system of two spasers, consisting of 2
QDs and 2 NPs (so-called spaser 2 x 2), see Fig. 1. First of
all, the efficiency of interaction in the system will depend on
the geometry of the system, where the characteristic lengths
are ryp, which is the distance between adjacent NPs, rgp,
which is the distance between adjacent QDs, and rgy, which
is the distance in a QD-NP pair. The vector 7 = 7/r, making
the angle @ with axis 7, determines the direction between the
centers of any two interacting particles. This spaser system can
be considered a part of a more complex hybrid nanostructure
that supports the possibility of external effective nonradiative
pumping of the system [39]. The assembly of individual nano-
objects in the spaser system can be realized by atomic force
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FIG. 1. A four-particle2 x 2 spaser model, consisting of two NPs
and two QDs.

microscopy [40]. We assume that all dipole moments QQ p of
QD and dAN p of NP are collinear to each other and parallel to
axis Z [6]. In this paper we do not consider higher orders of
multipoles, although intermode interactions for this model can
lead to the manifestation of the well-known Fano resonance
effect [41].

The field Eyp; = —VAyp; at a distance of r from
the ith NP of spherical shape with radius ayp; can be
expressed through the vector potential operator Ayp; =

3 (e Y, (O.0) Enn (@ + & )énpi [8], where (&)

n
are annihilation (creation) operators of the plasmon

2n+1 (n—m)!
4w (n+m)!

P™(cos §)e'™¢ are spherical functions expressed via Legendre
polynomials, €y p defines the orientation of the NP dipole mo-

_ fi@nm : ; :
ment, E,,,, = ./ Save Gn e 18 the dimensional factor, where n

is the general quantum and m is the magnetic quantum numbers
[9], and ay p; is the radius of ith NP.
Next, the near field of a single QD is written as

mode in quasistatic approximation, Y,,,,(6,¢) =

1 3 - i) — Zon

|Sp—— dopi, 1
oDi = 3 QDi (H

where the dipole moment operator is QQ pi =

Hopi(Si + S;’ )EQ p expressed via creation operator

.§l+ = |e);{(g|; and annihilation operator §l- =|g);{e|; of
excitons and the dipole moment pgp; corresponding to
interband transitions in QD, where [e); corresponds to
exited and |g); ground states of the system. The presented
operators satisfy commutation relationships [S’l-+ ,Si] = D; and
[S’i,Di] = 2§,~, where D; = S’f@i — S’,Sf is the population
imbalance operator; EQ pi determines the QD dipole moment
orientation.

In conditions A1 » 3> r > aypi,agp; where agp; is the QD
radius, and A, » are the wavelengths of interband transition in
the QDs, all pairwise interactions correspond to a dipole-dipole
energy exchange. In particular, a Hamiltonian interaction
between NP and QD can be written in the form ViQN =

—Elll\, PidAQ pi- The geometry presented in Fig. 1 corresponds
to the case 6 = 0 and therefore the Legendre polynomials take
the form Plo(cos 0) =1, le#)(cos 0) = 0. Thus, the near field
of NP; in the position of QD; location has the form

3
gl hwpiay p;

1
NPi = F(Ci + & enpi, ()

2780
where w,; determine plasmon frequencies of NP;, &g is vacuum
permittivity. The interaction Hamiltonian for adjacent NPs
VNN = —Ex , dypy is determined by orientation 6 = 7/2,
for which P11 (cosf) =1 and le;él(cos 0) = 0. In this case,
the expression for the field takes the form

A hoyay, 1
Exp: = V —413;81:1)[ r—3(0i +é&henpi. 3)

The dipole moment of NP; can be obtained from com-
parison (3) and the expression for the near field of NP;
in analogy with (1). This expression has the form dyp; =

unpi(C + &énp, where uypi = VAT eohw,iay, p; . Finally,
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the interaction Hamiltonian V 2¢ = —E,p1dgps between two
QDs in the spaser system is determined by the given geometry,
for which (i1 - €gp;) = 0.

Based on the necessity of internal symmetry in the layer
arrangement for QD and NP in case of scaling the spaser
system to a 2D array of spasers, we assume ryp = rgp = 1,
ron = r. The working regime of 2 x 2 spaser significantly
depends on the ratio between frequencies w, » of transitions
in QDs and plasmon frequencies w, ,>. They are usually
[6,42] considered almost equal to each other so that there are
mostly linear plasmon interactions implemented in the system.
Then, in the case w; ~ w;, the corresponding Hamiltonian of
interaction takes the form:

hw haws

H = ha)p]é]"@] + ha),,zég'@z + TDl + TDz

+ hQu 18] + ¢ 8)) + 108 +é1 8y)
+ 12008518 + 8 8) + 7,165 + ¢ é), @)

3

PN
where the fifth and sixth terms with ©; =,/ %”ﬂ cor-
2

Hop
pelars appears

respond to ViQN, the seventh with Qpp =

from V22 and the term with Q,, = ¥ is defined by
pp dmeohri
Hamiltonian V¥V, We ignore cross interaction between NP

and QD placed diagonally. In (4), we will not take into account
the Ferster transfer of energy between QDs, although in a real
situation this must be done.

In this section, we will simulate the dynamics of our spaser
system, using an average of parameters taken from a body
of experimental work in this research area. As a model, we
choose a spaser consisting of a gold NP and QD based on
semiconductor CdSe [40,43], for which the chosen states
|g); and |e); correspond to hole level 1S(%) in the valence
band and electron level 1S(e) in the conduction band. QD
sizes can be estimated based on the plasmon mode frequency
wp = wp| = wp, which for a spherical gold NP corresponds
to a wavelength of 520 nm [44]. To satisfy the exact resonance
condition w, = w between the NP and QD, the size of the QD
is approximately determined by the known dependence of the
interband transition between the energy levels 1S5(e) and 1S(h)
[45] on its diameter:

a1 1
Ebeha)IEg+2 5 —+—, (5)
DQD m, my

where Dop = 2a¢p, e is the electron charge, / is the Planck
constant, and m, and mj; are the effective masses of the
electron and hole in the bulk of the QD material with dielectric
permittivity ¢ and bandgap E,, respectively. For CdSe, the cor-
responding parameters are Eg/e = 1.76 €V, m, = 0.125m,,
my, = 0.43mg, and ¢ = 10. Using formula (5), we get Dgpp =
4.97 nm for these parameters and A = 520 nm. The Bohr
radius of exciton R,, for CdSe is 4.55 nm [46], therefore a
strong confinement regime [47] will be observed for the QD
excitons. The energy sublevels of the conductivity zone will
be essentially separated for considered conditions. Therefore,
the two-level model will be valid for QDs.

The dipole moment value of the interband transition [48]
for CdSe is equal to f1op = 0.309 x 1072 Cm in selected

conditions. The dipole moment of the NP with a radius
exactly matching the radius of the QD (anp =agp) is
equal to puyp = 4.548 x 10722 Cm. We suggest that spaser
2 x 2 is a square with characteristic sizes r; = r = 5.3 nm;
the corresponding Rabi frequencies in (4) take the value
Q=0 =0=2026x 108571, Qpp =549 x 10" 571,
Q,, = 1.19 x 10" s~!. We notice that the efficiency of
dipole-dipole interaction between QDs in the presented geom-
etry is significantly lower for similar efficiency both between
the adjacent NPs and in an NP-QD pair. Thus, for further
consideration, the term with Q¢ can be neglected, and we
can proceed to the consideration of the following Heisenberg-
Langevin system of equations obtained from (4):

b = i(Al + l—)él — i 81 — iQppes + Fut, (62)

cl

&y = i(Az n ’—)ez — I8 — Q6 + Fa. (6b)

T2
s, =i(31 +T’—;1)Sl LiQ D) + Fyp, (6¢)
3'2 = i(52 + TZ—S2>3'2 + QD28 + Fia, (6d)
Dy = —2i(85Fe, — §i16h) — % + Fpi. (6e)
Dy = —2i%(85 & — 5,8)) — % + Fpy. (6f)

where Al :d)—a)pl, Az =(D—a)p2, 81 =0 — o, 32 =
@ — wy, and parameters @ and Dy correspond to the
frequency and value of the spaser pumping, respectively.
In the deriving system (6) we used the rotating-wave ap-
proximation ¢ = ¢ - exp (—idt) and §=85. exp (—idt) upon
passage to the slow-varying operators ¢(¢+) and S(57). In
equations (6) the characteristic parameters of the decay rate
for plasmons n_im in NP, the decay rate of excitons ml(m
in excited QDs, and also the operators of Langevin noises
1:}1(02) (1:"51(52), F pi(p2)) are introduced phenomenologically
[49], proceeding from the conditions of system interaction
with the reservoir. The pump operator and appropriate time

are Doj(2) = Ziiii:—ml and tpi(p2) = (m + ,pllw))
[50], respectively. Here the parameters 7,(,,2) are characteristic
pumping times. Furthermore, we assume that both NPs (and
also both QDs) are identical to each other, i.e., 2 = Q2,, 7, =
T2 =Te, Ts1 = T2 = Ts, A1 = Ay = A (wp1 = 0p = w)),
81 = 6 = 6 (w1 = wr, = w). In addition, we assume that the
populations in both QDs change synchronously, i.e., D =
D, =D.

After the material, the size of the nano-objects, and their
position in the spaser structure have been defined, we try
to fulfill preliminary optimization of the system by means
of varying the dissipative system parameters. We use these
parameters because the decay rates of excitations have a
significant dependence on the chemical composition [51] and
the purity of the nano-objects’ surface [52] and can be varied
within a wide range. Furthermore, the experimenter always has
the ability to control the system’s pumping rate. The purpose
of our preliminary optimization is to obtain time-independent
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solutions for the average number of plasmons and excitons
generated in the spaser system.

Moving on to the estimates of relaxation parameters of the
problem, it should be noted that the decay rate of plasmon mode
Vp = % = # + # is determined by the characteristic time of
radiation tg and Joule 7, losses. However, under the condition
# ~ 30# [53] we do not have to take radiation losses into
account and Joule losses are normally determined by electron
collisional frequency in metal yy, i.e., y, ~ y,. For gold, we
can take the value y, = 4 x 1013 57!

The parameter % = # + # represents the total rate of
radiative (with time tz) and nonradiative (with time tr)
losses in the QD. At the same time, the parameter i gives
the main contribution, since the processes of nonradiative
recombination of excitons (with exciting phonon modes) occur
in short times. Note that annealing technology [52,54] and the
use of core-shell QDs [40,43] allow a significant increase in
7r. Additional influence on the rate of decay is provided by
the metallic NP approaching the QD. Following the article [6],
we accept % =4 % 10'% s7!, The characteristic time of the
dipole-dipole interactions between NP and QD is in the order
0f 0.5 x 10~* ns, which is much less than the characteristic rate
of exciton decay in the QD and is comparable to the decay rate
of plasmons. This situation corresponds to a strong coupling
regime (see Ref. [10]).

Then we determine the characteristic spaser generation
frequency (spasing frequency) @, spasing threshold D,;, and
also find the possible stationary regimes of its time evolution.
To achieve this purpose, at the initial stage we write a system
of equations for average values, analogical to an operator
system (6), assuming that ¢ = (¢), ¢* = (¢*), and Langevin
noise operators are equal to zero. Then, assuming ¢jp) = D =
Sl(z) = 0, we express ¢, from an equation (6a) and substitute
the obtained expression in the equations of average values
(6b) and (6d). After this, we express the parameter S, from
(6d) and substitute it in (6b) and (6¢). The resulting system of
algebraic equations on the average values will be written in
the form:

QDC] + BS1 = 0,

(7a)
AP AZD o\ (24 @D\
QPP BQPP ) QPP QPPB U
(7b)

where the definitions A =Ag+iA;=A+ L and B =

Br+iB; =6+ T‘—S are introduced. The system (7) can have
nontrivial solutions in the case when the matrix determinant
for the left side of the system of equations is equal to zero.
Thus, we obtain a system of two self-consistent equations for
the real and imaginary parts of said determinant

Q*D? +2(AgBg — A;B)Q*D + (B — B)
x (A] — AR +9,) —4A/ArB;Br =0,  (8a)

2(ArB; + A;BR)(ARBg — A;B; + Q*D)
—2%Q;,B;Bg =0. (8b)

The solutions of system (8) determine the spasing frequency
@ and the threshold Dy;,. This system of equations has two roots

5w + T(w, = Q)

DL = , 9a
(OF 3 T+ Ts (9a)
2
1+ (rrﬁg) (@ — @) F Qpp)’
Drh,:F - rcrst , (9b)

one of which (&_, D,j, +) will give an unstable solution for (6).
Therefore, we will assume that D, = Dy, _.

We note that in the case 2, = 0 solutions (9) correspond
to the known model of spaser 1 x 1 which consists of one
QD and one NP [8]. However, the presence of a near-field
interaction between two NPs significantly increases the spasing
threshold. Note that the solutions obtained in (9) correspond
only to linear energy exchange between the NP and QD deter-
mined by Hamiltonian (4). Under the selected parameters of
interaction, the threshold values are Dt'th = D (Qpp =0) =
0.0039 and D}? = D;,(2pp = 1.19 x 10" s7!) = 0.0383.
In further simulation, the pumps are chosen according to the
conditions Dy; = Dy, = Dy > max(DIIth,Dﬁfz). Finally, we
choose the value Dy = 0.1.

Assuming ¢y = ¢; = ¢ (8] = S, = §), we express ¢ from
equation (7b) and substitute it in the result of summing the
equations (6e) and (6f) under condition D = 0. As a result,
steady-state solutions for the amplitudes of plasmons and
excitons take forms which are determined up to the phase ¢:

&= e |-Z(Dy— D), (10a)
47:[)

i+ S (w—-w, — R,

5= T.+Ts 4 ppr (10b)

7.2

A test on the stability of the obtained solutions was carried
out by analysis of eigenvalues A; of the linearized system of
equations on average values (6) near fixed points (10), as well
as by using a direct numerical simulation of this system. We
found that for the obtained solutions (10), one of the roots
of the characteristic equation for the linearized system (6) on
average values is always equal to zero, while other eigenvalues
are satisfied to inequality Re(X;) < 0. Thus, the system moves
to the boundary of aperiodic stability in the absence of external
synchronization. From a mathematical point of view, in this
case further analysis of the full nonlinear system (6) should be
carried out. Nevertheless, numerical analysis of the system (6)
demonstrates the stability of obtained solutions (10).

The parametric plane formed by the combination of the
pump value Dy and the characteristic time of excitons decay
s with the depicted stability area for the solutions (10) verified
by numerical simulation of the system (6) is presented in
Fig. 2. This area results from optimizing the parameters of
our system. Obviously, the impurities in material of QDs lead
to the decreasing of tg. Therefore, it is necessary to increase the
pump value Dy to maintain stationary conditions for spasing.
At the same time, increasing Dy leads to the linear growth of
the number of plasmons |¢|?, inset in Fig. 2.

In Fig. 3, performed for the parameter D, the agreement
between analytical and numerical results is clearly observed
when choosing the parameters of interaction for point A from
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FIG. 2. The parametric plane (pump value Dy, decay time of
excitons in QD tg) with the depicted stability area of the 2 x 2 spaser
and a point A ( 0.5, 0.25 x 107! 5). In the inset: the dependence
of average numbers of plasmons |¢|? (thick blue lines) and excitons
|3 |2 (thin red lines) on the value of the pumping for 2 x 2 spaser
with accounting for €2,, (solid lines) and for the 1 x 1 spaser
without accounting for 2, (dashed lines). Parameters of interaction:
0, =0=3.625x105s71, Q=2.026 x 108 s7!, Q,, =1.19 x
10 s, 7, =025%x 1078 s, tp =2.85 x 107 s.

D15
0.10
0.05}
0.00 -
0 1 2
tx107"% (s)

FIG. 3. The time dependence of population imbalance parameter
D for 1 x 1 spasers (thin red lines) and 2 x 2 (thick blue lines),
calculated by using formulas (9) (dashed lines) and by using direct
numerical simulation (solid lines) of the system (6). Initial val-
ues: c(0) = ¢ - 1.05, S(0) = § - 0.95, D(0) = 0.1, where steady-state
solutions ¢ = 0.7375 + 0.7375i, § = —1.4562 + 1.4562i for 1 x 1
spaserand ¢ = 0.7115 + 0.7115i, S = —5.5792 — 2.7696i for2 x 2
spaser with ¢(0) = /4. The simulation parameters correspond to
point A from Fig. 2.

‘2

1.2}

0.2
tx107" (s)

%1072 (s%'2
0 1 2
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FIG. 4. The time dependence of the average number of plasmons
lc|* for the 1 x 1 spaser (thin red lines) and for the 2 x 2 spaser
(thick blue lines), calculated using formulas (10a) (dashed lines) and
by using direct numerical simulation (solid line) of the system (6).
Insets: dependence of the relative phase between plasmon and exciton
modes for the 2 x 2 spaser (bottom inset) and for the 1 x 1 spaser (top
inset). The initial values and parameters of the simulation correspond
to Fig. 3.

the presented area of stability in Fig. 2. At the same time, the
dynamics of the transition process to the stationary values for D
and |c|? has a significant dependence on 2 pp- In particular, the
rapid synchronization of energy exchange processes between
QD and NP under the condition £2,, = 0 (1 x 1 spaser) is re-
placed by a longer stabilization process, taking into account the
contribution of €2, (2 x 2 spaser) in Figs. 3 and 4. It is due to
amore intensive exchange of energies in the spaser 2 x 2. This
can be observed by using the temporal dynamics of sin (A¢(t)),
where the parameter A¢(t) = Arg(f%) determines a relative
phase between plasmons and excitons (see insets in Fig. 4).
Taking into account £2,,, the steady-state solution of Agg
significantly differs from A¢y = /2 for the case 2,, =0
[8]. At the same time, the amount Agy is independent of the
initial values of ¢(0) and S(0).

We will now proceed to consider the spasers quantum
statistical properties [55,56] on the basis of the study of the
second-order autocorrelation function G® for plasmons in the
form

G,(-z)(t,f) _ ﬁ*(t)Aéi(t)éi:}t + T)éi(t +0) LD
(€ &) (e (1 + )¢t + 1))

In our case the parameter ng) = Gl@(t,O) indicates a bunching
effectif G52> > 0 (super-Poisson statistics), or an antibunching
effect if GEZ) < 0 (nonclassical states with sub-Poisson statis-
tics) of plasmons.

Figure 5 presents the results of numerical solution of the
system (A1) for calculation of G(lz)(t) for one plasmon mode in
the Fock state and choosing the same parameters of interaction
as for point A from Fig. 2.

Initial second-order correlators for plasmons and for exci-
tons taken within the same mode are replaced by the product
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FIG. 5. The time dependence of the autocorrelation function ng)
for the 2 x 2 spaser (solid blue line) and for the 1 x 1 spaser (dashed
red line) with parameters of interaction corresponding to Fig. 3.

of their average values, i.e.,
(88 1i=0 = 1S:(0)°,
(8:8:") li=0 = [S:(0)> — D;(0),
(87 i=0 = S7(0). ((5))i=0 = (S} (0));

L

At A
(Ci

M=o = 1ci(0), (&6 ) i=0 = 1 + |ci(0)]?,
()i=0 = ¢}(0), (&) H)i=0 = (c}(0))?,

where i € {1,2}. However, initial values for second-order cor-
relators of plasmons and excitons taken from different modes
are assumed to equal zero, and the initial population imbalance
is D1 2(0) = 0.1. We expanded a four-order correlator in (11)
by using Wick’s theorem and found that G(l2)(0) = 2. This
situation corresponds to the initial super-Poisson statistics of
plasmons.

During the process of stabilizing the 1 x 1 spaser (dashed
line in Fig. 5), changes in quantum statistics are minimal. In
contrast to this, intensive energy exchange between a pair of
NPs in the 2 x 2 spaser leads to a significant decrease in the
value of G(IZ)(t) (see solid line in Fig. 5). However, even if
we choose any arbitrary values for the control parameters, the
values of the autocorrelation function G(lz)(t) never fall below
zero, which characterizes coherent plasmon source. Thus, we
conclude that the presence of strong dipole-dipole interactions
between NPs significantly changes the initial super-Poisson
statistic of localized plasmons in the spaser system. In addi-
tion, the analysis of the cross-correlation function G(lzz) (¢) for
plasmons demonstrates its purely classical behavior due to the
absence of nonlinear interaction in the system.

III. ENTANGLED PLASMON GENERATION IN THE
NONLINEAR REGIME OF A THREE-PARTICLE SPASER
CONTROLLED BY EXTERNAL MAGNETIC FIELD

In this section we consider nonlinear plasmon-exciton
interactions and also perform a complete optimization of the
spaser system parameters in order to demonstrate the formation

of nonclassical states of localized plasmons. Nonlinear regimes
of interaction between NP and QD can be realized, firstly, in
the presence of a two-photon pump in the system [57,58] and
secondly, under the condition that the coupling energy between
two electron-hole pairs is of the same order of magnitude as the
internal coupling energy of a single pair. In this situation the
coupled states of two electron-hole pairs (biexcitons of QDs)
can appear [57]. The energy of biexciton state X X differs from
the double energy of the exciton X by the biexciton binding
energy Ay, (see Fig. 6).

The decay of the biexciton state X X of the QD can occur in
various scenarios. The first variant is cascade processes [59],
when the biexciton X X splits into the X exciton state with the
emission of a single photon, and then the recombination in the
X exciton occurs with the appearance of a second photon [60].

However, for a QD without spatial symmetry, the energy of
the intermediate X state will depend on the spin state of the
electron in the conduction band. This is a well-known effect of
fine structure splitting (FSS). If the energy Efss is greater than
the width of the emission line, then the energies of the pair of
photons that are generated during the decay through level X
significantly differ from the energy of the photons produced
during the decay of the biexciton through the intermediate state
X _. Such a case is not interesting for quantum informatics.

If Eggss is much smaller than the linewidth, then the photons
generated in each of the cascades (XX — X, — g and
XX — X_ — g) are indistinguishable in energy (see Fig. 6)
and there is a so-called witch patch interference that results
in entanglement between photons [60]. However, it is very
difficult to control the quantum statistics and the correlation
properties of the photons directly during the experiment with
this approach.

Therefore, we choose another regime in which a cascade
process is not realized in the system of QDs, but a pure
two-quantum transition occurs [61]. In the conditions cor-
responding to scheme in Fig. 6 this regime is realized due
to far-off-resonant interaction in the case |§| > €2;,. Such a
process can lead to the generation of nonclassical states of
plasmons and it is described by the following Hamiltonian
[62]:

Fl(,()XX

H = hwpéfé) + hopnéhe; + D

+ hQP(@,6,81 + & er ), (12)

where the last term in the brackets comprises the annihilation
operator S of the biexciton X X state and the creation operators
¢ and &5 of a pair of plasmons, whose energies differ slightly
for the different intermediate levels X, (X_) with frequencies
wy, (wx_). The basis states |g); = [1S(h), m; = —1/2),
18)2 = [1S(h), my = +1/2), e}, = [18(e), my = +1/2),
le), = |1S(e), my = —1/2) for electrons and holes of QDs
in Fig. 6 differ in the m, values. The parameter Q? = %
is the effective two-quantum Rabi frequency. Parameters
8§ =@ — wy and 8@ = 2 — wyyx are the effective detunings,
where wyy = wx + wx, — Ay, is the biexciton frequency
[63]. We neglect the FSS and in the absence of an external
magnetic field we assume wy_ = wyx, = wy. We suppose that
both NPs are identical, i.e., w1 = wp = w,, A =0 — w,,
and the interaction between distant NPs placed at distance
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|21) &)

NP1 QD (B,=0) NP2

le) |&2)

NPl  QD(B,#0) NP2

FIG. 6. (a) A model of a three-particle spaser consisting of two NPs and single QD (NP-QD-NP), in which the generation of entangled
plasmons is realized due to the QD’s biexciton states decay. The mapping of exciton and plasmon energy levels is in the absence of (b) and in

the presence of (c) external magnetic field (A%, = 2kB3,).

2r can be ignored in the problem. The orientation of the
dipole moments of the nano-objects in Fig. 6 corresponds
to the nonradiative regime of the spaser, therefore the
Rabi frequency of interaction between the QD and NP is
Q=@ =g e

We use an approximation of slowly varying amplitudes,
ie., we assume that & = &e'?, & = &e ' and § =
Se~%®' Then the system of Heisenberg-Langevin equations
corresponding to (12) can be represented in the following form:

& =i(A+i)@1 —iQPe S + Fuy, (13a)
é = i<A + ;—)c’z —iQPer S + Fo, (13b)
§= i<3<2> + ;—S)S +iQ®¢,6,D + Fy, (13¢)
D =2iQP@ e S — 8Te16) — D;—DD" + Fp, (13d)

where the decay rates of different plasmon modes are assumed
to be equal to each other, i.e., 7.; = t» = 1.. We also as-
sume that the pump Dy has a rate of 1/7p for the exciton
mode.

Now we define the generation conditions for a nonlinear
spaser. For this we replace the operators in the system (13)

with C numbers and obtain the system of algebraic equations
for the stationary regime:

0=Ac, —iQ%csS, (14a)
0=Ac; —iQPc]S, (14b)
0=BS+iQ%cie;D, (14c)
D-D
0= 2iQ(ctciS — S*cier) — ——2,  (14d)
122}

where we introduce the parameters A} = i A — Ti and B| =

i8® — % Equations for plasmon-exciton modes can be ob-
tained by expressing S from (14¢) and substituting it in (14a)
and (14b). Finally, these equations have the forms:

AB — Q2%c,D =0,
AB) — Q271 2D = 0.

(15a)
(15b)

The spasing frequency can be found from the equations
(15a) and (15b), according to which the expression A;B;

must always take real values. Since A;B; = #g — AS@ —

. 2) .o . . .
1(% + %), that restriction is satisfied in the case

A fYe)
= : (16)

Ts Tc
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and along with that, Re(A4;B;) > 0. Relationship (16), in
particular, will be satisfied under conditions 8§ < 0 and
A > 0.

To determine the steady-state values &;, S, and D, it is
necessary to perform calculations by analogy with Sec. II, but
they will be applied to the newly defined coupled plasmon-
exciton modes. In particular, from the equations (14a) and
(14b) it is possible to derive the following expressions

. Aicy

s = o (17a)
AiCy

v

GS = am (17b)

After the substitution of these formulas in equation (14d) the
amplitude of plasmons for a stationary solution takes a form
similar to (10a):

A

G = —

5 —(Dy — D). (18)
12))

These stationary solutions are defined up to the plasmon phase
¢i. After substitution of the formulas (18) in equation (14c)
and expression of S from (14c¢), the amplitude of exciton mode
takes the form
iQ¥r,
4B 1TD
Having substituted (18) in (15) we obtain an equation for
population imbalance in the form:

S=— D(Dy — D)@+, (19)

o 4 1
D>~ PDy+ —L2 [ _As?@)=0. (20
Q(z)zfc TeTs

The equation (20) has two roots, only one of which is stable.
The corresponding stable solution takes the form:
16TD

_ Dy 1 1
b==2-_ D+ ASD — . @D
2 2 Q@2g, TcTs

Initializing our system in the absence of a magnetic field, we
assume @y = wyxo/2, where wxxo = wxx|p,—o. Then we get

882) = 0 and the required significant value of detuning is 6y =
—Ay,/2. From (16) we also obtain an additional condition
A = 0. Then the frequency of the transition in the QD can
be expressed as wxo = w, + Ay,/2. We again choose A, =
520 nm for gold and A, = 2.881 x 10 s~ (0.19 eV) for
the CdSe QD [64]. Using the expression (5), we determine the
size of the QD Dgp = 4.635 nm to satisfy the conditions of
two-quantum transition in the scheme. The dipole moment of
corresponding transition in the QD will take the value ugp =
0.303 x 10728 Cm.

Now we need to optimize the geometry of the spaser system
and the dissipative parameters of the nano-objects in order
to obtain stable stationary solutions. The simulation param-
eters correspond to 7. =5 x 10725, 73 =4 x 107! 5 and
frequency detuning to 8y = —1.441 x 10" s~!. The distance
between the NP and QD equals » = 5 nm. For a NP radius
anp = Dgp/2, the single-plasmon Rabi frequency is equal
to Q; = Q) = Q = 1.534 x 10" s~!, while the two-plasmon
Rabi frequency equals Q? = 1.634 x 10'? s~!. These values
of the Rabi frequencies approximately correspond to the study

[65], where the NP-QD coupling factor is 1.516 x 10'2 s71,
Thus, the condition Q > Q@ is fulfilled. However, we do not
consider the contribution of the terms with €2 in the biexciton
model (12).

It should be noted that we choose small-size QDs, while the
efficiency of the biexciton formation is significantly enhanced
with a larger QD [66]. On the other hand, the weak confinement
regime will be satisfied for such large-size QDs and the two-
level model becomes invalid. Therefore, we do not consider
large QDs in this paper.

The action of a magnetic field on the QD leads to a
disappearance of the degeneracy of the NP-QD-NP spaser on
frequency and the possibility to simply control its frequency
characteristics [see Fig. 6(c)]. It is known that the change in
the energy of an exciton in an external magnetic field depends
on the orientation of the magnetic induction vector B,, relative
to the surface of the sample [67]. In the Faraday geometry
we have a normal field orientation and the magnetic effects
are most clearly manifested. There is a dual action of the
magnetic field on the exciton. The action of the magnetic field
occurs at the spin moment of the electron and hole, which
leads to a Zeeman splitting of the exciton energy. Then the
frequencies of the excitons X (X_) will take the form wy =
wxo — By (wx, = wxo + aB,), where a« = gFjup/h [68]
and g% is the Lande g factor, up = 9.27 x 1072* J/T. The
parameter g depends on the QD radius [69]. For very small
QDs, this parameter almost coincides with gf = 2 for the free
electron and decreases to g£,, = 0.68 [70] for the CdSe bulk
semiconductor.

However, the resulting biexciton frequency wxxo and the
effective detuning 5(()2) do not change due to Zeeman splitting
[68]. This is due to the fact that the Zeeman shifts for X,
and X_ compensate each other. If, however, the diamagnetic
shift in the QD is taken into account, then the exciton
and biexciton energies take the forms wy = wxo — aB,, +
kBr%z (C()X+ = wxo + O[Bm + kB,%l) and wxx = wxxo + 2kB'%l,
Z;‘fi . The parameters pu* = (m% + mth1 anda,, =
v 51 (re2 + rf) are determined by the mass and radius of the
exciton [68], where r, and r;, are the effective radiuses of the
electron and hole, respectively.

Then the corresponding detunings will take the forms
S12 =& —wx_x, and 8 =2& — wyxxo — 2k B2, where &
determines the new spaser frequency in the system, taking into
account the magnetic field. Expression for & can be obtained
from the condition (16):

where k =

_ TcWwp + Tswxx (22)
T + 21’5 '

i

The last stage of parameter optimization consists of choos-
ing a specific value of magnetic field magnitude B,, in order to
obtain the maximum entanglement between plasmons ¢; and
¢,. This optimization results in a magnitude of magnetic field
equals B,, =5 T. Since the Lande g factor is g&,q, = 1.71
for the CdSe QD [70] with a given size, the diamagnetic
shift takes the value kB2 = 9.22 x 10'° s~! and the Zeeman
shift takes the value aB,, = £7.51 x 10'! s~!. Taking into
account the solution (22), the spaser frequency becomes equal
to the value @ = 3.625 x 10" s~! (§; = —1.433 x 10 s~!
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FIG. 7. The time dependence of population imbalance parame-
ter D (black lines), calculated by the using formula (21) (dashed
line) and by using direct numerical simulation (solid line) of
the system (13). The initial parameters correspond to D(0) =
1.005D, S(0) = 1.0058 and ¢;(0) = 0.8¢;, c,(0) = 1.2¢,, for sta-
tionary values ¢; = 0.7084 + 0.7084i, &, = 0.5009 + 0.8676i, S =
—0.1327 4+ 0.0197i, D = 0.0022. Insets: dependence of the relative
phase between the plasmon and exciton modes. The simulation
parameters correspond to point A from the inset in Fig. 8.

and 8, = —1.448 x 10" s7!, A =8.678 x 10'0s~ !, §@ =
—1.085 x 10'% s71). The frequency detunings §; (8,) satisfy
to inequality |6 2| > €2, ﬁ, % for the nonlinear regime in the
spaser. Then the corresponding Rabi frequencies will take the
values Q) = 1.642 x 102 571, QP = 1.625 x 102 5.

The key point is that these Rabi frequencies can be con-
trolled by changing the value B,, of the external magnetic
field. In particular, the detuning correction A§ = §; — §o due
to the magnetic field is only 7.456 x 10'" s~!, which cannot
influence the development of linear processes in the system
with their substantially higher values of the Rabi frequencies.
However, the values of A§ are of the same order with Q)
and an influence of magnetic effects on the dynamics of
nonlinear interactions is possible. From a technical point of
view, localization of the magnetic field on nanoscales can be
achieved with the help of a magnetic cantilever.

Figures 7 and 8 show a comparison of the analytical
solutions (18) and (21) and the direct numerical simulations of
(13). The deviations of initial values of simulation parameters
c1,2) from its steady-state solutions are 20%, but for S and
D these deviations are 0.5%. The simulation parameters were
selected as follows: Dy = 0.5 and tp = 6.2 x 10713 5. The
characteristic pumping rate 277/tp = 10'* s~! approximately
corresponds to the work [65], where it takes a value of about
7.8 x 1012 571

The direct numerical simulation demonstrates the achieve-
ment of the steady-state solution for population imbalance
D = 0.0022 within the characteristic time of 12 ps in Fig. 7.
During the process of spaser parameters stabilization, the
average number of plasmons reaches a value equaling 1 for
each NP, in Fig. 8. The spaser kinematic demonstrates the
nonlinear damping oscillations of the relative phase parameter

0% 1 2 3 41tx107 (s)
0-5 1 1 1
0 1 2 3 4
(x107 (s)

FIG. 8. The dependence of the average number of plasmons |c; |
(solid and dashed red lines) and |c,|* (dotted and dashed blue lines)
on time, calculated by using the formulas (18) and (21) (dashed lines)
and by using direct numerical simulation (solid and dotted lines) of
the system (13). Parameters of nonlinear interaction: w, = 3.625 x
105871, Q® =1.625x 102571, ., =5 x 107125, and 75 = 4 x
107! s. Top inset: the stability area as a result of optimization of
the nonlinear spaser with point A (0.5, 4 x 10! s). Bottom inset:
time dependence of plasmon average values for ¢; (solid and dashed
red lines) and ¢, (dotted and dashed blue lines) calculated by using
formulas (18) and (21) (dashed lines) and by using direct numerical
simulation (solid and dotted lines) of the system (B1).

sin (A¢;(¢)) between the plasmon and exciton modes, where
A (1) = Arg(%) (see insets in Fig. 7).

The gain curves for the plasmon number in Fig. 9 demon-
strate a pronounced nonlinear behavior. At the initial stage,
the pumping action leads to a linear increase of the population
imbalance only, while the average number of plasmons |¢; |

does not change and is zero. When the pump achieves the

— 2
el

Dx10"

FIG. 9. The gain curves for numbers of plasmons |, |* (solid blue
lines) and population imbalance D (dashed red lines), versus pumping
value Dy. The interaction parameters correspond to point A from the
top inset in Fig. 8.
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threshold value Dy = Dy, = 0.1337 first-order discontinuity
appears with a jump in the population imbalance and the
average number of plasmons. A further increase in the pump
value leads to an increase in the number of plasmons with a
simultaneous decrease in the population imbalance parameter.
This effect cannot be observed in the linear case shown in
Fig. 2, because this feature is due to a fundamental dependence
of the stationary solution D on the value of the external pump
Dy in (21). In particular, after reaching the generation threshold
in a linear system, the pump energy is distributed between the
generation of plasmons and excitons in approximately equally
amounts (see [8] and the inset in Fig. 2). Thus, the advantage
of the nonlinear spaser model is the more efficient transfer of
pump energy to the generation of plasmon modes.
Now, we will analyze the dynamics of the parameter
GO = (& (D215 (1 4+ 1)1 + 1)) 23)
(&l mem) ey @ + et + 1)’
which corresponds to the cross-correlation function and is a cri-
terion for establishing correlations between plasmonic modes
¢1 and ¢,. In particular, the condition G(122) = (2)(t 0) > 1is
associated with the intermode plasmon bunching. Moreover,
the violation of the Cauchy-Schwarz inequality

(2)(t 0)
2 2,087¢,0)

indicates the nonclassical character of the correlations between
plasmonic modes, where gfz)(t,O) = GEz)(t,O) +1,1i=1,2.
This is the necessary condition for the generation of entangled
plasmons in the spaser system.

In this part of the paper we aim to show the formation of
strong nonclassical correlations between two plasmons, which
are generated during the biexciton decay process in the NP-
QD-NP spaser system. In order to demonstrate this effect, we
solve the system of kinematic equations (B 1) for the correlators
of plasmon and exciton modes, which was derived on the
basis of system (13). In particular, the numerical simulation
of system (B1) allows us to obtain the time dependence of the
cross-correlation function sz) (see Fig. 10). Figure 10 shows
the result of such a simulation with system parameters as for
Figs. 7 and 8.

The initial values of intramode correlators were chosen as
follows:

C

(87 8)|i=0 = [SO)I,
(88) =0 = [S(0)]> — D(0),

(8% =0 = S2(0), (5710 = (S*(0))%;
(@& e lizo = i), (8 ) im0 = 1 4 ;i (0),

(1) i=0 = c}(0), (&) i=o = (¢} (0))%,

where i € {1,2}. However, the initial values for intermode
plasmonic and plasmon-exciton correlators are assumed to
equal zero, i.e.,

(& ej)limo = (&)= = (& 8)li=0 = (&) li=o

o

G(z) 12
1,2 d

8

5 4

FIG. 10. The time dependence of cross-correlation function G(lzz)
(solid black line) and autocorrelation functions G(lz) (dashed red line)
and G(ZZ) (dotted blue line) for plasmons in nonlinear NP-QD-NP
spaser. Inset: time dependence of C parameter (solid red line) and the
unity value of this parameter C = 1 (dashed black line) indicating on
the violation of Cauchy-Schwarz inequality for generated plasmons
in the region above it.

where i,j € {1,2} and i # j. During the process of nonlinear
interaction between QD and NPs in the spaser, the correlators
(¢ ¢;) are stabilized at values equal to 1 in full agreement with
mean-field theory (see Fig. 8). At the same time, the dynamics
of the establishment of a stationary regime based on simulation
of the system (B1) (see bottom inset in Fig. 8) differ from the
dynamics based on simulation of the system for average values
(13) (see Fig. 8). In particular, the appearance of the plasmon
correlations during the time evolution of the system (B1) leads
to a more oscillatory establishment of the stationary regime
(see bottom inset in Fig. 8).

The value of parameter G(12 in such stationary conditions
reaches the level 3.15, which demonstrates strong intermode
bunching between modes ¢; and ¢,. Moreover, the maximum
value of C parameter is Cyox = 15.15 and the stationary regime
value is Cy = 1.2, which demonstrates the nonclassical char-
acter of correlations between plasmon modes in spaser system,
see inset in Fig. 10. This corresponds to the case when the
initial entanglement between plasmons ¢; and ¢, is completely
absent. We also analyzed the autocorrelation functions G(lz)

for ¢; and G(zz) for ¢, plasmon fields in accordance with (11).
The values of autocorrelation functions achieve the level 1.87,
which corresponds to the super-Poisson statistics (see Fig. 10).

Thus, the main result of our simulation is a demonstration
of the development of quantum correlations between two
localized plasmonic modes and the possibility for formation of
an entangled state during the process of biexciton state decay
in a nonlinear NP-QD-NP spaser system. We also note that
if the nonlinear biexciton— plasmons energy exchange (12) is
replaced by linear plasmon-exciton interaction of type (4), the
formation of quantum correlations in the pair of plasmons does
not occur.
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A simple way to influence the quantum properties of the
generated nonclassical plasmons in a spaser is to change the
value of the magnetic field. Thus, by increasing the field
induction B,,, the Zeeman splitting and diamagnetic shift of the
QD levels increase, the parameters §; 5, 8, and Q® change,
and the correlation functions in Fig. 10 achieve another level
of values.

It should be noted that the loss of stability of plasmon
generation regimes occurs, in general, due to chemical im-
purity of the individual components—NPs and QDs, and also
the inaccuracy of their position in the spaser. In addition, it
is necessary to take into account that the efficiency of the
magnetic field’s influence on the quantum state of the excitons
also depends on the shape of the QD [71].

Another important problem is the temporal stability of QD
parameters during the establishment process of the stationary
regime of the spaser, similar to the problem of “blinking” for
emitting QDs [72]. One approach to solving this problem is
the use of a composite core-shell NP [73].

IV. CONCLUSION

We have investigated the dynamics of the average number
of localized plasmons and their quantum statistics in the double
spaser system. The system consists of two NPs and two QDs
located in the vertices of a square and coupled with each other
by means of a near-field interaction. Based on the realistic
parameters of gold NPs and CdSe semiconductor QDs, we
have optimized the geometric and dissipative characteristics of
the spaser system for the observation of steady-state solutions
for average numbers of plasmons and excitons in the system.
We have studied the features of the quantum statistics of
the generated plasmons in the spaser. In particular, it has
been shown that due to the dipole-dipole interactions between
adjacent metallic NPsin the 2 x 2 spaser, a significant decrease
of the autocorrelation function value G(lz)(t) for plasmons can
be observed. Meanwhile, in the absence of these dipole-dipole
NP interactions in the 1 x 1 spaser, the value G(lz) (t) remains at
the level of 2 with pronounced super-Poisson statistics. Using
this fact, we assumed that systems of linear spasers are not
suitable for the formation and control of nonclassical states of
plasmons. At the same time, our result supplements the model
in Ref. [23], in which strong NP-NP dipole-dipole interactions
for the spaserlike system have been investigated with respect
to the nonclassicality of photon states.

J

We have also proposed a mechanism for the control of
plasmons’ quantum properties in the spaser, where a pair of
NPs is coupled by nonlinear near-field interactions with a
single QD (NP-QD-NP spaser). We have optimized the size
of the QD and the geometry of the spaser system to increase
the efficiency of far-off-resonant plasmon-exciton interaction
between the QD and NPs. As a result, optimal conditions
for two-quantum biexciton decay with the appearance of
plasmons, which are localized on the corresponding NPs, have
been formulated. We have introduced an additional degree of
freedom in the form of an external magnetic field acting in
our spaser system. It has been shown that the influence of an
external magnetic field on such a system firstly leads to the
Zeeman splitting and secondly diamagnetic shift of QD energy
sublevels and changes in the two-plasmon Rabi frequency and
plasmon-exciton detuning in the spaser.

Finally, we have optimized the system parameters providing
the stationary regime of the entangled plasmons generation.
We have proposed to use this regime for the experimental
generation of biplasmons and their further use in quantum
plasmonic circuits. In particular, the integration of the spaser
system into the plasmonic chip can allow the creation of a
source for generating correlated states of the electromagnetic
field; it could be important for application in quantum com-
puting at the nanoscale. Further development of this work
may be aimed on a complex simulation of quantum algorithms
(including solitonlike structures [74]) in a chain of nonlinear
spasers, taking into account the nonlinear magnetic effects
[75], multipole resonances [41,76], and collective effects as
in optics [77].
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APPENDIX A: SYSTEM OF EQUATIONS ON AVERAGE VALUES FOR BILINEAR COMBINATIONS FOR CALCULATION
OF AUTOCORRELATION FUNCTION G (¢)

For analysis of the dynamics of parameter Gl@(t), it is convenient to use Wick’s theorem for decreasing the degrees of
correlators in (11) and using (6) to reduce the problem to a system of equations on average values for bilinear combinations:

%«ér)z(él)% = —ic«é,*f(el)% +2iQUENNET ST — (@D (@ 81) + 267 e ((Sfer) — (& 81))
+2iQ,, ((@1)efed) — (@) ere) + 2(ef an(eder) — (& &), (Ala)
%(éfz) = 2i A6 ,) — 2iQ2(¢1281.2) — 2iQp,(E182), (Alb)
%(él,zéa) =—%wl,zéig—im(sl,zétz)—<él,23¢2>)—iszp,,(<éz,lém—<61,zézl>)+<ﬁcl,czét2> +(E12F) o). (Alo)
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d ., . 2 P TP . At A At A
E(Cffzcl,z) = —T—(Cffzcl,ﬁ +iQ((875812) — (61,812)) +i2,,((¢31812) — (€] 262.1))s
d . . . PO . 2 e~ a2
5(01,251,2) =i(A+ B){(C1251,2) +iQD12(C7,) —i2(57,),
d ... . ot RPN At A
d—t(Sffgcl,ﬂ = i(A — B")(87,812) —iQ((8],81.2) + D12(é],812),
d A A . R o
E<@‘@2> = 2i A(&182) — i, ((¢7) +(63)),
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where
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T; Ts

the average values of noise correlation functions have the form
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with consideration for commutation relationships for ¢; and S [78].
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APPENDIX B: SYSTEM OF EQUATIONS ON AVERAGE VALUES FOR BILINEAR COMBINATIONS FOR CALCULATION

OF CROSS-CORRELATION FUNCTION G{(t)

In the conditions of the current nonlinear problem (13) for the visualization of function (23), it is necessary to decouple
correlators and decrease their degrees with the help of Wick’s theorem. As a result, the complete self-consistent system on

correlators takes the form:

d N
T (012) = A1(e12) = i1, 3),
d P 2 /A A
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d . R . - N . oA
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d &2 -0 2) A AN/Q A N A & A
T (8% =2B1(8%) + 2120 D((018)(S) + (&18)(&2) + (@28) @),
2 N N N N
—(E00) = (@00 + iQP(e16)(8F) — (&7 e NS) + (&18T)E) — (&7 8)1(E) + (68T
C
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2 N N N N
E(éuéfz) = = (C128],) FiQP((182)(8T) — (&7 eV () + (6187) (&) — (€7 8)(eF) + (281 (@) — (@5 8)(e )
H(Ferealls) + (@12F] ). (B1f)
d .~ 2 Ala N N N N ~ N
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the average values of noise correlation functions have the form
. Zetc
(For28ls) = (C12F3 ) = %
A A ~ A Z
(Fs§%)y = (SES) = 7S
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with consideration for commutation relationships for ¢; and S [78].
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