
PHYSICAL REVIEW B 97, 085430 (2018)

Energy spectrum, the spin polarization, and the optical selection rules of the Kronig-Penney
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The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how
the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of
both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that
represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental
equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of
the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin
zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the
z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the
optical transition rates between adjacent bands are nonzero.
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I. INTRODUCTION

Semiconductor materials with strong spin-orbit coupling
(SOC) have attracted considerable interest in recent years
because of their potential applications in both condensed-
matter physics and quantum-information processing [1–3]. For
example, a topological insulator phase has been discovered in
strong spin-orbit coupled quantum-well structures [4], and a
strong spin-orbit coupled semiconductor nanowire in proxim-
ity to an s-wave superconductor can realize a one-dimensional
(1D) topological superconductor [5,6]. Also, a spin qubit
confined in a semiconductor quantum dot with strong SOC
has the advantage of being electrically manipulable [7–15].

The emergence of SOC in semiconductor materials is be-
cause of the lack of space-inversion symmetry. Bulk inversion
asymmetry leads to Dresselhaus SOC [16], and structure
inversion asymmetry leads to Rashba SOC [17]. Moreover,
Rashba SOC can be tuned to some extent by an external electric
field [18], such that it is possible to tune a quantum system to
the strong SOC regime. In the presence of SOC, the spin degree
of freedom is mixed with the orbital degree of freedom of the
electron, such that it is usually difficult to clarify the strong
SOC effects.

The Kronig-Penney (KP) model [19] is a 1D model of
a crystal that shows how the electrons are dispersed into
allowed and forbidden bands [20]. The KP model is important
in condensed-matter physics due to its exact solvability. It
is interesting to ask, when nontrivial SOC is presented in
the KP model, whether the resulting spin-orbital superlattice
model is still exactly solvable and what are the consequences.
The energy spectrum [21–23], the optical properties [24,25],
and the transport properties [26–28] of various spin-orbital
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superlattice models have received considerable attention in
recent years.

In this paper, we study the KP superlattice model with SOC,
where an electron moves in a 1D periodic δ potential [29] in
the presence of both SOC and the Zeeman field. We derive
analytically four transcendental equations, which represent an
implicit relation between the energy and the Bloch wave vector.
By solving these transcendental equations, the spin-orbital
bands [30,31] are obtained exactly. In addition to the band
gap usually opened at the boundary of the Brillouin zone [19],
a much larger spin-orbital band gap can also be opened at some
special sites inside the Brillouin zone. The spin-orbital band
gap is a representative character of the spin-orbital superlattice
system. The norm of the spin polarization vector has a large
jump at the boundary of the Brillouin zone, while it only has
a small jump at the sites where the spin-orbital gap opened.
Finally, we discuss the optical selection rules between adjacent
bands. There is a finite optical transition rate between adjacent
bands at the band edge.

II. THE MODEL AND THE BOUNDARY CONDITIONS

The model we are interested in is the KP superlattice model
[20] in the presence of both the SOC and an external Zeeman
field. The Hamiltonian under consideration reads (in all of the
following, we set h̄ = 1)

H = − 1

2m
∂2
x − iασ z∂x + �σx + V0a

N−1∑
n=0

δ(x − na), (1)

where m is the effective electron mass, α is the Rashba SOC
strength, � = geμBB/2 is half of the Zeeman splitting (with
ge, μB , and B being the effective g-factor, the Bohr magneton,
and the Zeeman field, respectively), and the last term is the
periodic δ potential with lattice periodicity a and potential
height V0.
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TABLE I. The parameters of the InSb quantum wire superlattice
used in our calculations.

ge [32] B (T) m/me
a [32] xso

b (nm) a (nm) V0(meV)
−50.6 0.4 0.0136 50, 200 100 0.5, 2

ame is the electron mass.
bxso = h̄/(mα) is the spin-orbit length.

We now analyze the boundary conditions of our model. Due
to the lattice periodicity, we only need to consider the boundary
conditions at the site x = 0 because the boundary conditions
at other sites x = a,2a, . . . are just the same as that at the
site x = 0. First, due to the continuous property of the wave
function, we have one boundary condition:

�(+0) = �(−0), (2)

where �(x) is the eigenfunction of Hamiltonian (1). Second,
integrating the Schrödinger equation in the vicinity of the site
x = 0: lim

ε→ 0

∫ ε

−ε
dx(H − E)� = 0, we have the other boundary

condition:

� ′(+0) − � ′(−0) = 2mV0a�(0), (3)

where � ′(±0) is the first derivative of the eigenfunction at the
site x = ±0.

As one can find out, the boundary conditions of this model
look the same as that of the bare KP model [19] (without a spin
degree of freedom). However, the wave function here, �(x) =
[�1(x),�2(x)]T, has two components, such that the boundary
conditions (2) and (3) actually contain four equations.

It should be noted that in all of our following calculations,
unless otherwise stated, we have chosen InSb nanowire [32,33]
as our superlattice material, and the detailed parameters of our
model are given in Table I.

III. THE SPIN-ORBITAL BANDS

We first solve the bulk spectrum and the corresponding
bulk wave functions for our Hamiltonian (1) (for details, see
Appendix A). Each obtained bulk wave function does not
satisfy the desired boundary conditions (2) and (3). However,
a linear combination of the four bulk wave functions can fulfill
the boundary conditions [34,35]. Following this method, in
different energy regions, we have obtained four transcendental
equations, i.e., Eqs. (B5), (B7), (B11), and (B13) (for details,
see Appendix B), which represent an implicit relation between
the energy and the Bloch wave vector. Solving these four
transcendental equations, we can get the complete energy band
for the KP superlattice model with SOC.

We do not make any approximation or assumption in
deriving these transcendental equations, such that our results
are general and exact. Here, we take the InSb nanowire [32,33]
as an example to show the results we obtained. Figures 1(a)
and 1(b) show the band structure in the first Brillouin zone
when our model is in the strong SOC regime xso = 50 nm, i.e.,
mα2 > geμBB. Figures 1(c) and 1(d) show the band structure
in the first Brillouin zone when our model is in the weak
SOC regime xso = 200 nm, i.e., mα2 < geμBB. Meanwhile,
Figs. 1(a) and 1(c) give the band structure when the potential
barrier is small, V0 = 0.5 meV, and Figs. 1(b) and 1(d) give
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FIG. 1. The band structure of the KP superlattice model with
SOC. (a) The lowest three bands for xso = 50 nm and V0 = 0.5 meV.
(b) The lowest three bands for xso = 50 nm and V0 = 2 meV. (c) The
lowest four bands for xso = 200 nm and V0 = 0.5 meV. (d) The lowest
four bands for xso = 200 nm and V0 = 2 meV. The k sites where the
gap opened because of the SOC effects are marked with arrows.

the band structure when the potential barrier is relatively large,
V0 = 2 meV. At first glance, the band structure in the strong
SOC regime is distinctly different from that in the weak SOC
regime. Actually, this difference can be traced back to the
difference originating from the bulk spectrum (see Fig. 5).

As expected, at the boundary sites of the Brillouin zone, e.g.,
kb = ±π/a, a band gap is opened because of the weak periodic
potential V0 term. This band gap is usually small, and it can be
calculated using perturbation theory [20]. In particular, a much
larger band gap also opened at some special k-sites, which are
marked as arrows in the figures (see Fig. 1). We call this gap
the spin-orbital gap [30,31], because its emergence is due to
the interplay between the SOC and the periodic potential. As
can be seen from Figs. 1(b) and 1(d), the spin-orbital gap is
much larger (several times larger) than the gap that opened at
the boundary of the Brillouin zone. The spin-orbital gap is a
representative character of the spin-orbital superlattice system.
Obviously, the large spin-orbital gaps shown in the figures
cannot be obtained using perturbation calculations, especially
for the cases when the potential barrier is relatively large [see
Figs. 1(b) and 1(d)].

Band engineering is an interesting topic for the spin-orbital
superlattice system. Many parameters, e.g., the lattice constant
a, the potential barrier V0, and the spin-orbit strength α, are
externally tunable, such that it is possible to produce a nearly
flat band [36,37] or well-separated spin-orbital bands [see
Fig. 1(b)]. It is also possible to engineer the topological super-
conductivity when the spin-orbital superlattice is in proximity
to an s-wave superconductor [38,39].
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FIG. 2. The spin expectation value in the first Brillouin zone
calculated for the bands given in Fig. 1(a). (a) The results for the
first band. (b) The results for the second band. (c) The results for the
third band. The arrows here mark the same k sites as in Fig. 1(a).

IV. THE SPIN POLARIZATION

In the presence of the SOC and the Zeeman field, the spin
operator is no longer a good quantum number, i.e., neither a
single operator (σ z or σx) nor a linear combination of σ z and
σx is a conserved quantity in Hamiltonian (1). The interplay of
the SOC and the periodic potential produces complicated and
well-separated spin-orbital bands (see Fig. 1). Each kb site of
a given band can only accommodate one electron. Although
spin is not a conserved quantity in our superlattice system,
it is still of interest to know the spin polarization direction
when electrons occupy a given band. The spin polarization
also reflects the magnetic properties of the superlattice system
[40]. The spin polarization at a given kb site of a given band is
described by the expectation value of the spin operator,

〈σx,y,z〉 =
∫

dx �
†
n,kb

(x)σx,y,z�n,kb
(x), (4)

where �
†
n,kb

(x) is the Bloch function of a given band n. We
calculate the spin polarization in the first Brillouin zone for
the KP superlattice system in both the strong SOC regime,
xso = 50 nm (see Fig. 2), and the weak SOC regime, xso = 200
nm (see Fig. 3). It should be noted that because the spin
operator is no longer a good quantum number, the norm of
the spin polarization vector is less than 1 [41] in our model.
The norm of the spin polarization vector is equal to 1 for
systems in which spin is a good quantum number. First, at
the boundary sites of the Brillouin zone where the traditional
band gaps are opened, the norm of the spin polarization vector
has a large jump, |〈σ 〉kb=±π/a,±2π/a| < 1 (see Figs. 2 and 3).
Second, at some special kb sites where the spin-orbital gaps
are opened (see the sites marked with arrows in Figs. 2 and
3), the norm of the spin polarization vector only has a minor
jump, |〈σ 〉kb=markedsites| ≈ 1.

The components of the spin polarization vector have the
following simple property:

〈σx〉−kb
= 〈σx〉kb

,

〈σ z〉−kb
= −〈σ z〉kb

. (5)

The x component of the spin polarization vector is an even
function of kb, and the z component of the spin polarization
vector is an odd function of kb. Because of the periodic property
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FIG. 3. The spin expectation value in the first Brillouin zone
calculated for the bands given in Fig. 1(c). (a) The results for the
first band. (b) The results for the second band. (c) The results for the
third band. (d) The results for the fourth band. The arrows here mark
the same k sites as in Fig. 1(c).

in the Brillouin zone, 〈σ z〉kb
= 〈σ z〉kb+2π/a , such that at the

boundary sites kb = 0, ± π/a, the spin polarization along the
z direction is exactly zero,

〈σ z〉kb=0,±π/a = 0. (6)

There is no σy term in our model, such that the y component
of the spin polarization vector is exact zero for all the kb

sites 〈σy〉kb
= 0 [40]. When the superlattice system contains

N electrons and the bands are occupied up to the Fermi energy
Ef , it is interesting to show that there always exists a net x

polarization for the whole system
∑

Ekb
<Ef

〈σx〉kb
�= 0, while

there is no net z polarization
∑

Ekb
<Ef

〈σ z〉kb
= 0 [21]. This

property can also be deduced from Eq. (5).

V. THE OPTICAL SELECTION RULES

An electron in a fully occupied valence band can absorb
a photon and then be excited to the high-energy conduction
band; the formation of the exciton state in a semiconductor is
an illustration. To understand the optical properties [25] of the
spin-orbital superlattice system, it is instructive to know the
electric-dipole transition rate between different bands [40],


nm(kb) =
∣∣∣∣
∫

dx �
†
n,kb

(x)x�m,kb
(x)

∣∣∣∣, (7)

where n and m are the band index marking the different bands.
Figure 4(a) gives the optical transition rate between different
bands when the superlattice is in the strong SOC regime.
Figure 4(b) gives the optical transition rate between different
bands when the superlattice is in the weak SOC regime.
Generally, because of the mixing of the spin and the orbital
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FIG. 4. The optical transition rate between different bands in the
first Brillouin zone. (a) The results for the bands given in Fig. 1(b).
(b) The results for the bands given in Fig. 1(d). The arrows here mark
the same k sites as in Figs. 1(b) and 1(d).

degrees of freedom due to the SOC, except at the boundary
of the Brillouin zone, e.g., kb = 0, ±π/a, the transition rate
between two arbitrary spin-orbital bands is nonzero. As can
also be seen from the figure, 
23(kb = 0, ± π/a) = 0 in both
the strong and the weak SOC regimes. This is because the
Bloch functions at these sites have an additional Z2 symmetry
[42] as pointed out in the literature [40]. The Bloch functions at
the boundary of the Brillouin zone can be labeled with σxP =
±1, where P is the parity operator. The optical transition
rate is zero between those Bloch functions with the same Z2

symmetry. It should be noted that at the band edges, which are
marked with arrows in Fig. 4, the optical transition rates are
generally nonzero.

VI. SUMMARY

In summary, in this paper we have studied in detail the band
structure, the spin polarization, and the optical selection rules
of the KP superlattice model with SOC. We have analytically
obtained four transcendental equations, i.e., Eqs. (B5), (B7),
(B11), and (B13), which describe an implicit expression
between the energy E and the Bloch wave vector kb. In addition
to the usual band gap opened at the boundary of the Brillouin
zone, a larger spin-orbital band gap can also be opened at some
special sites inside the Brillouin zone. With the exact energy
spectrum and the corresponding Bloch functions obtained, we
are able to calculate the spin polarization of a given band and
the optical selection rules between different bands. The norm
of the spin polarization has a jump at the kb sites where the gap
opened. The jump is larger at the boundary of the Brillouin
zone than that at the sites where the spin-orbital gaps opened.
At the boundary of the Brillouin zone, some optical transitions
are forbidden when the corresponding Bloch functions have
the same Z2 symmetry.

ACKNOWLEDGMENTS

We thank Zhaoxin Liang for useful discussion. This work
is supported by National Natural Science Foundation of China
Grant No. 11404020 and Postdoctoral Science Foundation of
China Grant No. 2014M560039.

APPENDIX A: THE BULK SPECTRUM AND THE BULK
WAVE FUNCTIONS

Due to the special property of the δ function, the periodic
potential is zero everywhere except at the boundary sites. To
find the energy spectrum of Hamiltonian (1), our first step is
to find the bulk spectrum and the corresponding bulk wave
functions, where the bulk Hamiltonian reads Hb = − 1

2m
∂2
x −

iασ z∂x + �σx [43,44]. There exist two kinds of bulk wave
functions, i.e., the plane-wave solution and the exponential
function solution [34,35]. First, we consider the plane-wave
solution. The bulk wave function can be assumed as

�b(x) = eikx

(
χ1

χ2

)
, (A1)

where χ1,2 are the coefficients to be determined. The bulk
Schrödinger equation (Hb − Eb)�b = 0 gives us the following
matrix equation:(

k2

2m
− Eb + α k �

� k2

2m
− Eb − α k

)(
χ1

χ2

)
= 0. (A2)

Setting the determinant of the matrix (on the left side of the
above equation) equal to zero, we get the bulk spectrum

E±
b = k2

2m
±

√
α2k2 + �2. (A3)

Substituting the bulk energy E±
b in Eq. (A2) with the above

results, we obtain the corresponding bulk wave functions:

�+
b =

⎧⎪⎨
⎪⎩

eikx

(
cos θ

2

sin θ
2

)

e−ikx

(
sin θ

2

cos θ
2

) , �−
b =

⎧⎨
⎩

eikx

(
sin θ

2
− cos θ

2

)

e−ikx

(
cos θ

2
− sin θ

2

) , (A4)

where θ ≡ θ (k) = arctan [�/(α k)]. Because E±
b is an even

function of k, there are two degenerate bulk wave functions,
i.e., the left-moving +k and the right-moving −k wave func-
tions.

Second, we consider the exponential function solution. The
bulk wave function now can be assumed as

�b(x) = e− x

(
χ1

χ2

)
, (A5)

where χ1,2 are also the coefficients to be determined. The bulk
Schrödinger equation (Hb − Eb)�b = 0 now gives us(

−2

2m
− Eb + iα �

� −2

2m
− Eb − iα

)(
χ1

χ2

)
= 0. (A6)

Setting the determinant of the matrix (on the left side of the
above equation) equal to zero, we get the bulk energy

E±
b = − 2

2m
±

√
−α22 + �2. (A7)

Substituting the bulk energy in the bulk Schrödinger equation
(A6) with the above results, we obtain the corresponding bulk
wave functions:

�+
b =

⎧⎨
⎩

e− x

(
eiϕ

1

)

e x

(
e−iϕ

1

) , �−
b =

⎧⎨
⎩

e− x

(−e−iϕ

1

)

e x

(−eiϕ

1

) , (A8)
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FIG. 5. The bulk spectrum of the KP superlattice model with
SOC. (a) The bulk spectrum of the plane-wave solution (A3) in
the strong SOC regime xso = 50 nm. (b) The bulk spectrum of the
exponential function solution (A7) in the strong SOC regime xso = 50
nm. (c) The bulk spectrum of the plane-wave solution (A3) in the weak
SOC regime xso = 200 nm. (d) The bulk spectrum of the exponential
function solution (A7) in the weak SOC regime xso = 200 nm.

where ϕ ≡ ϕ() = arctan (α/
√−α22 + �2). Because E±

b
is still an even function of , there are two degenerate bulk
wave functions, i.e., the  solution and the − solution.

All of the above results are very general. Here, taking the
InSb nanowire material as a concrete example, we show the
bulk spectrum of the spin-orbital superlattice model in Fig. 5.
Figures 5(a) and 5(b) show the bulk spectrum in the strong
SOC regime (mα2 > geμBB), and Figs. 5(c) and 5(d) show
the bulk spectrum in the weak SOC regime (mα2 < geμBB).
Also, from the detailed expressions of the bulk spectrum (A3)
and (A7), we can derive some general results that are very
useful in the following calculations. In the strong SOC regime
[see Figs. 5(a) and 5(b)], E+

b > � and E−
b > − 1

2mα2 − �2

2mα2

for the plane-wave solution, and −� � E−
b � − �2

2mα2 and

− �2

2mα2 � E+
b � � for the exponential function solution. In

the weak SOC regime [see Figs. 5(c) and 5(d)], E+
b > � and

E−
b > −� for the plane-wave solution, and − 1

2mα2 − �2

2mα2 �
E−

b � −� and − �2

2mα2 � E+
b � � for the exponential func-

tion solution.

APPENDIX B: THE TRANSCENDENTAL EQUATION

Each bulk wave function cannot satisfy the desired bound-
ary conditions [see Eqs. (2) and (3)]. However, a linear

combination of the four degenerate bulk wave functions can
fulfill the boundary conditions [34,35]. Here, in different
energy regions when the system is in the strong SOC regime
(mα2 > geμBB), we totally derive four transcendental equa-
tions, i.e., Eqs. (B5), (B7), (B11), and (B13), which represent
the implicit relation between the energy and the Bloch wave
vector. It should be noted that two of the equations, i.e.,
Eqs. (B7) and (B13), also are valid in the weak SOC regime
(mα2 < geμBB).

1. The region: −� > E > − 1
2 mα2 − �2

2mα2

As can be seen from the bulk spectrum of the Hamiltonian
(1) [see Fig. 5(a)], when −� > E > − 1

2mα2 − �2

2mα2 , one
can solve four k solutions, i.e., ± k1,2, from the “−” branch
dispersion relation given in Eq. (A3),

k1,2 =
√

2mα

√
1 + E

mα2
±

√
1 + 2

E

mα2
+ �2

m2α4
. (B1)

The eigenfunction �(x) of Hamiltonian (1) can be expanded
in terms of these four bulk wave functions. All we need to do
is to let the expanded eigenfunction �(x) satisfy the desired
boundary conditions [see Eqs. (2) and (3)]. It should be noted
that all of the four bulk wave functions belong to the “−”
branch �−

b (x) given in Eq. (A4). Thus, in the coordinate region
0 < x < a, the eigenfunction �(x) can be written as follows:

�(x) = c1

(
sin θ1

2

− cos θ1
2

)
eik1x + c2

(
cos θ1

2

− sin θ1
2

)
e−ik1x

+ c3

(
sin θ2

2

− cos θ2
2

)
eik2x + c4

(
cos θ2

2

− sin θ2
2

)
e−ik2x, (B2)

where θ1,2 ≡ θ1,2(k) = arctan[�/(α k1,2)], and c1,2,3,4 are the
coefficients to be determined. In the region −a < x < 0, the
eigenfunction can be written down with the help of the Bloch
theorem,

�(x) = e−ikba�(x + a), (B3)

where we have introduced the Bloch wave vector kb =
lπ/(Na) (l = −N/2, . . . ,N/2). In the above equation, be-
cause 0 < x + a < a, the right side of the above equation can
be expressed with the help of Eq. (B2). Now, we consider the
boundary conditions at the site x = 0. Substituting the wave
function �(x) and the first derivative � ′(x) in Eqs. (2) and
(3) with the above-derived expressions, we obtain an equation
array,

M1 · C = 0, (B4)

where M1 is a 4 × 4 matrix, and C = (c1,c2,c3,c4)T. Letting
the determinant of the matrix M1 be equal to 0, i.e., det(M1) =
0, we have the following transcendental equation:

[
2k1k2(1 − sin θ1 sin θ2) − (

k2
1 + k2

2

)
cos θ1 cos θ2

]
sin[(k1 + kb)a/2] sin[(k1 − kb)a/2] sin[(k2 + kb)a/2] sin[(k2 − kb)a/2]

− k0(k1 − k1 sin θ1 sin θ2 − k2 cos θ1 cos θ2) sin[k2a] sin[(k1 + kb)a/2] sin[(k1 − kb)a/2]
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− k0(k2 − k2 sin θ1 sin θ2 − k1 cos θ1 cos θ2) sin[k1a] sin[(k2 + kb)a/2] sin[(k2 − kb)a/2]

+ k2
0(sin2[(k1 + k2)a/2] sin2[(θ1 − θ2)/2] − sin2[(k1 − k2)a/2] cos2[(θ1 + θ2)/2]) = 0, (B5)

where k0 = mV0a. This equation actually is an implicit relation
between the energy E and the Bloch wave vector kb.

2. The region: E > �

As can also be seen from the bulk spectrum of Hamiltonian
(1) [see Fig. 5(a)], when E > �, one can solve two solutions
±k1 from the “+” branch and two solutions ±k2 from the “−”
branch dispersion relations given in Eq. (A3). Therefore, the
eigenfunction �(x) can be expanded in terms of the four bulk
wave functions, i.e., two from the “+” branch and two from

the “−” branch given in Eq. (A4). In the coordinate region
0 < x < a, the eigenfunction can be written as

�(x) = c1

(
cos θ1

2

sin θ1
2

)
eik1x + c2

(
sin θ1

2

cos θ1
2

)
e−ik1x

+ c3

(
sin θ2

2

− cos θ2
2

)
eik2x + c4

(
cos θ2

2

− sin θ2
2

)
e−ik2x.

(B6)

Repeating the same procedures as those given in the above
subsection, we obtain the following transcendental equation:

[
2k1k2(1 + sin θ1 sin θ2) + (

k2
1 + k2

2

)
cos θ1 cos θ2

]
sin[(k1 + kb)a/2] sin[(k1 − kb)a/2] sin[(k2 + kb)a/2] sin[(k2 − kb)a/2]

− k0(k1 + k1 sin θ1 sin θ2 + k2 cos θ1 cos θ2) sin[k2a] sin[(k1 + kb)a/2] sin[(k1 − kb)a/2]

− k0(k2 + k2 sin θ1 sin θ2 + k1 cos θ1 cos θ2) sin[k1a] sin[(k2 + kb)a/2] sin[(k2 − kb)a/2]

+ k2
0(sin2[(k1 + k2)a/2] cos2[(θ1 − θ2)/2] − sin2[(k1 − k2)a/2] sin2[(θ1 + θ2)/2]) = 0. (B7)

This equation actually is an implicit relation between the energy E and the Bloch wave vector kb.

3. The region: −� < E < − �2

2mα2

So far, only the bulk plane-wave solutions are used for
solving the energy band of our model (1). Here, we move
to consider another interesting energy region, where E lies
inside the bulk energy gap. In this case, we have to utilize the
exponential function solutions.

In the energy region −� < E < − �2

2mα2 , one can find two
solutions ±k from the “−” branch dispersion relation given in
Eq. (A3),

k =
√

2mα

√
1 + E

mα2
+

√
1 + 2

E

mα2
+ �2

m2α4
. (B8)

One can also find two solutions ± from the “−” branch
dispersion relation given in Eq. (A7),

 =
√

2mα

√
−1 − E

mα2
+

√
1 + 2

E

mα2
+ �2

m2α4
. (B9)

Thus, the eigenfunction �(x) of Hamiltonian (1) can be
expanded in terms of these four bulk wave functions, i.e.,
two from the “−” branch of the plane-wave solution and two
from the “−” branch of the exponential function solution. In
the coordinate region 0 < x < a, the eigenfunction can be
expanded as

�(x) = c1e
− x

(
−e−iϕ

1

)
+ c2e

 x
(

−eiϕ

1

)

+ c3e
ikx

(
sin θ

2

− cos θ
2

)
+ c4e

−ikx
(

cos θ
2− sin θ

2

)
, (B10)

where θ ≡ θ (k) = arctan [�/(α k)], ϕ ≡ ϕ() = arctan
(α/

√−α22 + �2), and c1,2,3,4 are the expansion
coefficients to be determined. Repeating the same procedures
as those given in the first subsection, we obtain the following
transcendental equation:

[
(k2 − 2) cos θ sin ϕ − 2k(cos ϕ − sin θ )

](
cos[kba] − cosh[ a]

)
sin[(k + kb)a/2] sin[(k − kb)a/2]

+ k0
(
 cos ϕ −  sin θ − k cos θ sin ϕ

)(
cos[kba] − cosh[ a]

)
sin[ka]

+ 2k0
(
k cos ϕ − k sin θ +  cos θ sin ϕ

)
sinh[ a] sin[(k + kb)a/2] sin[(k − kb)a/2]

− k2
0 cos θ sin ϕ

(
cos[ka] cosh[ a] − 1

) − k2
0

(
cos ϕ − sin θ

)
sinh[ a] sin[ka] = 0. (B11)

This equation actually is an implicit relation between the energy E and the Bloch wave vector kb.
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4. The region: − �2

2mα2 < E < �

In this energy region, one can find two solutions ±k from the “−” branch dispersion relation given in Eq. (A3) and two
solutions ± from the “+” branch dispersion relation given in Eq. (A7). Thus, the eigenfunction �(x) of Hamiltonian (1) can be
expanded in terms of these four bulk wave functions, i.e., two from the “−” branch of the plane-wave solution and two from the
“+” branch of the exponential function solution. Now, in the coordinate region 0 < x < a, the eigenfunction can be expanded
generally as

�(x) = c1e
− x

(
eiϕ

1

)
+ c2e

 x

(
e−iϕ

1

)
+ c3e

ikx

(
sin θ

2− cos θ
2

)
+ c4e

−ikx

(
cos θ

2

− sin θ
2

)
. (B12)

Repeating the same procedures as those given in the first subsection, we obtain the following transcendental equation:

[(k2 − 2) cos θ sin ϕ + 2k(cos ϕ + sin θ )](cos[kba] − cosh[ a]) sin[(k + kb)a/2] sin[(k − kb)a/2]

− k0[(cos ϕ + sin θ ) + k cos θ sin ϕ](cos[kba] − cosh[ a]) sin[ka]

− 2k0[k(cos ϕ + sin θ ) −  cos θ sin ϕ] sinh[ a] sin[(k + kb)a/2] sin[(k − kb)a/2]

− k2
0 cos θ sin ϕ(cos[ka] cosh[ a] − 1) + k2

0(cos ϕ + sin θ ) sinh[ a] sin[ka] = 0. (B13)

This equation actually is an implicit relation between the
energy E and the Bloch wave vector kb.

We now consider the transcendental equations when the
superlattice system is in the weak SOC regime [see Figs. 5(c)
and 5(d)]. In the weak SOC regime, the energy region is only
divided into two parts, i.e., E > � and � > E > −� [see

Figs. 5(c) and 5(d)]. The discussions in this regime are just
the same as those in the strong SOC regime. In the energy
region E > �, the transcendental equation still has the form
given in Eq. (B7). In the energy region � > E > −�, the
transcendental equation is also exactly the same as that given
in Eq. (B13).
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