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Time-dependent transport of a localized surface plasmon through a linear array of metal
nanoparticles: Precursor and normal mode contributions
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We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a
linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through
the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and
damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, asx−1 and
x−2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin
forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon
transport at large distances. In addition, even though this signal is spread in the propagation direction and has
the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with
distance, indicating that this part of the signal is confined to the array.
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I. INTRODUCTION

Recent advances in fabrication techniques have led to an
impulse in the application of nanotechnology, in particular, in
the development of nanoelectronic chips. Importantly, minia-
turizing electronics and improving its performance, requires
densely packed interconnects. Due to the crosstalk of elements,
it is expected that the application of electronic interconnects
becomes problematic for dense packing. A significant im-
provement in performance can be achieved, when the com-
munication is mediated by light rather than by electrons.
However, since the size of traditional optical devices is limited
by the diffraction, there is a large size mismatch between the
electronic and optical components. Potentially, this problem
can be solved using plasmonic materials, where the energy is
stored in the collective excitations of free electrons of a metallic
structure: plasmons [1–5]. Such optical excitations can be
confined well below the diffraction limit of light. Depending
on a given geometry, these properties can be exploited for the
design of nanoscale optical waveguides [6–8], optical antennas
[9–12], and plasmonic sensors [13,14].

A well-known example of a plasmonic waveguide is a chain
of metal nanoparticles (MNPs), also known as a plasmonic
array. Excitation of one of the MNPs will induce a so-called
localized surface plasmon (LSP), dipole of which, due to the
Coulombic forces, will couple to the neighboring particles
in the chain. In this way, an optical signal can propagate
through the chain, maintaining the strong energy confinement
properties of the LSP. This system has been first introduced
by Quinten et al. [15] and since then it has been extensively
studied and discussed in the literature. The waveguiding
properties of plasmons of such a chain have been investigated
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in detail, considering both the frequency dependence and the
propagation distance [16–27]. Furthermore, due to the large
optical cross section associated with the LSP, it has become
clear that this system can also be used as a nanoantenna, either
to localize the excitation [28–30] or to radiate with a sharp
directionality [9,10,31–34] as well as to directionally excite
surface plasmon polaritons [35–38].

The environment of the chain plays an important role in the
interactions between the particles in the chain and, therefore,
the optical and guiding properties of the chain are significantly
altered when it is embedded in a layered medium [26,39–42].
All these properties are contained in the dispersion relations
[20,22,42–47], from which information about the velocity and
the lifetime of the plasmonic modes can be derived.

In spite of the fact that plasmonic arrays have been subjected
to a large amount of studies, most of these focused on
the steady-state response of the system. For applications in
communication, it is of crucial importance to also understand
time-dependent behavior, that is the main goal of this study.

Metals are known to be strongly dispersive and dissipative
materials at optical frequencies. Because of that, the propaga-
tion velocity and damping of the signal are highly dependent
on the carrier frequency of the pulse and its duration or, in other
words, on its Fourier spectrum [17,22,48]. When the dispersion
is smooth and dissipation is small, an optical signal will prop-
agate at the group velocity vg = dω(q)/dq, where ω(q) is the
chain’s plasmon dispersion relation. However, both conditions
are not necessarily met in plasmonic arrays, where the disper-
sion relations have steep regions and strong dissipation is an
inevitable condition to have subwavelength confinement [49].

In this paper, we simulate the propagation of a LSP,
created on the leftmost MNP by a Gaussian optical pulse,
through a long chain of equidistantly spaced spherical MNPs.
Surprisingly, we find two propagating signals: one, traveling
with the group velocity and damped exponentially, according
to the system’s dispersion relation, and the other, running with
the speed of light in the surrounding medium and decaying in
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FIG. 1. Schematics of the system under consideration: a linear
array of identical and equidistantly spaced spherical MNPs with radius
a = 25 nm and center-to-center distance d = 75 nm. The array is
embedded in a medium with permittivity εb = 2.25. The chain length
N = 4000. Only the leftmost (n = 1) particle is considered to be
excited by a light source.

a power-law fashion, as x−1 and x−2 for the transversal and
longitudinal polarizations, respectively. The latter resembles
the Sommerfeld-Brillouin forerunner [50–52] and has not been
pointed out in the previous studies. The contribution of this
signal dominates the plasmon transport at large distances.
Globally, the lateral dimension of the forerunner spreads in
the propagation direction, however, the field profile close to
the chain axis does not change with distance, indicating that
this part of the signal remains confined to the array.

The remainder of this paper is organized as follows. In the
next section, we introduce the mathematical model that is used
for the analytical and numerical calculations. In Sec. III, the
dispersion relations are derived and discussed. Section IV first
treats the frequency-domain solutions, followed by the time-
dependent propagation simulations. The obtained results are
analyzed using an analytical solution based on the Green’s
function of the system. Additionally, the lateral spread of the
precursor signal is calculated in order to get insight into its
confinement to the array. Finally, in Sec. VI, we summarize.

II. FORMALISM

The plasmonic waveguide that we consider in this paper is
a linear array of identical and equidistantly spaced spherical
MNPs. The array is oriented along the x axis and the center of
the leftmost MNP coincides with the origin (n = 1, x1 = 0).
The system is depicted schematically in Fig. 1, in which the
center-to-center distance between the MNPs is given by d =
75 nm and their radii by a = 25 nm. The array is embedded
in a glass matrix with a permittivity εb = 2.25. Throughout
this work we will consider a chain consisting of N = 4000
MNPs. We assume that only the leftmost (n = 1) MNP of the
array is excited. In practice, this can be achieved with, e.g.,
a tapered optical fiber, as is used, for example, in near-field
optical microscopy [3]. Note that the chain length N = 4000
is much longer than necessary for any practical application. We
make this choice because it enables us to find the amplitude
and velocity of the signal without the complication of reflection
from the end of the chain, thereby allowing us to clearly distin-
guish between different contributions to the signal propagation.
In what follows, such distinction is essential.

The frequency-dependent response of MNPs is well un-
derstood and, therefore, we will first calculate the system’s
optical response in the frequency domain. The MNP’s size
considered is much smaller than the excitation wavelength
and the interparticle spacing satisfies d � 3a. Under these

limitations, it suffices to describe the MNPs as oscillating point
dipoles [53]. An external field of the form E exp(−iωt) induces
a dipole moment in an MNP with an amplitude given by p =
εbα(ω)E. Here, α(ω) is the frequency-dependent polarizability
of the metal, which for spherical MNPs can be written as

1

α(ω)
= ε(ω) + 2εb

ε(ω) − εb

1

a3
− k2

b

a
− 2i

3
k3
b. (1)

In this equation, ε(ω) is the permittivity of the material of which
the MNPs are composed and kb = √

εbω/c = ω/v is the wave
vector in the background medium, where c and v are the speed
of light in vacuum and in the background medium, respectively.
The first term in Eq. (1) is the electrostatic polarizability, while
the second and third terms account for spatial dispersion and
radiation damping, respectively [54]. In this paper, we consider
silver MNPs with a permittivity given by the generalized Drude
formula [55] ε(ω) = ε∞ − ηω2

p/(ω2 + iγ ω) with ε∞ = 5.45,
η = 0.73, ωp = 16.2 × 1016 s−1, and γ = 8.35 × 1013 s−1,
which fits well the tabulated optical data [56].

The induced dipole moment of the MNP will oscillate
along with the applied external field and, therefore, it will
also generate an electric field. The electric field at position
r produced by an oscillating point dipole p′ located at r′ can
be written in terms of the Green’s tensor Ĝ as

E(r) = k2
b

εb

Ĝ(r,r′)p′, (2)

where the ω dependence is dropped. Taking into account that
the dipole moment of an MNP is proportional to the total field
acting on it, which is the sum of the external field and the fields
produced by all the other MNPs, we can write the following
equation of motion for the dipole moment amplitudes of the
coupled system in the frequency domain:

1

εb

∑
m( �=n)

[
1

α
δnmÎ − k2

bĜ(rn,rm)

]
pm = Eext

n . (3)

The exact form of the Green’s tensor is strongly dependent
on the environment of the dipoles. In the present situation,
we consider a chain of MNPs in an otherwise homogeneous
background with permittivity εb. In this case, the Green’s tensor
is simply given by [3]

Ĝ(rn,rm) =
[

Î + ∇∇
k2
b

]
eikb |rn−rm|

|rn − rm| . (4)

From the symmetry of the system (see Fig. 1), it is obvious
that only two independent polarizations will exist: longitudinal
(‖), when the dipole moments are oriented along the chain
axis, and transversal (⊥), with the dipole moments oriented
perpendicular to the chain axis. Therefore, only the diagonal
elements of the Green’s tensor will be nonzero and we can
simplify Eq. (4) to

G‖(xn,xm) = 2

(
− i

kb|xn − xm|2 + 1

k2
b |xn − xm|3

)
eikb|xn−xm|,

(5a)

G⊥(xn,xm) =
(

1

|xn − xm| + i

kb|xn − xm|2 − 1

k2
b |xn − xm|3

)

× eikb |xn−xm|, (5b)
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where we introduced the notations G‖ = Gxx and G⊥ =
Gyy = Gzz.

The optical response of the array to a given external
excitation can now easily be found by inserting Eq. (5) into
Eq. (3) and solving the latter for pn. Note that this is the
solution in the frequency domain and the external excitation is
considered to be a continuous wave of a fixed frequency ω.

In order to investigate how an LSP, created on the leftmost
MNP, propagates through the array, we have to solve the
time-domain problem. The excitation pulse considered in this
paper is assumed to have a Gaussian envelope with a standard
deviation �t , a carrier frequency ω0, and is centered around
t = t0, i.e.,

Ẽ(t) = E0e
−iω0t e

−
(

t−t0
�t

)2

. (6)

To probe the effects of dispersion on the LSP propagation, the
temporal width �t of the excitation is considered relatively
long, so that the spectrum of the pulse is narrow compared to
the frequency scale over which the dispersion relation varies
strongly.

The response of the system in the time domain p̃n(t) can
be obtained by taking the inverse Fourier transform of the
frequency-domain solution pn(ω). To this end, we first have to
perform the Fourier transform of the above defined Gaussian
(6), which will be again a Gaussian

E(ω) = E0�t√
2

ei(ω−ω0)t0e
−

(
ω−ω0
2/�t

)2

. (7)

Then, substituting E(ω) into Eq. (3) and solving for the dipole
moment per frequency component pn(ω), the time-dependent
response p̃n(t) can be easily found by taking the inverse Fourier
transform, i.e.,

p̃n(t) = 1√
2π

∫ ∞

−∞
dω pn(ω)e−iωt . (8)

III. DISPERSION RELATIONS

In any propagation problem, the normal mode representa-
tion provides a convenient formalism to get insight into details
of the system’s dynamics. Thus, finding the normal modes of
the plasmonic chain is of crucial importance. They are found
by solving Eq. (3) for E = 0. Even though several schemes
are available to find the normal modes, in general, this is not a
straightforward task. For short arrays, the summation in Eq. (3)
can be carried out directly and the modes are easily found using
the method proposed by, e.g., Weber and Ford [43]. Due to
poor convergence of the summation, it becomes increasingly
difficult to apply this method when longer arrays of MNPs are
considered.

Interestingly, the infinite chain approximation has been
shown to be already accurate for relatively short chains [19].
In this case, the sums in Eq. (3) can be rewritten in terms
of polylogarithms, which can be evaluated using analytical
continuation [43,45,57]. For an infinite periodic chain with an
interparticle spacing d, we look for the collective modes of the
system in the form of Bloch waves, i.e., pm = p exp[iqmd].

Substituting this in Eq. (3) with E = 0 yields⎡
⎣ 1

α
−

∑
m( �=n)

k2
bGβ(nd,md)eiq(m−n)d

⎤
⎦p = 0, (9)

where the Green’s tensor is replaced by Gβ , the scalar inter-
action for either longitudinal or transversal polarization, i.e.,
β =‖ or ⊥, respectively. The second term in the square brackets
is the so-called dipole sum, Sβ(kb,q). Splitting the summation
in two parts, corresponding to m > n and m < n, i.e., forward
and backward interactions, Sβ(kb,q) can be rewritten as

S‖(kb,q) = 1

d3
(−2ikbd[Li2(z+) + Li2(z−)]

+ 2[Li3(z+) + Li3(z−)]), (10a)

S⊥(kb,q) = 1

d3

(
k2
bd

2[Li1(z+) + Li1(z−)] + ikbd[Li2(z+)

+ Li2(z−)] + [Li3(z+) + Li3(z−)]
)
, (10b)

where Lis(z) = ∑∞
n=1 zn/ns is the polylogarithm of order s

(see Ref. [58]) and the arguments z± = exp[i(kb ± q)d ].
In this approximation, the dispersion relation ω(q) can be

obtained by numerically solving the equation

1

α(ω)
− Sβ(kb,q) = 0. (11)

Figure 2 shows the thus obtained dispersion relations for an
infinite linear array of silver nanospheres with the parameters
as in Fig. 1; these results are in agreement with previous
calculations of the dispersion relations of linear plasmonic
arrays [19,43,44]. The upper and lower panels show the real and
imaginary parts of the normal mode frequencies, respectively.
A time dependence of exp(−iωt) is assumed, and therefore,
the real part of the frequency Re[ω(q)] refers to the oscillation
frequency, whereas the imaginary part γ (q) = Im[ω(q)] gives
rise to exponential damping in time. In fact, γ (q)−1 determines
the mode’s lifetime.

From Fig. 2(a) one can see a clear difference be-
tween the longitudinal and transversal chain modes. First, at
q = 0 the longitudinal mode reaches a minimum that lies
below the plasmon resonance of a single MNP, whereas
the transversal mode reaches a maximum, lying above the
single-particle resonance. This reflects the fact that the sign
of the near-field dipole-dipole coupling is opposite for these
two modes [see Eqs. (5a) and (5b)]. Second, an important
difference between both polarizations is the anticrossing at
the light line that is only observed for the transversal case,
indicating polariton behavior of the coupled plasmon-photon
system. This results from the fact that light is a transversal
wave and therefore couples strongly to transversally polarized
plasmons that propagate along the array, giving rise to the
avoided crossing at Re[ω(q)] = vq. Such a coupling does not
exist for longitudinal plasmons. This is also reflected in the
fact that the radiative interaction term, proportional to 1/xn, is
absent for the longitudinal interaction, whereas it is present for
the transversal polarization.

Looking at Fig. 2(b), one observes a large reduction of the
losses when the light line is crossed, kb = Re[ω]/vp. Within
the light cone, q < kb, the modes of the chain suffer from
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FIG. 2. The dispersion relations ω(q) of an infinite chain of silver
spherical MNPs of radius 25 nm and spacing of 75 nm in a glass
background medium. (a) Real part of the frequency ω versus the wave
vector q for longitudinally (green) and transversally (red) polarized
plasmons. The black dotted line indicates the dispersion of light in
glass. (b) The imaginary part of the frequencyω versus the wave vector
q. For reference purposes: the plasmon resonance of an individual
MNP is ωLSP = 4.14 − 0.19i rad/fs. Note that the wave vector q

runs from 0 to the first Brillouin zone edge at π/d .

both Ohmic and radiative losses. However, modes with q > kb

cannot couple to the free-space radiation and only will suffer
from Ohmic losses. These are the so-called guided modes of
the system and the ones of interest for signal propagation.
The modes inside the light cone (q < kb) are characterized
by significant losses, predominantly of radiative nature. These
are the so-called leaky modes of the chain. Their contribution
to the LSP transport is marginal as compared with the guided
modes.

From the dispersion relations, one can derive important
properties of the energy transport. Each mode propagates at
its own phase velocity, defined as vp(q) = Re[ω(q)]/q. When
a collection of modes (a wave packet) is excited with a carrier
frequency ω0, this will propagate with the group velocity, given
by vg(q) = d

dq
Re[ω(q)]|ω0 . This allows one to determine the

propagation length l(q) for the normal mode, deriving it from
the relation l(q) = vg(q)/γ (q), as was done in Ref. [44].

FIG. 3. The frequency-domain characterization of the energy
transport through a plasmonic array comprising 4000 silver
nanospheres with radii a = 25 nm and interparticle spacing d =
75 nm. The data were obtained by numerically solving Eq. (3) as
a function of frequency ω under the condition of excitation of the
leftmost (n = 1) particle of the array. The magnitudes of the dipole
moments’ Fourier components {pn} are plotted on a logarithmic scale.
The dipole moment of each particle is normalized with respect to the
maximum magnitude of the dipole moment of the leftmost (n = 1)
particle. The maximum absolute value of the dipole moment of the
last particle occurs at ω = 4.12 rad/fs and at ω = 3.46 rad/fs for the
longitudinal and transversal polarizations, respectively.

IV. SIGNAL PROPAGATION

A. Frequency domain

In Sec. II, the polarizability α(ω) of a single MNP and
the interaction between two MNPs Ĝ(rn,rm) where given in
the frequency domain. The optical response of the chain can
now easily be obtained by inserting these quantities in Eq. (3)
and solving it numerically. The frequency-domain response
of the system is depicted in Fig. 3 for a chain consisting
of N = 4000 silver nanospheres with radii a = 25 nm and
interparticle spacing d = 75 nm. As before, the excitation
source is considered to act only on the leftmost (n = 1) particle.
For both the longitudinal and transversal polarizations, it is
clearly seen that the dipole moments’ magnitudes are large
close to the starting point, but gradually decrease along the
chain. Figure 3 shows that more towards the end of the array, an
efficient energy transmission occurs only in a narrow frequency
interval. Furthermore, while at the beginning of the chain the
dipole moments’ magnitudes are larger for the longitudinal
polarization, towards the chain end, the transport is more
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FIG. 4. Double logarithmic plot of the maximum magnitude of
the dipole moment pn for each particle, obtained from Fig. 3, as a
function of the position n = xn/d along the chain axis. The dipole
moments are normalized with respect to the maximum magnitude of
the leftmost (n = 1) dipole. It is seen that after an initial exponential
stage, the curves become linear, indicating a power-law decrease of
pn along the chain axis. Using a linear fitting, it is found that the
decay follows the power laws n−2.13 and n−0.95 for the longitudinal
and transversal polarizations, respectively.

efficient for the transversal polarization. To elucidate this effect
better, a graph showing the maximum values of the contour
plots of Fig. 3 as a function of the distance along the chain is
given in Fig. 4. From this figure, one observes that indeed
for the initial part of the chain, the longitudinal polarized
transport dominates over the transversal one, but after about
130 particles the situation is opposite. Interestingly, whereas
all collective modes damp exponentially due to dissipation, the
line of maximum energy transport at large distances follows
a power law, i.e., |pn| ∝ x−s

n . From the slope of the decays in
Fig. 4, one can determine the value of s, which turns out to
be s ≈ 0.95 and s ≈ 2.13 for the transversal and longitudinal
polarizations, respectively.

Discussion of the frequency-domain results

Even though the data presented in Fig. 3 have been cal-
culated by numerically solving Eq. (3) for a finite chain, in
order to shed light on the surprising geometrical decay at long
distances, it is informative to consider the analytical solution
to Eq. (3) for an infinite chain. In this case, if only a single
particle is excited, the solution to Eq. (3) represents essentially
the Green’s function for the dipoles, which is given by the
Fourier transform of α−1(ω) − Sβ(kb,q):

Pβ(xn,0) = d

2πεb

∫ π
d

− π
d

dq
eiqxn

1/α(ω) − Sβ(kb,q)
, (12)

where P (xn,0) is the dipole moment that is induced in the
particle situated at xn, when only the particle at x = 0 is
excited. Note that, in spite the fact that Eq. (12) represents
the Green’s function for an infinite chain, asymptotically (for
xn 
 d) it is also a good approximation for a semi-infinite
chain: far from the boundary, the influence of the the latter is
negligible.

FIG. 5. The integration path for evaluating the integral in Eq. (12).
The crosses indicate the position of poles, while the dashed lines
denote the logarithmic branch cats.

The integration in Eq. (12) runs over the real axis from
q = −π/d to +π/d, which are the edges of the first Brillouin
zone. To find the different contributions to the integral, we
deform the integration path into the complex plane. In the
present case, we can move the path into the upper half-plane,
to ensure convergence of the integral for positive values of xn.
Taking a close look at the integrand in Eq. (12), we observe that
for performing the integration, we have to take into account the
poles, given by 1/α(ω) − Sβ(kb,q) = 0, and the logarithmic
branch cuts at q = ±kb, originating from the polylogarithms
in the dipole sum Sβ . The resulting integration contour is shown
in Fig. 5.

Since the integrand in Eq. (12) is identical on both Brillouin
zone edges, the contributions coming from the left and right
vertical parts of the integration contour cancel. In addition,
the integrand is exponentially decaying as a function of the
imaginary part of q. Therefore, the contribution of the upper
part of the contour tends to zero as long as we move the path far
enough away from the real axis. Interestingly, this shows that
there are two contributions to the dipole moment of the particle
at xn, one coming from the pole and the other from the branch
cut. The poles of the integrand in Eq. (12) correspond exactly
to the collective modes of the system. The above conclusion
therefore implies that the response of the system cannot be
simply written as a superposition of the modes, the contribution
of the branch cut also has to be taken into account.

The contribution of the pole, P pole
β , can easily be calculated

using the residue theorem. Denoting the position of the pole
by q = qp, we find

P
pole
β (xn,0) = d

iεb

eiqpxn

S ′
β(kb,qp)

, (13)

where S ′ denotes the first derivative of S with respect to q.
Due to the presence of dissipation, one knows that the poles
will occur at complex values of q. Therefore, it is clear that the
contribution, coming from the collective modes of the system,
will decay exponentially as a function of xn with a decay
constant given by Im[qp].

The origin of the power-law decay of the signal for large xn

thus has to come from the contribution of the integration around
the branch cut P bc

β . Since the integrand vanishes exponentially
according to exp[−Im[q]xn], the contributions of both vertical
paths along the cut will be zero for large xn. Therefore, at
large distances, we expect to only see the contribution from
the integration over the real axis from kb − ε to kb + ε, for
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arbitrarily small ε, i.e.,

P bc
β (xn,0) = lim

ε→0

d

2πεb

∫ kb+ε

kb−ε

dq
eiqxn

1/α(ω) − Sβ(kb,q)
. (14)

To find the asymptotic behavior of this integral for large xn, we integrate twice by parts and obtain

P bc
β (xn,0) = lim

ε→0

d

2πεb

(
1

ixn

eiqxn

1/α − Sβ

∣∣∣kb+ε

kb−ε
+ 1

x2
n

eiqxx S ′
β

(1/α − Sβ)2

∣∣∣kb+ε

kb−ε
− 1

x2
n

∫ kb+ε

kb−ε

dq
eiqxn [(1/α − Sβ)S ′′

β − 2(S ′
β)2]

[1/α(ω) − Sβ]3

)
. (15)

Note that the dependence of Sβ on kb and q is suppressed in
Eq. (15).

The branch cut originates from the polylogarithms in
the dipole sum Sβ . The arguments of the polylogarithms
are z+ and z−, which reduce to z+ = exp[2ikb] and z− =
exp[∓iε] at the integration boundaries. This implies that the
branch cut at q = +kb is only due to the polylogarithms
containing z−, i.e., the forward interactions. One can show
that limε→0 [Lis(e+iε) − Lis(e−iε)] equals 0 for s = 2 and 3,
but will be nonzero for s = 1. For transversal polarization,
polylogarithms with s = 1, 2, and 3 occur. Therefore, none of
the terms in Eq. (15) vanish, indicating that the large-distance
response of the system decays as 1/xn, in close agreement
to what was observed in Fig. 4. For longitudinal polarization,
only second- and third-order polylogarithms occur in the dipole
sum, and therefore S‖(kb,kb + ε) = S||(kb,kb − ε) as ε goes
to zero, implying that the first term in Eq. (15) disappears.
The second term of Eq. (15) contains the first derivative of
S with respect to q. Using the fact that the derivative of a
polylogarithm with respect to the argument decreases its order
by one, we deduce that S ′

‖ contains a polylogarithm of the
first order and, therefore, the second term does not vanish
for arbitrarily small ε. Thus, the large-distance response for
longitudinal polarization decays as 1/x2

n , in close agreement
to what was also observed in Fig. 4.

B. Time domain

As was mentioned before, the time-dependent propagation
can easily be obtained from the frequency-domain solution
with the aid of the inverse Fourier transform. The Gaussian
pulse with a carrier frequency of ω0 has a Gaussian spectral
distribution centered around ω0, as is given by Eqs. (6) and (7).
To obtain the frequency-domain solution depicted in Fig. 3, the
amplitude of the excitation was put equal for all frequencies.
Since the external excitation enters linearly in the equations,
the response to a Gaussian excitation can be obtained by simply
multiplying the solution with a Gaussian spectral distribution.
Numerically, this is advantageous since the time-consuming
frequency-domain response only has to be calculated once and,
consequently, the frequency-domain response of the chain to a
Gaussian excitation for different values of ω0 can be generated
very fast. The inverse Fourier transform was performed using
the built-in fast Fourier transform function of MATLAB R2015A.
To obtain a sufficiently high resolution in the time domain, the
frequency grid that is used had a step size of 0.001 rad/fs.
Furthermore, the considered pulse was chosen relatively long
compared to the oscillation period of the normal modes, with a

width of �t = 80 fs. This implies that the spectral distribution
has width of �ω = 0.025 rad/fs, which is narrow enough to
probe the influence of different ω0.

An example of the time-dependent pulse propagation
through the considered system is given in Fig. 6, where the
absolute value of the dipole moment |p̃n(t)| is plotted as a
function of the particle number and time. For longitudinal
polarization, the carrier frequency ω0 is 4.3 rad/fs, while for
transversal polarization ω0 = 3.8 rad/fs. Note that these values
are just chosen for illustration purposes and that calculations

FIG. 6. The time-dependent response of a plasmonic array con-
sisting of 4000 silver nanospheres with radii a = 25 nm and a
center-to-center spacing 75 nm. The magnitude of the dipole moment
p̃n(t) is plotted as a function of the particle number and time. Only
the leftmost (n = 1) particle of the chain is excited by a Gaussian
pulse of a width (standard deviation) �t = 80 fs and a carrier
frequency ω0 = 4.3 rad/fs and ω0 = 3.8 rad/fs for the longitudinal
and transversal polarization, respectively. The dipole moments are
normalized to the maximum magnitude of the leftmost dipole p̃1(t0).
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have been performed for a wide range of ω0. The propagation
velocity can be determined from the slope of the contours. For
both polarizations, one can clearly distinguish two different
signals: a fast, slowly decaying signal over the diagonal, and a
slower, more lossy signal. In the top right corner, the reflection
of the fast signal at the end of the chain can be seen. Using
Brillouin’s definition of signal velocity vs [52], the slope of
the contours was determined by tracing the maximum value
of the signal as a function of time. The velocity of the fast
signal is found to be exactly equal to the velocity of light in
the embedding glass matrix, 200 nm/fs, and, interestingly, is
independent of the carrier frequency of the exciting pulse ω0.
In contrast, the velocity of the slower signal turns out to be
strongly dependent on ω0, and as will be shown, it is this signal
that matches the guided plasmon modes of the array.

Discussion of the time-domain results

The observation of two signals propagating with different
velocities hints towards the two different contributions that
were found in the frequency-domain simulations in Sec. IV A.
Since we have obtained analytical expressions for both con-
tributions, by taking the Fourier transform we can find the
velocities at which these signals are propagating. The integrals
are complicated to evaluate exactly, however, in order to obtain
the propagation velocities, a full calculation is not necessary.
The Fourier transform of the contribution coming from the
branch cut is given by

P̃ bc
β (xn,0,t) =

∫
dω P bc

β (xn,0,ω) ei[kb(ω)xn−ωt], (16)

which is a superposition of plane waves exp[i(kb(ω)xn − ωt)]
with different frequencies. The functional dependence of kb

on ω is given by kb = ω/v. Therefore, it is evident that this
contribution propagates with the velocity v, i.e., the speed
of light in the surrounding medium, independently of the
excitation frequency. Thus, the fast propagating signal arises
from the integration along the logarithmic branch cut.

Similarly, for the contribution coming from the pole of
Eq. (12), i.e., from the collective plasmons of the chain, we
can write

P̃
p

β (xn,0,t) =
∫

dω P
p

β (xn,0,ω)ei[qp(ω)xn−ωt]. (17)

Although we do not have a simple analytical expression for
qp(ω), to a first approximation, we can write qp(ω) = qp,0 +
dqp

dω
|ω0

(ω − ω0). Inserting this in the above equation, we find

that the signal is propagating according to exp[i( dqp

dω
|ω0

xn −
ωt)], i.e., the propagation velocity is dω

dqp
|ω0

. Within this
approximation, this is equal to the group velocity vg at the
carrier frequency ω0. Therefore, the collective plasmons of the
chain propagate with the group velocity, which can be derived
from the dispersion relation.

To verify the above result, Fig. 7 shows both the group
velocity, derived from the dispersion relation, and the signal
velocity vs of the slower signal, which is obtained by tracing
the maximum in the time-dependent propagation simulations.
A very close match between both velocities is observed, con-
firming the hypothesis. Close to the light line, the comparison
becomes worse. This is because near the light line the changes

FIG. 7. Comparison of the group velocity vg (solid curve), cal-
culated from the dispersion relation ω(q), and the signal velocity vs

(open circles), obtained from the time-dependent propagation shown
in Fig. 6. The inset shows a closeup of the crossing point of the
dispersion curve for longitudinal polarization with the light line.

in the dispersion relation are large and, therefore, taking only
the first order in the Taylor series is not sufficient, but higher-
order terms have to be taken into account.

For longitudinal polarization at high frequencies we still
observe a signal, whereas according to the dispersion relation
no modes exist for this frequency. However, due to the width
of the excitation and the broadening of the modes arising from
dissipation, there is still sufficient overlap to excite the modes
at the edge of the first Brillouin zone.

Surprisingly, for longitudinal polarization, relatively large
group and signal velocities are recorded, much larger than
expected from looking at the slope of the dispersion curve in
Fig. 2. As is shown in the inset of Fig. 7, in which a closeup of
the light line crossing for longitudinal polarization is plotted,
the dispersion relation coincides with the light line for a small
selection of wave vectors. This implies that for a very narrow
frequency interval, the plasmons will actually propagate with
the velocity of light. This is the reason for the peak around
ω0 = 4.1 rad/fs for longitudinal polarization. The above result
might seem counterintuitive because radiative interaction only
exists for transversal polarization. However, in the interaction
there is also the nonstatic intermediate-field term, proportional
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FIG. 8. The lifetime of the normal modes, longitudinal (up-
per panel) and transversal (lower panel), respectively. The dashed
lines represent the imaginary part of the normal mode frequencies,
1/Im[ω(q)], as a function of the wave vector q. The open circles
show the decay constants that are obtained by tracing the maximum
amplitude of the slower signal in the pulse propagation simulations
for different carrier frequencies ω0.

to x−2
n , that results from retardation and gives rise to a cusp in

a narrow region around the crossing point ω(q) = vq [59,60].
In addition to the signal velocities, we can also extract

information about the signal damping from the time-dependent
simulations. Tracing the height of the peaks as a function of
distance or time, one can deduce the propagation length or
the lifetime of the signals. Doing this for the fast signal, the
same power-law decay as observed in the frequency-domain
calculations was obtained, confirming that this signal indeed
originates from the branch cut. For the slower signal, we
deduced the lifetime from the simulations as a function of
the carrier frequency. The result is compared with the lifetime
that was obtained from the imaginary part of the dispersion
relation in Fig. 2. The comparison is shown in Fig. 8. It
is obvious that the decay constant exactly matches Im[ω],
another confirmation that the slower signal is indeed due to
the collective plasmons.

It is important to stress that, even though realistic dissipation
was taken into account, the group velocity provides a good fit to
the obtained signal velocities. Even for simulations with twice
the realistic amount of Ohmic losses (not shown), the match

between both velocities still is very good. This indicates that
it is not the amount of dissipation that is important, but its
variation with respect to the wave vector or frequency, i.e., the
changes in the imaginary part of the dispersion relation. Close
to the light line, the variation in both the real and imaginary
parts of the dispersion relation is large, indicating that in this
region the group velocity is an ill-defined quantity.

V. BRANCH-CUT CONTRIBUTION: PRECURSOR

As is seen from the analysis performed in the preceding
section, the fast signal originates from the branch cut of the
integrand in Eq. (12). Both the high propagation velocity and
the slow geometrical decay make this signal very interesting
from the viewpoint of fundamental physics as well as practical
applications. The question that should be answered is how to
interpret the branch-cut contribution physically. First, we note
the branch cut arises from the dipole sum, so that the fast signal
is not simply the electric field that the first (n = 1) dipole gener-
ates at each particle in the chain, but rather reflects a collective
effect, coming from the sum of all forward scattered fields.

To illustrate this, we carried out calculations for an array
consisting of two silver spheres (n = 1 and 4000) in the
dielectric background, separated by the same distance as in
the original problem presented in the paper. We calculated the
magnitude of the dipole moment on the last particle relative
to the one on the first (excited) particle as a function of time
around the time, when the precursor arrives there. The results
are shown in Fig. 9. As is seen from the figure, this magnitude
clearly differs from the one in the case where the full chain of
particles is considered. In the case of longitudinal polarization,
the magnitude of the last dipole is enhanced by the intermediate
particles, while for transverse polarization, it is reduced. The
enhancement in the longitudinal case, we attribute to the fact
that the near-field interactions between neighboring particles
are relatively important then (since the radiative long-range
interaction is absent here), while the reduction in the transverse
case may be attributed to (destructive) interference effects
between the secondary radiation fields (absent for longitudinal
polarization) emitted by the λ/2 antiphased domains of the
chain. This proves that the precursor effect observed is not just
free-space propagation of an electromagnetic field between
the first and the last particle.

Since the electric field generated by an oscillating dipole
propagates with the speed of light, it is understandable that such
a signal should always be present. Its intensity is expected to
maximize in the vicinity of the light line, where the frequencies
of light ckb and collective plasmonsω(q) are equal to each other
and also the wave vectors of light and plasmon modes match
(kb = q), ensuring the simultaneous occurrence of resonance
and phase matching between both types of modes. Away from
the light line, the phase-matching condition is also fulfilled,
however, the resonance condition is not (and vice versa). There-
fore, the fast signal will also exist (see Fig. 6), but less intense.

This is exactly what we observe from Fig. 3. Indeed, for
the longitudinal polarization, the transmitted signal acquires
its maximum at ω = 4.12 rad/fs, which corresponds to the
crossing point of the corresponding dispersion curve with the
light line [see Fig. 2(a)]. In the transversal case, this does not
happen because the losses diverge at the crossing point [see
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FIG. 9. Same as in Fig. 6, only for an array comprising two silver
nanospheres n = 1 and 4000, while removing all others in-between
by the ambient material.

Fig. 2(b)], thus killing the signal at this frequency. Instead, the
transversal signal is maximized at ω = 3.46 rad/s, the point
where the interplay between the resonance and phase matching
is optimal.

The fast signal resembles the so-called Sommerfeld-
Brillouin forerunner [50–52]. Sommerfeld and Brillouin stud-
ied theoretically the propagation of a step-modulated light
pulse in a Lorentz absorbing medium with a single broad
absorption line. They showed that at propagation distances at
which the medium is opaque in a broad spectral range (includ-
ing the carrier frequency), the transmitted signal consists of
two consecutive transients with essentially 100% transmission,
preceding the development of the steady-state response at the
frequency of the incident field, expected from Beer-Lambert
law. The transients have been named “forerunners.” The
faster signal (the “Sommerfeld forerunner”) and the slower
one (the “Brillouin forerunner”) are formed, respectively, by
frequencies large and small compared to the frequency of
the absorption line: the spectral regions where the medium is
somewhat transparent. The front of the former propagates at the
velocity of light in vacuum [50], while the latter moves approx-
imately at the zero-frequency group velocity [51,52]. After the

seminal works of Sommerfeld and Brillouin, the forerunners
became a canonical problem of wave propagation in weakly
dispersive absorbing media. A comprehensive bibliography on
forerunners can be found in Ref. [61].

During the last decade, precursors have been observed
in weakly dispersive dielectric media in regions of anoma-
lous dispersion, using very narrow transitions of gases of
cold potassium (39K) [62] and rubidium (85Rb) [63] atoms,
generated in a vapor-cell magneto-optic trap. Importantly,
the forerunners have been found to possess an appreciable
intensity, comparable with the main (carrier frequency) pulse.
At short distances, the Sommerfeld and Brillouin forerunners
overlap and can not be distinguished; the common signal has
been called “precursor” [62–64], the term that stands for this
response in contemporary literature.

Turning to our case of LSP propagation, we emphasize that
the conditions for the appearance of a precursor here differ
substantially from the standard ones. First, the energy spectrum
of the system under consideration is not a single line, but
represents two highly dispersive branches. Second, we apply
a Gaussian pulse, instead of a step-modulated one, having a
spectrum that is narrow as compared to the system’s energy
spectrum. In addition, for the set of parameters we used, the
reduced wavelength λ/2π of the incident field is on the order of
the interparticle spacing d (kpd ∼ 1), meaning that the system
appears to be really a discrete medium; in this limit, the
radiative interparticle interaction is important. Furthermore,
the external field acts only on the leftmost particle, not
propagating itself through the chain. Thus, the precursor under
this type of excitation has its origin solely in the unidirectional
propagation of LSPs, which travel with the speed of light
and decrease geometrically, according to the decay law of the
retarded interparticle dipole-dipole interaction. Nevertheless,
in spite of these differences with the classical Sommerfeld-
Brillouin forerunners, the fast signal found by us also bears
the characteristics of a precursor.

Lateral field profile of the precursor

Signal transmission through plasmonic arrays is studied
mostly in the context of subdiffraction waveguides. It is
known that for such systems there exists a tradeoff between
confinement and losses [49]: having a truly subwavelength
confinement, we lose in propagation length. In the present case,
the collective plasmon signal dominates the transport at the
beginning stage of the propagation; this contribution attenuates
exponentially. However, after a certain distance, the decay
shows a power-law behavior, indicating that the precursor
comes into play. Due to the slow decay, it can propagate for
remarkable distances.

Naturally, the question arises if this signal is also, in some
sense, confined to the array. To answer this question, we calcu-
lated the electric field within a plane oriented perpendicular to
the chain axis. Figure 10 shows the electric field components
corresponding to the precursor signal as shown in Fig. 6. The
field is presented along two lines parallel to the y axis, one
located in-between particles n = 2000 and 2001, and the other
between n = 3000 and 3001. The main figures show the fields
far away from the chain, the insets display the fields near to
the chain (note the difference in units on the horizontal axis,
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FIG. 10. The electric field profile of the forward scattered signal
is calculated along the line parallel to the y axis situated at two
positions in the chain: between the particles n = 2000 and 2001, i.e.,
the line (x2000 + d/2,y,0), and similarly between particles n = 3000
and 3001. The excitation is the same as in Fig. 6 and the electric field
is normalized with respect to the amplitude of the external excitation
at ω0, E0. The main figures give the response far away from the chain
and the insets show the response close to the chain axis. Note that in
the inset the distance is given in nm, rather than in μm as in the main
plot.

in μm and nm, respectively). The figure clearly shows that, far
away from the chain, the field intensity decreases and broadens,
exactly as expected for a signal that decays geometrically.
Interestingly, this behavior is not observed close to the chain.
Even though the amplitude of the field decreases, it does not
spread laterally. From this we can conclude that this part of the
precursor is confined to the chain.

VI. SUMMARY AND OUTLOOK

We have investigated theoretically the propagation of a
localized surface plasmon through an array of equidistantly
spaced spherical metal nanoparticles and have found that two
different signals contribute to the optical response of the

array: one traveling with the group velocity and attenuating
exponentially and another one propagating with the velocity of
light in the surrounding medium and decaying geometrically.
We have shown that the former signal arises from the excitation
of the array’s normal modes, i.e., the collective plasmons of
the chain of MNPs. The latter signal can not be deduced
from the normal modes of the system. This contribution has
been interpreted as a precursor, a unidirectional propagation
of LSPs, traveling with the speed of light. As explained in
Sec. V, the precursor can be interpreted as the multiple forward
scattering of the field initially irradiated by the first particle
(n = 1), which is excited by the external source. This indeed
leads to a signal propagating with the background speed of
light and the various phase relations between the fields emitted
by the individual particles, resulting finally in the lateral
confinement observed.

Although the precursor found in our study resembles the
well-known Sommerfeld-Brillouin forerunner, the conditions
for appearance of this signal differ substantially from the
standard situation: (i) the medium we are dealing with is
highly dispersive, (ii) the discreteness of the system is of vital
importance, (iii) the external field has a narrow spectrum and
acts only on the leftmost particle.

By calculating the electric field profile along a line perpen-
dicular to the chain axis, the lateral dimensions of the forward
scattered (precursor) signal have been studied. It has been
shown that, surprisingly, even though the signal does not have
subwavelength dimensions, close to the chain axis the profile
does not change as a function of the propagation distance,
indicating that this part of the signal is confined to the array.

The precursor dominates the LSP transmission at large
distances, rendering this signal of fundamental and possibly
practical importance to the signal propagation in plasmonic
arrays. Although this signal is not fully confined to the array, a
stronger confinement can be achieved by placing the array in a
layered environment. This does not only lead to waveguiding
of the signal, but may also affect the signal by changing the
effective interactions between the various particles [26].

To conclude, we notice that arrays comprising dielectric
nanoparticles with a high index of refraction (such as sil-
icon) also support the subwavelength guiding for distances
exceeding several tens of micrometers [65]. Thus, it would be
interesting for future studies to consider similar propagation
effects in such arrays.
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