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Strain-controlled valley and spin separation in silicene heterojunctions

Yuan Li,1,2,* H. B. Zhu,1 G. Q. Wang,1 Y. Z. Peng,1 J. R. Xu,1 Z. H. Qian,2 R. Bai,2 G. H. Zhou,3

C. Yesilyurt,4 Z. B. Siu,4 and M. B. A. Jalil4,†
1Department of Physics, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

2Center for Integrated Spintronic Devices (CISD), Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
3Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education),

Hunan Normal University, Changsha 410081, China
4Computational Nanoelectronics and Nano-device Laboratory, Electrical and Computer Engineering Department,

National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore

(Received 20 April 2017; revised manuscript received 16 December 2017; published 20 February 2018)

We adopt the tight-binding mode-matching method to study the strain effect on silicene heterojunctions. It is
found that valley- and spin-dependent separation of electrons cannot be achieved by the electric field only. When a
strain and an electric field are simultaneously applied to the central scattering region, not only are the electrons of
valleys K and K ′ separated into two distinct transmission lobes in opposite transverse directions, but the up-spin
and down-spin electrons will also move in the two opposite transverse directions. Therefore, one can realize an
effective modulation of valley- and spin-dependent transport by changing the amplitude and the stretch direction
of the strain. The phenomenon of the strain-induced valley and spin deflection can be exploited for silicene-based
valleytronics devices.
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I. INTRODUCTION

Silicene, a low-buckled monolayer-honeycomb lattice of
silicon atoms, has been synthesized on metal surfaces [1–3]
and has recently attracted extensive attention both theoretically
[4,5] and experimentally [6,7]. Its low-buckled structure sup-
ports a relatively large spin-orbit coupling (SOC) and a sizable
gap of 1.55 meV at the Dirac points K and K ′ [8,9]. The band
gap of silicene can be modulated by applying a perpendicular
electric field, thus inducing a topological phase transition
as the electric field increases [10–12]. The compatibility of
silicene with silicon-based technology motivates many studies
of interesting effects, such as the spin- and valley-Hall effects
[13–15], the quantum anomalous Hall effect [16,17], and
valley-spin coupling [18,19].

The existence of the spin-valley coupling makes silicene
a candidate for valleytronics. However, the SOC is weak
compared with transition-metal dichalcogenides (TMDs). The
interplay of spin, valley, and Berry phase related physics
in TMDs, such as MoS2 and WSe2, can result in a valley-
dependent spin-Hall effect [20,21]. Compared with TMDs, it
seems that silicene is not suitable for switching operations in
valleytronics devices due to the weak SOC. Thus it is desirable
to create a large band gap and SOC in silicene systems so
as to catch up with TMDs in valleytronics. Recently, first-
principles calculations have shown that the energy band can be
significantly modulated by applying a strain in silicene systems
[22,23]. The strain-induced band gap of silicene structures can
reach the maximum value of 0.08 eV [24]. Obviously, the strain
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can induce a large band gap, which is comparable to that of
TMDs and suitable for switching operations in valleytronics
devices. Experimentally, one can realize a controllable strain
in silicene via deposition onto stretchable substrates, similar
to the strain effect in MoS2 [25], or by exerting an external
mechanical force.

However, the effect of the strain on the valley and spin sepa-
ration in silicene systems has not been extensively discussed. In
this paper, we adopt the tight-binding mode-matching method
and propose an efficient way to separate the Dirac fermions
of different valleys, thus creating a distinct spin separation by
utilizing the strain and the electric field in silicene systems.
Our results show that the valley- and spin-dependent electrons
cannot be dispersed only by the electric field. Combining the
strain and the electric field, one can realize an effective mod-
ulation of valley- and spin-dependent transport by changing
the amplitude or the stretch direction of the strain, without
the need for ferromagnetic materials or magnetic fields. This
phenomenon provides a different route to effectively modulate
the valley and spin polarizations of the silicene devices by
utilizing the strain and the electric fields.

Compared with the tight-binding model, the Dirac theory
is an effective approach which can only serve as a starting
point for theoretical studies of transport in silicene. It has
the advantage of yielding analytical results which capture the
basic physical insights for certain problems, especially those
with simplified system geometries. However, for a general
consideration, e.g., for complicated geometries, or for spatially
dependent variation in the lattice configuration (e.g., due to
strain or defects), the low-energy Dirac Hamiltonian is not
readily available and one has to resort to the more general tight-
binding model. Furthermore, the tight-binding model would
automatically include higher-order terms and the contribution
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of both the K and K ′ valleys, and allow for the complete
band information to be captured (even for spatially varying
systems). Furthermore, the effects of leads and other interac-
tions (impurity scattering, etc.) can be included systematically
in the tight-binding model combined with the nonequilibrium
Green’s function (NEGF) approach and the mode-matching
method. The tight-binding NEGF formalisms form the basis of
quantum transport modeling of nanoscale devices [26]. It can
deal with a wide range of conductors, composed of a scattering
region and external leads, under the application of a bias.
Therefore, it is important to develop and demonstrate the use
of the tight-binding NEGF technique and the mode-matching
method in this paper due to its more general application than
that of the effective Dirac Hamiltonian.

The paper is organized as follows. In Sec. II, we introduce
the system under consideration, i.e., a silicene heterojunction
under the influence of strain and external electric field applied
to the central scattering region. We then calculate the strain-
modulated hopping parameters based on the Slater-Koster
framework and analyze the dispersion relations. In Sec. III,
we employ the mode-matching method to investigate the spin-
and valley-dependent angular transmissions. In Sec. IV, the
combined effects of the strain and the electric field on the valley
and spin separation are analyzed and discussed. A summary is
given in Sec. V.

II. MODEL AND DISPERSION RELATIONS

We consider a low-buckled silicene sheet with zigzag
direction along the x axis, in which the � angle describes
the amplitude of the buckling with the lattice constant being
a = 3.86 Å. In the central scattering region, the silicene sheet
is stretched (or compressed) along the φ angle relative to the
x axis, as shown in Fig. 1. Note that we assume there exists no
strain outside the central scattering region. The silicene sheet
can be described by the four-band second-nearest-neighbor
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FIG. 1. Schematic of the silicene heterojunction with a uniaxial
strain, electric field, and voltage potential in the central scattering
region. The zigzag direction of the honeycomb lattice (x-y plane) is
always parallel to the x axis, the tension is applied along the φ angle
relative to the x axis, and the � angle is defined as between the Si-Si
bond and the z direction normal to the plane.

tight-binding model [9,16],
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∑
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where c
†
iα (ciα) refers to the creation (annihilation) operator

with spin index α at site i, and 〈i,j 〉/〈〈i,j 〉〉 run over all the
nearest- or next-nearest-neighbor hopping sites. The first term
is the on-site potential energy, the second term denotes the
effective spin-orbit coupling with the hopping parameter tso(�ξ ),
where �σ = (σx,σy,σz) are the spin Pauli matrix operators, and
νij = ±1 for the anticlockwise (clockwise) hopping between
the next-nearest-neighboring sites with respect to the positive z

axis. The third term represents the Rashba spin-orbit coupling
with μi = ±1 for the A(B) site, where d̂ij = dij /|dij | refers
to the unit vector connecting the two next-nearest-neighboring
sites. The fourth term is the nearest-neighbor hopping with the
transfer energy t(�ξ ), where the vector �ξ is adopted to describe
the elastic response for which deformations are affine [27].
The fifth term describes the contribution of the staggered sub-
lattice potential, with 2az = 0.46 Å being the distance of the
two sublattice planes. The relaxed equilibrium values for the
hopping parameters are t0(�ξ ) ≈ 1.09 eV, t0

so(�ξ ) ≈ 3.9 meV,
and t0

R2(�ξ ) ≈ 0.7 meV [9].
In the central scattering region, the silicene sheet is uni-

formly stretched (or compressed) along the φ angle relative to
the x axis. Note that we assume there exists no strain outside
the central scattering region. In the considered Cartesian
coordinates, the tension T can be written as T = T(cos φêx +
sin φêy). It is convenient to represent the tension in the principal
coordinates Ox ′y ′, i.e., T = Têx ′ . In terms of the generalized
Hooke’s law [27], the strain ε′

ij are related to the components of
the compliance tensor, namely, ε′

ij = T Sijxx , with the indices
i,j = x,y,z. For the honeycomb lattice, we know that only five
compliance tensor components are independent (i.e., Sxxxx ,
Sxxyy , Sxxzz, Szzzz, Syzyz) [28]. Thus, the Poisson’s transverse
ratio and perpendicular ratio are defined as

ν‖ = −Sxxyy/Sxxxx, ν⊥ = −Sxxzz/Sxxxx . (2)

When the strain is applied to the low-buckled geometry,
the lattice deformation will result in the change of the vectors
ξ
 (
 = 1,2,3). Expanded in the first-order approximation, the
strain-dependent vectors are given by �ξ
 = (1 + �ε)�ξ 0


 , which
thus modulates the hopping terms. Accordingly, we obtain the
deformed bond length as follows:
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FIG. 2. The dispersion relations are plotted as a function of the wave vector kx for (a) Ez = 0, ε0 = 0, where the energy difference
is 
E = 8.2 meV, (b) Ez = 16.96 meV Å, ε0 = 0, (c) Ez = 16.96 meV Å, ε0 = 0.005, and (d) Ez = 16.96 meV Å, ε0 = 0.05. The other
parameters are ν‖ = 0.25, ν⊥ = 2.5, φ = 30◦, and ky = 0. The red and blue arrows refer to the spin indexes.
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The height is h = √
2(1 − ν⊥ε0)/12. As the deformation

is increased to ε0 = 1/ν⊥, the buckled structure is gradually
stretched to a planar structure.

For the low-buckled silicene described by s and p orbitals,
there are four types of hopping integrals: Vssσ , Vspσ , Vppσ , and
Vppπ . Within the Slater-Koster framework [29], the hopping
processes between the two neighboring sites depend only
on the bond length and the relative � angle. The hopping
parameters in Eq. (1) can be calculated in terms of the formula
given in Ref. [9], which considered the weak contribution of
the � angle on the hopping processes. Under the two-center
approximation adopted by Slater and Koster, the hopping
integrals can be expressed as [30]

Vμ(r
) = α1r
−α2

 exp

( − α3r
α4



)
, (4)

where μ refers to the four types of the hopping integrals,
r
 = |�ξ
| is the bond length, and ακ (κ = 1,2,3,4) denotes
the system parameters for silicene. So far, there are no mi-
croscopic evaluations of the four parameters for the silicene
sheet from experiments and first-principles calculations. We
slightly modify the parameters obtained from an environment-

dependent tight-binding potential model [30] to mimic the
hopping integral of the silicene sheet.

The Poisson’s transverse ratio and perpendicular ratio can
change slightly with increasing strain [22]. For simplicity, in
our numerical calculation, we choose the Poisson’s ratio to be
ν‖ = 0.25 and ν⊥ = 2.5. For this case, the low-buckled silicene
will be stretched to a planar structure when the strain is close
to 0.4.

We first investigate the dispersion relation of the infinite-
sized, homogeneous silicene sheet under the influence of the
strain ε0 and the electric field Ez, as shown in Fig. 2. In
the absence of the strain and the electric field, the energy
band is spin and valley degenerate and has a small band
gap of about 8.2 meV arising from the effective spin-orbit
coupling. When the electric field is increased to the critical
value Ezc = tso/az = 16.96 meV Å [see Fig. 2(b)], we find
that the band gap gradually approaches to zero for up-spin
electrons at the K valley and down-spin electrons at the K ′
valley. Correspondingly, the spin and valley degeneracy are
broken by the electric field. Thus the electrons can become
perfectly spin-up (spin-down) polarized at the K (K ′) point
under the influence of the electric field Ezc, which agrees well
with the results obtained from the low-energy theory [11].
When the strain is applied to the silicene system, for example
when ε0 = 0.005, the energy difference of the conduction band
and the valence band increases to 5.6 meV. With increasing
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FIG. 3. Contour plot of the dispersion relations as a function of the wave vectors kx and ky for different strain strengths: (a) ε0 = 0, (b)
ε0 = 0.02, (c) ε0 = 0.05, and (d) ε0 = 0.1. The solid lines are equal energy contour lines corresponding to energy values of 0.5, 1.0, 1.5, and
2.0 eV. The parameters are Ez = 16.96 meV Å, ν‖ = 0.25, ν⊥ = 2.5, and φ = 30◦. The blue and red squares refer to the Dirac points of K and
K ′ with the value of (kx,ky,E).

amplitude of the strain to ε0 = 0.05, as shown in Fig. 2(d), the
energy difference is significantly enlarged to about 100 meV
for the two valleys. In particular, the spin polarization induced
by the electric field is also suppressed and the dispersion
relation recovers the spin and valley degeneracy.

It is natural to consider whether the minima of the energy
profile for the two valleys still coincide at ky = 0 in the
presence of the strain. In order to clarify the effect of the strain
on Dirac points, we plot the dispersion relations as a function
of the wave vectors kx and ky for different strain strengths, as
shown in Fig. 3. We can see that when ε0 = 0, the Dirac points
of K and K ′ are located at the points with the wave vectors
(kx,ky) = (0.667,0) and (1.333,0), respectively. Interestingly,
the Dirac point K moves towards the positive direction of the
ky axis, while the Dirac point K ′ moves towards the negative
direction with the strain increasing from ε0 = 0 to 0.1. Thus,
the application of strain results in a relative transverse shift
of the two Dirac cones. At the same time, the Dirac points
of K and K ′ also move away from each other along the kx

direction. Therefore, the dispersion relations in Figs. 2(c) and
2(d) are just representing a cut of the Dirac cone at ky = 0,
and that the energy difference between the conduction and

valence bands depicted there is not the actual band gap. For
comparison, we recall the graphene system where the strain
can induce pseudomagnetic fields greater than 300 Tesla [31].
This pseudomagnetic field can be described by a gauge field
A in the low-energy approximation [32]. Correspondingly,
the Hamiltonian of the strained graphene sheet has the form
[33,34] H = vF σ · ( �p − A/vF ), where A has reversed signs
for valleys K and K ′. Considering the strain-induced deflection
of the Dirac points of K and K ′, it is reasonable to deduce that
one can also adopt a gauge field to effectively describe the
strain effect in the silicene sheet.

III. CALCULATION OF TRANSPORT PROPERTY

In order to calculate the transport property, we adopt the
method formulated by Ando [35]. The silicene heterojunction
is divided into cells indicated by an index τ , which represents
a minimum repeating unit, as shown in Fig. 4. The source
and drain are ideal leads that span the cells τ = −∞, . . . ,0
and τ = S + 1, . . . ,∞. The central scattering region spans the
cells τ = 1,2, . . . ,S. The Schrödinger equation of the silicene
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FIG. 4. The system is divided into cells indicated by an index
τ . Hτ,τ is the Hamiltonian matrix representing the hopping terms be-
tween sites within cell τ ; Hτ,τ±1 is the Hamiltonian matrix connecting
the sites between neighboring cells.

heterojunction can be written as

−Hτ,τ−1ψτ−1 + (EI − Hτ,τ )ψτ − Hτ,τ+1ψτ+1 = 0, (5)

for τ = −∞, . . . ,∞. If each cell contains N orbitals, ψτ is a
N -dimensional vector including the wave-function coefficients
of all orbitals for cell τ . Hτ,τ is the N × N Hamiltonian matrix
representing the hopping terms between sites within cell τ , and
Hτ,τ±1 is the N × N Hamiltonian matrix connecting the sites
between neighboring cells, which can be mapped from the
tight-binding Hamiltonian in Eq. (1).

First, we need to find the solutions of the wave function in
the leads. Since the leads have periodic structures, the vectors
in subsequent cells satisfy the Bloch condition

ψτ = λψτ−1, (6)

where λ = eikxa is the Bloch factor with kx real for propagating
waves and complex for evanescent waves. Substituting this
formula into Eq. (5) for left and right leads, we can obtain the
generalized eigenvalue equation,[(

EI − Hτ,τ Hτ,τ+1

I 0

)

−λ

(
−H†

τ,τ+1 0
0 I

)](
ψτ

ψτ−1

)
= 0. (7)

After solving this equation, we obtain nontrivial solutions,
which can be divided into propagating modes and evanescent
modes in terms of the eigenvalues [36]. The eigenvalues of
the propagating modes and the evanescent modes satisfy the
conditions |λ(±)| = 1 and |λ(±)| 
= 1, respectively, with +/−
referring to the right-going modes and left-going modes. When
|λ(+)| < 1, the eigenvector is named as right-going evanescent
modes, while the states with |λ(−)| > 1 associate with left-
going evanescent modes. For the propagating states, in order
to distinguish the right- and left-going modes, one needs to
calculate their Bloch velocities,

vn(±) = −2a

h̄
Im[λn(±)ψn(±)†H †

τ,τ+1ψn(±)], (8)

where the sign of the velocities distinguishes right from left
propagation. Accordingly, we can distinguish the valleys K and
K ′ in terms of the wave vector kx derived from the eigenvalue
λ. The first valley K is related to the longitudinal wave vector
kxa ∈ (0,π ), whereas the second valley K ′ lies in the wave-
vector regime, kxa ∈ (π,2π ) [37].

The general solution of the leads can be written as

ψτ = ψτ (+) + ψτ (−)

= Fτ−τ ′
(+)ψτ ′(+) + Fτ−τ ′

(−)ψτ ′(−), (9)

where the matrices F(±) are defined as

F(±) =
N∑
n

λn(±)ψn(±)ψ̃†
n(±), (10)

where ψ̃n(±) are dual vectors, which satisfy the following
relations:

ψ̃†
n(±)ψm(±) = δn,m, ψ†

n(±)ψ̃m(±) = δn,m. (11)

Note that the eigenvectors are nonorthogonal.
Next we calculate the solutions of the scattering regions.

By treating the effect of the leads as the boundary conditions,
the Schrödinger equation of the scattering region can be
modified as

−H′
τ,τ−1ψτ−1 + (EI − H′

τ,τ )ψτ − H′
τ,τ+1ψτ+1

= �0ψ0(+)δτ,0, (12)

where the index of the cells becomes τ = 0,1, . . . ,S,S + 1.
The renormalized Hamiltonian matrices are

H′
0,0 = HL

τ ′,τ ′ + HL
τ ′,τ ′+1F−1

L (−),

H′
S+1,S+1 = HR

τ ′,τ ′ + HR†
τ ′,τ ′+1F−1

R (+),

H′
0,−1 = 0,H′

S+1,S+2 = 0, (13)

and other Hamiltonian matrices are H′
τ,τ ′ = Hτ,τ ′ for the

indexes τ,τ ′ = 0,1, . . . ,S,S + 1. The source term is �0 =
HL

τ ′,τ ′+1[F−1
L (+) − F−1

L (−)], with L/R referring to the left and
right leads.

Equation (12) gives a set of linear equations, which can
be solved efficiently by using the block Gaussian elimination
method. We can then obtain the transmission matrix elements
tn,m by expanding the vector ψS+1(+) in modes of the right
lead,

ψS+1(+) =
N∑
n

ψR,n(+)tn,m, (14)

where the incoming wave is chosen as one of the propagating
modes of the left lead, namely, ψ0(+) = ψL,m. After running
the vector ψ0(+) runs over all possible modes of the left lead,
namely, ψL,m,m = 1,2, . . . ,N , the full transmission matrix
can be obtained.

Accordingly, the total transmission can be written as

TLR(ky,E) =
N∑

n,m

vR,n

vL,m

|tn,m|2,

tn,m = ψ̃
†
R,n(+)GS+1,0

[
G

(0)
0,0

]−1
ψL,m(+), (15)
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FIG. 5. The (a) valley dependence and (b) spin dependence of
the transmission as a function of the incident angle θ for Ez = 0 and
ε0 = 0.005. The other parameters are EF = 7.9 meV, V0 = 8.4 meV,
and L = 193 nm.

where G
(0)
0,0 and GS+1,0 refer to the Green’s function of the left

lead and the full system, respectively, which can be obtained by
using the iterative techniques of the Green’s function approach
[36]. After obtaining the Green’s functions, we can calculate
the valley-resolved transmission in terms of the corresponding
eigenvalues.

Utilizing the periodical boundary conditions at the trans-
verse direction, we can introduce the wave vector ky into the
Hamiltonian and effectively mimic the silicene sheet by using a
silicene nanoribbon with zigzag chain number of Ny = 2 [38].
The incident angle is defined as θ = arcsin(ky/kF ), where the
Fermi wave vector kF can be obtained from the relation [11]

EF =
√

h̄2v2
F k2

F + (
azEz −

√
t2
so + a2t2

R2k
2
F

)2
, (16)

with vF = √
3at/2 being the Fermi velocity.

IV. RESULTS AND DISCUSSION

It is found that the valley-dependent and spin-dependent
electrons cannot be dispersed by only the electric field. We
thus consider the effect of the strain on the transport properties.
In the central scattering region, the silicene sheet is uniformly
stretched along the angle φ = 30◦ relative to the x axis with
Ez = 0. When the strain is ε0 = 0.005, the transmission curve
of the K valley is deflected upwards, while the curve of the K ′
valley is deflected downwards, as shown in Fig. 5(a). Moreover,
the maximum value of the transmission is significantly reduced
to about 0.08 due to the effect of the strain. It means that the
strain can result in the separation of Dirac fermions of the K and
K ′ valleys, which is similar to the deflection behavior induced
by real magnetic fields in graphene systems [39–41].

In Fig. 5(b), we see that the spin-dependent transmission is
decreased to about 0.042. However, the transmission profiles of
up-spin and down-spin electrons are identical and symmetric
with respect to normal incidence. Thus, the strain can separate
the electrons of valleys K and K ′, but cannot separate the up-
spin and down-spin electrons.

In order to clarify the effect of the strain on the valley-
dependent transport, we plot the transmission of valleys K and
K ′ as a function of the incident angle θ for different amplitudes

FIG. 6. The (a) K valley (b) and K ′ valley dependence of the
transmission as a function of the incident angle θ for different
amplitudes of the strain. The other parameters are Ez = 0, EF =
7.9 meV, V0 = 8.4 meV, and L = 193 nm.

of the strain, as shown in Fig. 6. We find that the transmission
profile of the K valley is deflected upwards with increasing
strain from 0.004 to 0.01. When ε0 = 0.01, the transmission
of electrons is pushed towards the angular regime θ > 25◦ [see
Fig. 6(a)]. Seen from the physical picture of view, the K-valley
electrons will be scattered back to the left region if the incident
angle is smaller than a certain critical angle. Correspondingly,
the transmission profile of theK ′ valley is deflected downwards
under the influence of the strain. The K ′-valley electrons will
be deflected back into the incident region when the incident
angle is larger than a certain angle. When the strain is along
the zigzag or armchair direction, namely, φ = 0◦, φ = 90◦,
and φ = −90◦, the transmission profiles have no deflection
behavior, which is a distinct anisotropy behavior for the strain
modulation of the valley current.

The above analysis shows that strain can be utilized to
separate the Dirac fermions of different valleys. Since silicene
has a spin-valley correlation, it is thus natural to think that
we can separate the electrons of different spins in the silicene
sheet by applying the strain and an external electric field.
Figure 7 gives a clear picture of the strain modulation of the
spin and valley components. When Ez = 16.96 meV Å and
ε0 = 0.006, the transmission curves of valleys K and K ′ still
deflect upwards and downwards, respectively [see Fig. 7(a)].
The transmission profile of up-spin (down-spin) electrons is
also obviously pushed upwards (downwards). This shows that
the up-spin (down-spin) component is related to the K (K ′)

FIG. 7. The (a) valley dependence and (b) spin dependence of
the transmission as a function of the incident angle θ for Ez =
16.96 meV Å and ε0 = 0.006. The other parameters are EF =
7.9 meV, V0 = 8.4 meV, and L = 193 nm.
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FIG. 8. The transmission of (a) up-spin and (b) down-spin
electrons as a function of the incident angle θ for different angles
φ. The other parameters are Ez = 16.96 meV Å, ε0 = 0.006, EF =
7.9 meV, V0 = 8.4 meV, and L = 193 nm.

valley. Therefore, one can separate the electrons of different
spins into two opposite transverse directions, which can result
in a strain-induced spin (valley) Hall effect in a suitable silicene
device. This phenomenon is similar to the spin-valley Hall
effect reported in monolayer graphene [42].

Similarly, the up-spin (down-spin) transmission curves are
deflected upwards (downwards) when φ = 30◦ and φ = 45◦,
as shown in Fig. 8. However, when the angle is changed
to negative values, namely, φ = −30◦ and φ = −45◦, the
transmission profiles of up-spin and down-spin components are
pushed downwards and upwards, respectively. When the strain
is along the zigzag or armchair direction, the transmission pro-
files of two spin components are symmetrical with respective
to the normal incident, so the up-spin and down-spin electrons
cannot be separated at these strain configurations. These results
imply that one can modulate the spin polarization by changing
the stretching angle of the strain.

Since germanene also has a honeycomb geometry [13,16]
and its Hamiltonian is the same as Eq. (1), it can be modeled
by replacing the parameters with t = 1.3 eV, tso = 43 meV,
tR2 = 10.7 meV, and az = 0.33 Å. The band gap induced by
the spin-orbit couplings can reach 93 meV [9], which can
provide a significant modulation of spin- and valley-dependent
properties. We think one can also observe the spin and valley
separation in germanene systems due to its similar geometry
and low-buckling structure. The numerical trends of the spin-
valley separation due to strain in germanene systems would be
the same as those shown in Figs. 5–8 for silicene.

However, the parameters (e.g., the change in the bond
length, and the α coefficients in the Slater-Koster integral)

under the influence of strain and the electric field would be
different. Their exact values need to be determined, e.g., by
ab initio calculations, and currently they are not available in
the literature, unlike for silicene. However, given the larger
SOC values in germanene, we believe that one would require
a relatively smaller amplitude of the strain to realize the
same degree of valley and spin separation in comparison
with silicene systems. Thus, in experimental investigation of
germanene systems, we envisage that it would be easier to
realize the valley and spin separation by applying similar
strain and the electric-field configurations as that assumed in
this paper for the strained silicene system. This suggests that
the strain-induced valley and spin separation can in general
be observed in two-dimensional materials with low-buckled
honeycomb structures.

V. CONCLUSIONS

In summary, we have studied the effect of the strain and
the external electric field on the dispersion relation and the
transport property of a silicene heterojunction. It is found
that the valley-dependent and spin-dependent electrons cannot
be dispersed only by the electric field. In the presence of
the strain, the transmission profiles can be deflected to two
opposite transverse directions, thus resulting in the separation
of valleys K and K ′. When a strain and an electric field are
applied to the scattering region simultaneously, not only are
the electrons of valleys K and K ′ separated into two branches,
but the up-spin and down-spin electrons will also move
towards two opposite transverse directions correspondingly.
Therefore, combining the strain and the electric field, one can
realize an effective modulation of the valley-dependent and
spin-dependent transport by changing the amplitude and the
stretching direction of the strain. Our results may be helpful
for exploring the transport mechanism of strain-modulated
silicene systems and making new types of silicene-based
valleytronics and spintronics devices.
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