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Universality of phonon transport in nanowires dominated by surface roughness
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We analyze, both theoretically and numerically, the temperature-dependent thermal conductivity κ of two-
dimensional nanowires with surface roughness. Although each sample is characterized by three independent
parameters, the diameter (width) of the wire, the correlation length, and the strength of the surface corrugation,
our theory predicts that there exists a universal regime where κ is a function of a single combination of all three
model parameters. Numerical simulations of propagation of acoustic phonons across thin wires confirm this
universality and predict a d1/2 dependence of κ on the diameter d .
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I. INTRODUCTION

The challenge of designing a good thermoelectric device
is, in part, to find a thermoelectric material that is simul-
taneously an “electron crystal and phonon glass” [1,2], i.e.,
a thermoelectric material with a large electrical but small
thermal conductivity. This combination allows a large ther-
moelectric current without much heat dissipation, leading to
high efficiency. Significant efforts have gone into the art of
nanoengineering novel materials with such properties [3,4].
On the other hand, it has been proposed recently that a device
consisting of a number of parallel nanowires with an external
gate voltage can be used [5] to exploit the interplay of the
material parameters with the thermodynamic parameters in the
nonlinear transport regime, which can have both a large ther-
moelectric efficiency and a significant power output [6]. While
the nanowires are not necessarily “phonon glasses,” strong
surface disorder can suppress phonon transport significantly in
Si nanowires with diameters d < 100 nm, as demonstrated in
recent experiments [7–10]. This is particularly important
in the context of thermoelectric devices since surface disorder
is expected to suppress phonons more than electrons if the
electron mean free path is much smaller than the diameter of
the wire.

The effect of surface roughness on phonon transport
in nanowires has been studied numerically using Monte
Carlo [11,12] and molecular dynamics [13–16] simulations as
well as models using the wave-scattering formalism [17–22].
These studies show that the thermal conductivity in such
cases can be much smaller than when the surface scattering is
fully diffusive. Other theoretical models have considered only
diffusive boundary scattering, together with various scattering
mechanisms within the bulk [23–26]. A recent work [27] has
argued that the suppression of phonon transport in a surface-
roughness-dominated nanowire can be understood within a
simple theoretical model that incorporates scattering of prop-
agating phonons off localized phonons, where the localized
phonons appear as a result of an exact mapping [28] from a

model with surface disorder to a model with a smooth surface
with additional channel-mixing pseudointeractions. The model
with localized phonons has clear predictions about how the
thermal conductivity depends on the various parameters that
characterize the surface disorder, as well as on the parameters
that characterize the localized phonons. However, these latter
parameters are phenomenological and have not been obtained
from any microscopic considerations.

As is clear from experiments [8–10], the effect of surface
disorder depends crucially on the way the wire is prepared,
using electroless etching (ELE) or vapor-liquid-solid (VLS)
techniques. Evidently, nanowires prepared with ELE have ther-
mal conductivity κ significantly smaller than those prepared
with VLS. For VLS wires, as the diameter d is decreased,
the low-temperature behavior of κ apparently changes from
a T 3 dependence for d = 115 nm to a T 2 dependence for
d = 37 nm [8]. The high-temperature behavior (T > 100 K)
shows a downturn consistent with the importance of umklapp
scattering in this regime. Theoretical models taking into ac-
count all significant bulk scattering mechanisms, changes in
dispersion relations, and a diffusive boundary have been used
to fit the experimental results for VLS wires [29]. In contrast,
the ELE wires seem to be qualitatively different. The low-T
behavior of ELE wires seems to follow a T 2 dependence for all
115 � d � 50 nm, and the high-T behavior does not show any
downturn up to T = 300 K. This suggests that the ELE wires
might be in a regime where the surface disorder dominates over
all other bulk scattering mechanisms.

In this paper we consider phonon propagation in thin
two-dimensional nanowires with only surface disorder as a
simple model for phonon transport in the surface-roughness-
dominated regime. We first analyze the theoretical model of
Ref. [27] based on the scattering of propagating phonons off
localized phonons and obtain the thermal conductivity κ for
wires of diameter (width) d for a fixed length L � d. The
surface disorder is characterized by an rms height h of the
roughness profile and a correlation length lc. Although κ in
general depends on all of the parameters d, h, and lc, we show
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analytically in the present work that there exists a universal
regime where κ depends only on a single combination of all
three parameters. This universal regime should be observable
in all surface-roughness-dominated nanowires. While we show
the existence of a single parameter by analyzing the simple
model of Ref. [27], the actual dependence on all three parame-
ters cannot be obtained analytically. We therefore perform nu-
merical simulations on wires with appropriate surface disorder
and obtain the scaling parameter by fitting to a universal curve
of thermal conductivity as a function of temperature. We show
that in this universal regime the low-temperature dependence
of κ is T 2, and the high-temperature behavior is independent
of temperature. In addition, the diameter dependence of the
thermal conductivity turns out to be approximately d1/2. More
generally, κ(T ) can be expressed in terms of a single parameter,
ζ = √

lcd/h, which is consistent with the experimental results
of Ref. [10]. The universality holds only in the diffusive regime,
characterized by a 1/L dependence of the thermal conductance
on the length of the wire.

All of the above properties are consistent with the ELE
wires and inconsistent with the VLS wires; we therefore
conclude that the ELE wires are indeed in the surface-disorder-
dominated regime. More importantly, the universal scaling
predicts that there are different possibilities of combining the
parameters d, h, and lc to reach the same level of thermal
conductivity, which might allow flexibility in designing a good
thermoelectric device based on nanowires.

II. THEORETICAL MODEL

In the theoretical model of Ref. [27], the problem of phonons
propagating in a disordered wire with surface roughness is
mapped onto a problem of propagating phonons along a wire
with a smooth surface and additional interaction with localized
phonons, where the localized phonons have properties deter-
mined by the characteristics of the original model of surface
disorder. We will consider a two-dimensional (2D) system,
with length L � d. We characterize the surface disorder by a
Lorentzian power spectrum

S(q; �,lc) = �2lc

1 + q2l2
c

, � ≡ h

d
. (1)

It then follows from Ref. [27] that the scattering rate of
propagating phonons scattering off localized phonons in
surface-roughness-dominated nanowires should depend on the
combined roughness parameter

R0 ≡ �2

lc
. (2)

In addition, the existence of localized phonons suggests that
the scattering rate should also depend on the parameters of the
localized phonons, namely, the widths �i and the frequencies
�i . For simplicity, we will assume a fixed boundary condition
at the surface which will allow us to make a direct comparison
with the numerical studies in Sec. III. While this will, in effect,
leave out some of the low-frequency surface modes [22], we
will argue later that the experiments with ELE wires are con-
sistent with the absence (or very low density) of low-frequency
localized phonons. Thus we expect the localized phonons to
be a discreet set and to have typically high frequencies, of the

order of
√

k/M , where k is the spring constant associated with
the atoms in the material and M is the typical cluster mass
that takes part in the localized vibrations. Suppose the lowest
frequency is �1. For simplicity we will also assume that for
a given disorder, the widths of the relevant localized phonons
are approximately the same, i.e., �i ≈ �. This is a reasonable
approximation since the width largely depends on the effective
barrier height and width that characterizes a given surface
roughness. The contribution from the localized phonons to
the scattering rate is roughly proportional to [27]

1

2τ (ω)
∝ R0

∑
i

�i

[
1

(ω − �i)2 + �2
i

− 1

(ω + �i)2 + �2
i

]

≈ R0

∑
i

2ω�i�

[(ω − �i)2 + �2][(ω + �i)2 + �2]
. (3)

In the low-temperature regime almost all contributions to the
thermal conductivity come from the low-frequency regime
ω � �1, where the scattering rate can be approximated as

1

2τ (ω)
→ R0

2ω�1�[
�2

1 + �2
]2 ≈ R0

2ω�

�3
1

. (4)

Here only the localized phonon with the lowest frequency
contributes, and we have assumed � � �1.

In the opposite limit of large ω � �1, the scattering rate will
be dominated by the resonant scatterings from each localized
phonon at ω = �i . The total contribution from all the localized
phonons will then be approximately

1

2τ (ω)
≈ R0

∑
i

1

�i

≈ R0
nloc

�
, (5)

where nloc is the number of localized phonons within the
propagating band. Thus the factor determining the disorder
dependence of the scattering rate is expected to be

1

2τ (ω)
∝

(
�2

lc

)
ω�

�3
1

, ω � �1,

∝
(

�2

lc

)
nloc

�
, ω � �1. (6)

The transmission function is proportional to the scattering
time τ (ω), the inverse of the scattering rate, multiplied by the
propagating phonon velocities vLvR = ω2(2ω2

0 − ω2) with the
band edge at

√
2ω0. The thermal conductivity in the diffusive

regime then can be written as

κ =
∫ √

2ω0

0
dω ω τ (ω) ω2

(
2ω2

0 − ω2
) ∂η

∂T
, (7)

where η is the Bose distribution function η ≡ 1/(eω/T − 1) and
we have chosen the Boltzmann constant kB = 1. The derivative
has the limits

∂η

∂T
= ω

T 2

eω/T

(eω/T − 1)2
≈ ω

T 2

T 2

ω2
∼ 1

ω
, ω � T ,

≈ ω

T 2
e−ω/T , ω � T . (8)
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A. Low-temperature regime

For T < �1, we can approximate the ω integral as follows:

κ ≈
∫ T

0
dω ω τ (ω)ω2 2ω2

0
1

ω

+
∫ √

2ω0

T

dω ω τ (ω)ω2
(
2ω2

0 − ω2
) ω

T 2
e−ω/T . (9)

The second integral can be neglected due to the exponential.
Using the low-frequency expression for the scattering rate, we
can then write

κ ∝ lc

�2

�3
1

�
2ω2

0

∫ T

0
dω ω

= lc

�2

�3
1

�
ω2

0T
2, T � �1. (10)

Thus the thermal conductivity has a T 2 dependence in the low-
temperature regime for all values of the diameter and disorder
parameters. This seems to be the case for all of the ELE wires
in the regime 50 � d � 115 nm but is not true for the VLS
wires where the d = 115 nm wire has a T 3 dependence.

B. High-temperature regime

In the regime T > �1, the thermal conductivity can be
approximated as

κ ≈
∫ �1

0
dω ω τ (ω)ω22ω2

0
1

ω

+
∫ T

�1

dω ω τ (ω)ω2
(
2ω2

0 − ω2
) 1

ω

+
∫ √

2ω0

T

dω ω τ (ω)ω2
(
2ω2

0 − ω2
) ω

T 2
e−ω/T . (11)

Again, we neglect the third integral due to the exponential term.
The second term is proportional to lc

�2
�

nloc

∫ T

�1
dω ω2(2ω2

0 −
ω2). This is much smaller than the first term since � � �1, so
κ is approximately given by the first term, which is independent
of T ,

κ ∝ lc

�2

�3
1

�
ω2

0�
2
1, T � �1. (12)

Thus the thermal conductivity saturates in the high-
temperature limit, with the saturation value depending on the
roughness parameters as well as the diameter of the wire.
The ELE wires show this saturation for T > 200 K, with the
saturation value increasing with d. In contrast, the thermal
conductivities of the VLS wires have maxima between 100
and 200 K and do not saturate for any of the diameters
115 � d � 37 nm up to T = 300 K. We note that the crossover
temperature �1 is large for all of the ELE samples, which
justifies our assumption of a fixed boundary condition. At the
same time, the Van Hove singularity in 2D at ωVH does not
affect the thermal conductivity significantly if �1 < ωVH.

C. Conjecture for universality

We will assume that while the width of the localized
phonons depends on the roughness parameters, the lowest

frequency �1 does not. This is consistent with our initial
assumption that the frequency is largely dictated by the mass
of the atoms taking part in the localized vibrations. Then for
the entire range of temperature, the thermal conductivity is
proportional to the parameter

C(d,h,lc) ≡
(

lc

�2

)
1

�
. (13)

It is not clear how to obtain the roughness parameter depen-
dence of �, but we expect it to increase with increasing d and
increasing lc but decrease with increasing h. In the absence of
a detailed microscopic theory, we propose the following as a
conjecture:

� ∝ dαl
γ
c

hμ
, (14)

where α, γ , and μ are all positive. Then

κ ∝ C(d,h,lc) ∝ d2−αl
1−γ
c

h2−μ
. (15)

This suggests that for a given constant C(d,h,lc), all plots
of thermal conductivity as a function of temperature for
various choices of the parameters d, h, and lc should fall on
top of each other if the exponents α, γ , and μ are known.
This universality is a feature of phonon transport only in
the surface-roughness-dominated nanowires. Unfortunately,
it is not possible to determine the exponents from the
present theoretical model. In the following section we
will test the conjecture of universality numerically and
obtain the exponents α ≈ 3/2, γ ≈ 1/2, and μ ≈ 1 for a
two-dimensional wire. Thus the thermal conductivity will be
shown to be a universal function of the single parameter

ζ ≡ l
1/2
c

h
d1/2. (16)

III. NUMERICAL SIMULATIONS

A. The model

We will compare (15) with numerical simulations. For sim-
plicity, we will assume a fixed boundary condition at the
surface which was also assumed in Sec. II. In addition we
will consider only longitudinal phonons since, within our
approximation, adding transverse phonons should not change
either the temperature dependence or the eventual scaling
properties of thermal conductivity. In our model, the sample is
represented by a square lattice with lattice constant a = 1. For
the atom located at site xy, the wave equation reads√

mxy

k
ω2uxy = ux+1y + ux−1y + uxy+1 + uxy−1, (17)

with the atomic mass mxy = m = 1 and spring constant k = 1.
The size of the lattice is d × L. In numerical simulations, d

increases from 64 to 256, and the length of the system was
chosen to be L > 1000. This corresponds to nanowires with a
width of 12–50 nm and length >200 nm.

In order to create the surface disorder of the nanowire
with appropriate h and lc, we first generate a set of random
numbers {ξx}, x = 1,2, . . . ,L, with zero mean and correlation
〈ξxξx ′ 〉 = h2 exp −|x − x ′|/lc. Then we define a surface profile
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32 x 160,    h = 8,    lc = 12(a)

0 0.5 1 1.5 2 2.5 3
ω
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ω

)
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0 0.5 1 1.5 2 2.5 3
ω
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(c)

(d)

FIG. 1. (a) Typical sample under study. The disordered sample is
attached to two semi-infinite leads. (b) Density of states ρ(ω) for a
two-dimensional ideal square lattice. The bandwidth is 2

√
2. Note the

Van Hove singularity at ω = 2. (c) Inverse participation ratio p as a
function of frequency calculated for the sample in (a) with periodic
boundary conditions in the horizontal direction. (d) Three localized
phonons with eigenfrequencies ω = 0.27, 0.709, and 0.719. Shown is
the absolute value |un(
r)|. In red sites |un(
r)| > 0.05 with a maximal
value of 0.1. White sites with zero phonon amplitude lie outside the
wire.

yx = ξx + δ with constant shift δ = −minξx , which guarantees
that yx � 0 for each x. Then, for a given x, we substitute all
atoms with y � yx by heavy atoms with mass M = 104m. The
opposite boundary of the sample is constructed in a similar way.
This restricts phonons to propagate only in the region occupied
by “light” atoms. The sample is attached to two semi-infinite
ideal leads of width d. Figure 1(a) shows a typical sample.

Thanks to spatial periodicity of the lattice, the frequency
spectrum in the leads consists of one frequency band, 0 � ω �
2
√

2 with the Van Hove singularity, typical for 2D systems, at
ω = 2. The phonon density of states is shown in Fig. 1(b).

To check the presence of localized states in the sample,
we calculate all eigenfrequencies ωn and (normalized) eigen-
functions un(
r) of the structure shown in Fig. 1(a). Localized
states could be identified by analysis of the inverse participation
ratio [30]

pn =
∑


r
|un(
r)|4

/ ∑

r

|u(0)(
r)|4, (18)

where u(0) is any eigenfunction of the same system without
surface disorder. The eigenstate is localized if pn � 1. The plot

0 0.5 1 1.5 2 2.5
ω
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0 0.5 1 1.5 2 2.5
ω
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5
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15
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(b)

FIG. 2. (a) The ω dependence of g for samples of size d × 2048,
with d = 64,96,128,192, and 256. The surface roughness h = 20,
and the correlation length lc = 100. (b) g(ω) for ten samples with
different realizations of surface disorder and size 128 × 2048 and
correlation length lc = 200. The surface disorder is h = 17 (top red
curves) and h = 29.5 (bottom black curves).

of p as a function of frequency shown in Fig. 1(c) confirms that
localized phonons exist mostly in the vicinity of the Van Hove
singularity, and their density is low in the low-frequency part
of the spectra. Three localized phonons are shown in Fig. 1(d).

B. Thermal conductance

We now use the standard Economou-Soukoulis for-
mula [31]

g =
∑

i

Ti (19)

to obtain the transmission g = g(ω) as a function of frequency.
In Eq. (19), g(ω) is given as a sum of contributions Ti of all open
transmission channels. A detailed analysis shows that g(ω)
typically consists of contribution from ballistic transmission
channels with Ti ≈ 1, diffusive channels, and some localized
channels with negligible transmission Ti .

In numerical simulations, we map the wave model given by
Eq. (17) into an electronic model

E�xy = �x+1y + �x−1y + �xy+1 + �xy−1 + Vxy�xy,

(20)

where energy E = ω2 and potential Vxy = (mxy − 1)ω2. The
method is described in Refs. [32,33].

Figure 2(a) shows a typical frequency dependence of the
transmission g(ω). For low frequency, the transmission in-
creases linearly as ω. The dip in the transmission at ω = 2
corresponds to the Van Hove singularity in the density of states.
Figure 2(b) proves, in agreement with previous numerical
studies [34–36], that the value of the transmission depends
on the realization of surface disorder. Observed transmission
fluctuations are of order unity in the diffusive transport regime
and increase when disorder increases.

Numerical data provide us with the transmission g(ω),
which determines the thermal conductance K as

K =
∫ ωD

0
dωg(ω)

[
ω/2T

sinh(ω/2T )

]2

. (21)

The upper limit of the integration ωD lies above the upper edge
of the frequency band. The typical temperature dependence of
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1
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~ T2

FIG. 3. Thermal conductance K given by Eq. (21) calculated
numerically for sample size d × L = 256 × 2048. Correlation length
lc = 400. The surface roughness increases from h = 4 to h = 60. For
all h, K exhibits the same T dependence. The inset shows K(T ) ∼ T 2

for small T . For large T , K saturates since our model does not include
umklapp processes.

K is shown in Fig. 3, consistent with theoretical expectations
of Eqs. (10) and (12).

Note that the thermal conductance does not coincide with
the thermal conductivity discussed in the previous section. K

depends on the geometrical size of the sample and is defined
not only for the diffusive regime but also for ballistic and
localized regimes. In the diffusive regime and two-dimensional
geometry, the conductivity κ can be obtained as [37]

κ = K
L

d
. (22)

Besides the phonon wavelength, our model introduces four
length scales. The size of the sample is determined by its width
d and length L � d. The disorder is given by the strength of
the surface roughness h and correlation length lc. Now we
investigate how the thermal conductance depends on all of
these parameters.

C. Universality

To compare the thermal conductance for different samples,
we introduce an integral

I =
∫ Tmax

0
dT K(T ), (23)

with the upper limit Tmax = 3, and calculate how I depends
on the model parameters. Owing to similar monotonic T

dependence of K(T ) (Fig. 3), we expect that universality of
I guarantees the universality of K(T ) for any value of T . As
an example, we show in the inset of Fig. 4 the universality
of conductance K(T ) for similar values of I . Furthermore,
combining Eqs. (21) and (23) guarantees the universality of
g(ω) for each frequency ω.

0 0.5 1 1.5 2 2.5 3
 lc

1/2/ h

0

100

200

300

400

I

lc = 100
lc = 200
lc = 400
lc = 600
lc  = 800
lc = 1000
lc = 1200

0 1 2 3
T

0

20

40

60

K

256 x 2048

ξ = 

FIG. 4. Integral I , given by Eq. (23) for samples of size 256 ×
2048 and various values of h and lc. Data prove that for a given size
of the system, I is a function of only one parameter, ξ = √

lc/h.
The inset shows the universality of the function K(T ) for samples
with the same value of integral I . Black lines show lc = 1200, h =
60 (I = 154) and lc = 800, h = 50 (I = 152.5). The small deviation
between two displayed curves is given by different values of ξ . Red
lines show K(T ) for two samples with lc = 1200, h = 70 (I = 125)
and lc = 800, h = 60 (I = 120.3).

We find numerically that for a given system width d, I

depends only on the combination

ξ =
√

lc

h
. (24)

As an example, we show in Fig. 4 the integral I for system
size d × L = 256 × 2048. Although the correlation length lc
increases by an order of magnitude from 100 to 1200 and
disorder h varies between 4 and 70, all data collapse on a single
curve. Similar universal

√
lc/h dependence was obtained for

other widths of the sample (not shown).
The inset of Fig. 4 confirms our assumption, namely, that

two samples with the same value of integral I possess the same
T dependence of the thermal conductance K(T ).

Combining the results for different d, in Fig. 5 we plot I

as a function of the parameter z = d3/2ξ = d3/2l
1/2
c /h. The

interval of z in which I (z) ∝ z corresponds to the diffusive
regime. As shown in Fig. 5, the slope of this linear dependence
is universal. Using Eq. (22), the thermal conductivity κ then
has universal dependence on the parameter zL/d = ζL, where
ζ is given in Eq. (16). For larger values of z, the system is in
the ballistic transmission regime, and the universality is lost.
Similarly, for very small z we expect to reach a nonuniversal
localized regime.

To prove that the universal linear dependence I (ξ ) ∝ ξ

corresponds to diffusive transport, we show in Fig. 6 the
length dependence of I for various values of d and ξ . In
the diffusive regime we find I (ξ,L) ∼ ξ/L. For instance, in
Fig. 6(a) the slope increases from 49 for ξ = 0.5 to 101 for
ξ = 1. In Fig. 6(b) the slope increases from 75 to 126 when
ξ increases from 2/3 to 1. Similarly, Figs. 6(b) and 6(c)
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0 0.5 1 1.5 2
z = c(d) lc

1/2/ h  

0

100

200

300

I

  64
  96
128
160
192
256

0 10.5
d / 256

0

0.5

1
c(d)

(d/256)3/2

FIG. 5. Integral I (lc,h,d) for six widths of the system (given in
the legend) as a function of parameter z = d3/2l1/2

c /h. The length of
all systems is L = 2048. The solid line is a linear fit for d = 256 for
data I < 300. The function c(d) ∝ d3/2 (shown in the inset) has been
found to guarantee the overlap of data for all d in the linear (diffusive)
regime I (z) ∝ z.

confirm that samples with the same value of ξ possess the
same slope (within the accuracy of numerical data). Finally,
obtained values of the slope agree, at least qualitatively, with
the predicted d3/2 dependence on the width of the sample. For
example, comparing I (d1 = 96) at ξ = 1/2 [solid triangles
in Fig. 6(a)] with I (d2 = 256) for the same ξ = 1/2 [open
triangles in Fig. 6(c)] at a fixed length, e.g., 1024/L = 0.25,
one can check that I (d1)/I (d2) ≈ 20/80 = 0.25 agrees with
(d1/d2)3/2 = 0.23 within the numerical accuracy.

To summarize, we conclude that the diffusive phonon
transport is universal and

I ∝
√

lc

d

d

h

d

L
∝ d3/2. (25)

This result differs from the diffusive regime in 2D samples
with bulk disorder, where the conductance g is given by the
equation [37]

g = �N

L
. (26)

Here � is a mean free path of coherent scattering, and N ∝ d

is the number of open channels. Thus we expect that for bulk
disorder, I ∝ d, in contrast to the I ∼ d3/2 dependence for
samples with surface disorder. It should be emphasized that the
d3/2 dependence of the thermal conductance K corresponds
to a d1/2 dependence of the thermal conductivity κ , which
depends on the single parameter ζ . We note that our result
can be expressed in terms of an effective mean-free path
that depends not only on the geometric parameter [38] d

but also on the surface disorder parameters [20,39] lc and
h. We emphasize that our model is valid only in the surface-
roughness-dominated regime.
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FIG. 6. The length dependence of the conductivity for various
values of ξ and three widths of the samples, (a) d = 96, (b) 128, and
(c) 256. Note that the slope of the linear width (given in the legend)
is proportional to ξ = √

lc/h.

IV. DISCUSSION AND SUMMARY

In our numerical simulations we considered transmission
of phonons across wires with surface corrugation. On the
other hand, our theoretical model has localized phonons,
characterized by phenomenological parameters, that arise from
a mapping of the surface-disordered wire to a smooth wire with
additional pseudointeractions [27]. It is therefore not clear how
the phenomenological parameters of the localized phonons are
related to the parameters characterizing the surface roughness.
We can think of the localized phonon modes as corresponding
to the resonances created inside the corrugations in our numer-
ical simulations. In Eq. (15), we used qualitative arguments
to argue that � must increase with increasing lc and d but
decrease with increasing h. Our numerical simulation suggests
that � could be related to a simple power-law combination
of all the parameters h, lc, and d, given by � ∝ l

1/2
c d3/2/h,

consistent with the above expectations. This immediately
predicts a d3/2 dependence of the thermal conductance and
therefore a d1/2 dependence of κ(T ). We note that the pa-
rameters h and lc appear in the roughness power spectrum
in the combination l

1/2
c /h, which is also the same combi-

nation that appears in � and therefore in the final result for
κ(T ).

The breakdown of universality is clearly seen in Fig. 5
for either large lc or small h, with both cases leading to a
ballistic regime. The small-(d/h) regime, on the other hand,
corresponds to the localized regime where the universality also
fails. While theory calculates thermal conductivity, numerical
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simulations obtain thermal conductance as a function of length
L. In general, there is a nonuniversal part independent of L

coming from, e.g., the contact resistance, and the universality
holds only when the nonuniversal part is small compared to the
diffusive part. As our results show, the diffusive regime, with
a clear 1/L dependence of the thermal conductance, follows
the universal behavior.

As predicted theoretically and confirmed numerically, the
final result for κ as a function of T shows that in the surface-
roughness-dominated regime, the low-T behavior is always
T 2, and the high-T behavior is independent of T . Both of these
are clearly violated in the case of the VLS wires [8]. On the
other hand, for the ELE wires the high-T behavior is clearly
satisfied as noted before, and the low-T behavior is consistent
with figures in Ref. [9]. The prediction of the d1/2 behavior is
clearly violated in the case of VLS wires with diameters d =
37, 56, and 115 nm, while it is again consistent with figures
in Ref. [9] with a similar range of diameters, d = 50, 98, and
115 nm. Figure 3(a) of Ref. [10], with three different values
of the three parameters [(h, lc, d; ζ ) = (4.3,8.4,69.7 nm; 5.6),

(2.7, 8.4, 79.8 nm; 9.6), and (2.3, 8.9, 77.5 nm; 11.4), all of
which seem to be in the surface-disorder-dominated regime],
is consistent with the single-parameter description of our
model. Thus we argue that while the VLS wires are in the
bulk-disorder-dominated regime, the ELE wires are in the
surface-roughness-dominated regime. This then implies that
similarly produced ELE wires should follow the universal
one-parameter behavior, allowing flexibility in the choice of
the various geometrical and disorder parameters to keep κ fixed
at a low value.
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