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Resonant supercollisions and electron-phonon heat transfer in graphene
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We study the effects of strong impurities on heat transfer in a coupled electron-phonon system in disordered
graphene. A detailed analysis of the electron-phonon heat exchange assisted by such an impurity through the
“resonant supercollision” mechanism is presented. We further explore the local modification of heat transfer in a
weakly disordered graphene due to a resonant scatterer and determine spatial profiles of the phonon and electron
temperature around the scatterer under electrical driving. Our results are consistent with recent experimental
findings on imaging resonant dissipation from individual atomic defects.
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I. INTRODUCTION

Dissipation of energy in electron transport in nanostructures
is of fundamental interest and of importance for applica-
tions. At low temperatures, the electric resistance is usually
governed by elastic scattering off impurities. This resistance
determines, in particular, the amount of Joule heat (for a
given applied voltage or current). However, the heat dissipation
requires an energy transfer from the electronic system to the
“environment”—usually, to phonons. Thus, understanding the
character of heat dissipation is a complex problem which
requires an analysis of the electron-phonon scattering and,
more generally, of the heat transfer in a system of electrons and
phonons. Remarkably, the heat dissipation (i.e., the delivery
of the energy gained by electrons in the electric field to
phonons) may be even spatially separated from the region
which dominates the resistance, as is the case for a ballistic
point contact [1]. Recent work [2] has developed a highly
sensitive experimental technique of thermal nanoimaging
which utilizes a superconducting quantum interference device
(SQUID) located on a tip. This technique allows one to obtain
a spatial temperature distribution with a resolution on the order
of microkelvins in temperature and on the order of nanometers
in space.

The character of dissipation is of special interest in the case
of graphene which represents an ultimate two-dimensional
(2D) material. It was shown that at sufficiently high temper-
atures, the dominant electron-phonon relaxation processes in
graphene are “supercollisions” assisted by impurities [3,4], as
has been also confirmed experimentally [5]. Related studies of
the electron-phonon cooling rates were reported in Refs. [6,7].

A very recent experiment has reported remarkable results of
thermal imaging of dissipation on graphene [8]. Specifically,
the authors of Ref. [8] observed dissipation “hot spots” and
provided strong evidence that they are associated with individ-
ual resonant impurities. It is indeed known that in graphene
strong impurities induce resonances near the Dirac point and

may crucially affect transport properties [9–12]. The technique
of Ref. [8] has allowed the observation of “dissipation rings” in
the thermal image which correspond to positions of the tip [2]
at which an individual defect is at resonance (at given values
of the back-gate voltage and the tip voltage).

The goal of this work is to study the effect of resonant
impurities on the heat transfer in a coupled electron-phonon
system in graphene. In general, the effect of a strong impurity
on the energy dissipation around it may be twofold. First,
the impurity modifies locally the electron-phonon collision
rate, leading to “resonant supercollisions” that we explore
in Sec. II. The advantage of supercollisions as compared to
direct momentum-conserving electron-phonon scattering is the
possibility of transfer of a large momentum q � kF in the
impurity-assisted electron-phonon scattering [3]. Such phonon
momenta become relevant for T > TBG, where

TBG = h̄skF/kB (1)

is the Bloch-Grüneisen temperature, s the sound velocity,
kF the Fermi momentum, and kB the Boltzmann constant.
For such temperatures, typical phonon momenta are much
larger than kF, so that the impurity-assisted phonon scattering
can overcome the momentum-conserving one due to a larger
volume of the phonon phase space involved in the collision.
Remarkably, this effect is drastically enhanced in graphene
due to the relativistic character of its spectrum. To explain this
point, let us compare supercollisions in graphene with those
in a conventional semiconductor with a parabolic spectrum.
The key difference is related to the spatial behavior of the
impurity-scattering waves. Such a wave can be separated
into the sum of a plane wave |k〉 and a scattered spherical
wave �scat. The latter is proportional to the Green’s function
�scat ∝ ∫

d2k exp(ikr)/[EF − Ĥ (k)] and is singular at the
position of the impurity, r → 0. The strength of this singularity
is solely determined by the electron spectrum. For Dirac
fermions with the linear spectrum, we get �scat ∝ 1/r as
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compared to �scat ∝ ln r for conventional 2D semiconductors
with a parabolic spectrum. Hence, the singularity in the spatial
behavior of the scattering wave is much stronger in the case
of graphene. A phonon with a large momentum q � kF

“probes” this singularity. As a result, the matrix element of
impurity-assisted electron-phonon scattering is much larger
for graphene. This leads to an enhancement of the intensity of
energy exchange between electrons and phonons in graphene,
with the momentum excess transferred to the impurity.

Let us consider the temperature dependence of the energy
exchange rate in more detail. The enhancement of this rate
due to impurity-assisted electron-phonon scattering processes
shows up already within the Born approximation (with respect
to the impurity potential), leading to “weak” supercollisions
[3]. In the Born approximation, �scat(r → 0) ∝ δ/r, where
δ is the scattering phase. The corresponding phonon matrix
element between two scattering states with different incoming
momenta k and k′,

M(q) ∝ (〈k| + 〈�scat|)eiqr(|k′〉 + |�scat〉),
contains, in addition to the momentum-conserving contribu-
tion 〈k|eiqr|k′〉, two cross terms and the term coming from the
product of two scattering waves. In the Born approximation,
only the cross terms survive in the impurity-induced contri-
bution, yielding M(q) ∝ ∫

d2r〈�scat| exp(iqr)|k〉 that slowly
decays with q at q � kF :

M(q) ∝ δ/q.

The temperature dependence of the electron-phonon heat flux
is estimated as

I ∝
∫

q� kBT

h̄s

d2qω3
q|M(q)|2 ∝ T 3δ2. (2)

Here the factor ω3
q is a product of (i) the energy transfer

in a single electron-phonon scattering act (∼ωq), (ii) the
squared amplitude of the electron-phonon interaction [∼ωq;
see Eq. (20)], and (iii) the relevant electron energy phase
space

∫
dεfF(ε)[1 − fF(ε + ωq)] ∝ ωq, where fF is the Fermi

distribution function.
In this paper, we demonstrate that beyond the Born ap-

proximation, the matrix element M(q) decays in a still slower
fashion at large momenta q due to the contribution originating
from the product of two scattering waves:

M(q) ∝
∫

d2r〈�scat| exp(iqr)|�scat〉 ∝ ln(1/qR),

where R is the impurity size. An estimate analogous to that
in Eq. (2) shows that the heat flux dramatically increases with
increasing temperature, scaling as

I ∝ T 5 sin4 δ,

up to logarithmic factors. Even for weak impurities, δ 	 1,
this effect overcomes the effect of Born-approximation su-
percollisions [3] at sufficiently large temperatures. For strong
impurities with δ ∼ 1 the resonant contribution dominates the
impurity-mediated heat flux at all temperatures.

The second effect of an individual impurity on the energy
dissipation is a local modification of the electric field and
current profiles and thus of the associated Joule heat. Such a
modification of field by a scatterer is associated in the literature

with the notion of “Landauer residual-resistivity dipoles”
[13–17]. Imaging techniques permit a direct observation of
such dipoles by measurement of the spatial distribution of
current and voltage on the nanoscale [18,19]. In Sec. III we
formulate a heat-transfer model that takes into account both
kinds of effects induced by an impurity and determine a
local profile of electronic and phonon temperatures around a
scatterer under electrical driving. As we show in the Appendix,
the effect of additional Joule heating due to “Landauer dipoles”
is relatively small in 2D systems, so that the modification
of heating near the impurity is predominantly due to the
effect of the impurity on the electron-phonon scattering. The
estimates of a characteristic magnitude of the effect for realistic
experimental parameters, as well as a comparison to the
experiment of Ref. [8], is presented in Sec. III B. In Sec. IV,
we summarize our results. Throughout the paper, we set h̄ =
kB = 1 in intermediate formulas and restore these constants in
final expressions.

II. SUPERCOLLISIONS ON RESONANT IMPURITIES

A. Impurities in graphene

We start with the 4 × 4 Dirac Hamiltonian for graphene

Ĥ = vτ̂3σ̂k, (3)

where v is the Dirac velocity, τ̂3 is the Pauli matrix acting in
the valley space (K,K ′), and σ̂ is the vector of Pauli matrices
in the sublattice space (A,B). Electronic states are given by
vectors of amplitudes

ψ = (ψAK,ψBK,ψBK ′ ,ψAK ′ )T . (4)

Scattering of an electron with energy ε = v|k| (wave vector
k of the incident wave is counted from the Dirac point α =
K,K ′) on a single impurity centered at position r = 0 is
described by the wave function

ψk(r) = [eikr + t̂(ε,r)]|kα〉. (5)

Here t̂(ε,r) is the transfer matrix and the spinors |kα〉 depend
on the direction φk of the electron momentum:

|kK〉 = 1√
2

(1,eiφk ,0,0)T , (6)

∣∣kK ′〉 = 1√
2

(0,0,1, − eiφk )T . (7)

We consider two types of the impurity potential with a spa-
tial extension smaller than the Fermi wavelength: “atomically
sharp” (short range) and “atomically smooth” (long range on
the scale of the lattice constant). The transfer matrix takes the
form

t̂(ε,r) = Ĝ(ε,r)Û

1 − Ĝ(ε,0)Û
(8)

and describes the s-wave scattering off impurity. For a short-
range (long-range) impurity centered at the site of sublattice
A, the potential has the following matrix structure:

Ûsr = 2U0�̂sr, Ûlr = U0�̂lr (9)
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with the amplitude U0 and

�̂sr =

⎛
⎜⎝

1/2 0 0 1/2
0 0 0 0
0 0 0 0

1/2 0 0 1/2

⎞
⎟⎠, �̂lr =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠.

(10)
The Green’s function Ĝ at energy ε reads

Ĝ(ε,r) =
∫

d2k

(2π )2

ε + vkσ̂ τ̂3

ε2 − v2k2 + i0
eikr

= 1

4iv2
[ε + vτ̂3σ̂ (−i∂r )]H (1)

0 (εr/v), (11)

where H
(1)
0 (z) is the Hankel function of the first kind. For

finding the transfer matrix, we make use of the small-r
expansion:

Ĝ(ε,r → 0) � − 1

2πv

[
iτ̂3

σ̂r
r2

+ ε

v

(
ln

v

εr
+ iπ

2

)]
. (12)

The limit Ĝ(ε,r → 0) in the denominator of Eq. (8) is taken
after the integration over the spatial region where the impurity
potential is nonzero. For an isotropic impurity of small radius,
the first term in Eq. (12) does not contribute to Eq. (8) because
of the angular integration,

Ĝ(ε,0) → − ε

2πv2

(
ln

v

εR
+ iπ

2

)
, (13)

where R is the ultraviolet scale (the radius of the scattering po-
tential or the lattice constant, whichever is larger). Performing
matrix operations, we obtain

t̂(ε,r) = 4v2 sin δe−iδ

ε
Ĝ(ε,r)�̂, (14)

where �̂ equals either �̂lr or �̂sr and the scattering phase δ is
governed by the strength of the impurity,

cot δ = v

εL
+ 2

π
ln

v

|ε|R , (15)

with the scattering length L given by

Llr = U0

4v
, Lsr = U0

2v
(16)

for the long-range or short-range case, respectively. For a
strong impurity, L � R, the transfer matrix (14) acquires a
resonant-energy dependence

sin2 δ � �2

(ε − εres)2 + �2
(17)

with the resonant energy

εres � − πv

2L ln(L/R)
(18)

and the width

� � π2v

4L ln2(L/R)
	 |εres|. (19)

In what follows, we refer to such impurities as resonant ones.
Note that the stronger the impurity is, the closer is the resonant
energy to the Dirac point, εres → 0 for U0 → ∞, and the
sharper is the resonance. Below, we will analyze the electron-
phonon interaction in the presence of impurities and show that

scattering off a resonant impurity may strongly enhance the
heat exchange between electrons and phonons.

B. Impurity-assisted electron-phonon scattering

Let us now consider the matrix element of electron-phonon
scattering in graphene in the presence of an isolated impurity.
Since, by assumption, the impurity potential is strong, it cannot
be treated perturbatively. Instead, we calculate the phonon-
induced scattering between exact impurity-scattering states
(5). We consider scattering by two-dimensional phonons with
the following electron-phonon interaction:

Vel-ph =
∑

q

g
√

ωq(bq + b
†
−q)eiqr, (20)

where q is the phonon wave vector, bq and b
†
q the phonon

creation and annihilation operators, ωq = sq the phonon dis-
persion, r the electron coordinate, g = D/

√
2ρs2 the electron-

phonon coupling constant, D the deformation-potential con-
stant, and ρ the graphene mass density.

The matrix element of exp(iqr) between exact electronic
scattering states reads

M
αβ

kk′(q) = 〈kα|[e−ikr + t̂†(ε,r)]eiqr[eik′r + t̂(ε′,r)]|k′β〉,
(21)

where α,β denote the valleys. We will focus on the case of
large phonon momenta q � k,k′, when the main contribution
to the integral comes from singularity of scattered wave at
r → 0. The effect of an impurity (a supercollision [3]) can be
represented as a sum of the two terms

M (1) = 4v2 sin δ

ε
〈kα|eiqr[eiδ�̂Ĝ†(ε,r)

+ e−iδĜ(ε′,r)�̂]|k′β〉 (22)

and

M (2) = 16v4 sin2 δ

ε2
〈kα|eiqr�̂Ĝ†(ε,r)Ĝ(ε′,r)�̂|k′β〉. (23)

As we explained above, only the short-distance asymptotics
of the Green’s function should be kept, as the supercollision
matrix element at large q is dominated by the most singular (at
r → 0) terms in G(ε,r). In what follows, we assume T 	 EF ,
so that |k| ≈ |k′|. For M (1) we then obtain

M (1) = 4v2 sin δ

ε

×〈kα| cos δ [�̂,Ĝq] + i sin δ {�̂,Ĝq}|k′β〉, (24)

in terms of the commutator and anticommutator of matrix �̂

with the Fourier-transformed Green’s function Ĝq. Using the
asymptotics of Ĝq at large q

Ĝq � − (σ̂q)

vq2
τ̂3, (25)

we obtain

M (1) � −4v sin δ cos δ

εq
〈kα|[�̂,(σ̂ q̂)τ̂3]|k′β〉

− 4iv sin2 δ

εq
〈kα|{�̂,(σ̂ q̂)τ̂3}|k′β〉, (26)
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where q̂ = q/q. For M (2), we notice that the most singular (at
r → 0) term in the product Ĝ†Ĝ reads as follows:

Ĝ†(ε,r)Ĝ(ε′,r) ≈ 1

4π2v2r2
. (27)

As a result, using �̂2 = �̂, we obtain

M (2) � 8v2 sin2 δ

πε2
ln

1

qR
〈kα|�̂|k′β〉. (28)

In the Born approximation (to the lowest order in δ 	 1),
only the first line of Eq. (26) is present. This contribution was
calculated in Ref. [3]. Remarkably, the contribution of Eq. (28),
absent in the Born approximation, decreases with increasing
q much more slowly. As a result, it dominates the electron-
phonon heat exchange at sufficiently high temperatures even
for weak impurities. [The second line of Eq. (26) is always
small.] Indeed, the ratio of the respective contributions to the
matrix element at thermal phonon wave vectors qT = T/s is
given by

M (2)

M (1)
∼ tan δ

T

TBG

ln
1

qT R
, (29)

where we have omitted coefficients of order unity. The Bloch-
Grüneisen temperature TBG defined by Eq. (1) is equal for
graphene to

TBG � 27 K
√

n/1012 cm−2, (30)

where n is the electron concentration.
The condition q � k,k′ for typical phonons is realized

at sufficiently high temperatures T � TBG. In the opposite
regime, the supercollision matrix elements can be estimated
(dropping numerical coefficients) as

M (1)(q 	 k,k′) ∼ sin δ cos δ

k2
F

, (31)

M (2)(q 	 k,k′) ∼ sin2 δ

k2
F

ln
1

kF R
, (32)

and hence their ratio at T 	 TBG is given by Eq. (29) with T ∼
TBG. For a strong impurity tan δ � 1. Since the argument of the
logarithm in Eq. (29) is always large, for resonant impurities
one has M (2) > M (1) in the whole temperature range, i.e., not
only above but also below TBG.

C. Heat flux between electrons and phonons

Let us now evaluate the impurity-assisted heat flux J from
electrons to phonons. The Fermi golden rule yields (cf. Ref. [3])

J = 2π

h̄
nimp ν2

F g2

× 2
∑
αβ

∫
d2q

(2π )2
ω3

q

(
N e

ωq
− Nph

ωq

)〈∣∣Mαβ

kk′(q)
∣∣2〉

FS, (33)

where nimp is the impurity concentration, νF = kF /(2πh̄vF )
the electronic density of states per spin per valley at the Fermi
level, and |k| = |k′| = kF . Further, 〈. . .〉FS stands for the Fermi-
surface averaging over angles of k, k′, and N

e,ph
ω are the Bose

distribution functions with electron and phonon temperatures,
Te and Tph, respectively.

Performing the integration over q with Eqs. (26) and (28)
for the matrix element, we arrive at

J = I (Te) − I (Tph), (34)

where

I (T ) = I0(T ) + IBorn(T ) + Ires(T ). (35)

In this expression, I0(T ) is the contribution that does not
involve the impurity scattering, the term IBorn(T ) stems from
the matrix element M (1) and survives in the Born approxima-
tion (hence the notation), whereas Ires(T ) corresponds to the
matrix element M (2) that is dominant for resonant impurities.
For T > TBG the term I0(T ) scales linearly with temperature
[20,21]:

I0(T > TBG) = 4πWT 2
BGT , (36)

where

W = g2ν2
F k3

B

h̄
≈ 0.05

n

1012 cm−2

W

m2 K3
(37)

and we have used D = 20 eV.
For the impurity-assisted terms in I (T ), we find

IBorn(T > TBG) � nimp

k2
F

WABorn cos2 δ sin2 δ T 3 (38)

and

Ires(T > TBG) � nimp

k2
F

WAres sin4 δ
T 5

T 2
BG

ln2 s

RT
. (39)

Here Ares and ABorn are the numerical coefficients:

ABorn = 64 ζ (3)
∑
αβ

〈|〈k,α|[�̂,(σ̂ q̂)τ3]|k′,β〉|2〉FS (40)

and

Ares = 3072 ζ (5)

π2

∑
αβ

〈|〈k,α|�̂|k′,β〉|2〉FS. (41)

For the short-range potential both the inter- and intravalley
transitions contribute equally, whereas for the long-range
potential only the intervalley transitions are allowed. As a
result, the coefficients in these two models take different
values:

ABorn = 32 ζ (3), Ares = 768 ζ (5)

π2
(short range), (42)

ABorn = 0, Ares = 6144 ζ (5)

π2
(long range), (43)

with ζ (x) the Riemann zeta function. As seen from Eqs. (38)
and (39), for T > TBG, the resonant contribution to the energy
flux has a T 5 temperature dependence, which should be
contrasted with the T 3 dependence of the Born term. (The
latter was found for weak impurities in Ref. [3].)

For the estimate of I (T ) at T < TBG, we use the matrix
elements (31) and (32) for supercollisions, which yields

IBorn(T < TBG) ∼ W nimp

k2
F

sin2 δ cos2 δ
T 5

T 2
BG

, (44)

Ires(T < TBG) ∼ W nimp

k2
F

sin4 δ
T 5

T 2
BG

ln2 1

kF R
. (45)
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TABLE I. Scaling of different contributions to the heat flux I (T ) [in units of W; see Eq. (37)] for low (T 	 TBG) and high (T � TBG)
temperatures. The term I0 [Eqs. (36) and (46)] does not involve impurity scattering, while the terms IBorn [Eqs. (38) and (44)] and Ires [Eqs. (39)
and (45)] describe supercollisions. For each of the supercollision terms, the results are given for weak (δ 	 1) and strong (δ ∼ 1) scatterers.

I0 IBorn Ires

T 	 TBG
T 4

TBG

nimp

k2
F

T 5

T 2
BG

×
{

δ2, δ 	 1

1, δ ∼ 1

nimp

k2
F

T 5

T 2
BG

ln2
(

1
kF R

) ×
{

δ4, δ 	 1
1, δ ∼ 1

T � TBG T T 2
BG

nimp

k2
F

T 3 ×
{

δ2, δ 	 1

1, δ ∼ 1

nimp

k2
F

T 5

T 2
BG

ln2
(

TBG
T kF R

) ×
{

δ4, δ 	 1
1, δ ∼ 1

We thus see that at low temperatures, both contributions to the
impurity-assisted heat flux have a T 5 dependence. For a strong
impurity, tan δ � 1, the second contribution to I (T ) always
wins. The term I0(T ) at T < TBG behaves as [22]

I0(T < TBG) = 8π4

15
W T 4

TBG
. (46)

Thus, at low temperatures, T < TBG, the term I0(T ) scales
as T 4, while both supercollision terms scale as T 5 (see
Table I).

In what follows, we assume that the system contains two
types of impurities: weak ones with the concentration nimp =
n0 and phase shift δ0 	 1 and a single resonant impurity
whose position we choose as r = 0. In the resonant term, we
substitute nimp → δ(r). As a result, the function describing
the energy flux between electrons and phonons becomes r-
dependent,

I (r,T ) = I0(T ) + IBorn(T ) + Ires(r,T ). (47)

We summarize the above results for the contributions to the
heat flux between electrons and phonons at low (T 	 TBG) and
high (T � TBG) temperatures in Table I. These results will be
used below for the analysis of the heat transfer in a weakly
disordered graphene with a resonant impurity.

III. IMPURITY-INDUCED TEMPERATURE
DISTRIBUTION

A. Heat-transfer equations in graphene

We now turn to the effect of a single resonant impurity
at r = 0 on the distribution of local temperature in graphene,
as measured in recent experiments [8]. We assume electrons
and phonons to be at the local thermodynamic equilibrium
characterized by temperatures Te and Tph. As we have shown
in the previous section, in the presence of a resonant impurity
on top of the background of weak impurities, there exist two
contributions to the heat flux between the electron and phonon
systems: (i) the homogeneous contribution and (ii) the local
one, induced by the strong scatterer. The electronic subsystem
is electrically driven, which leads to the Joule heating. The
overall heat balance in the steady state is maintained by the
coupling of the phonons to the thermal reservoir characterized
by the base (substrate) temperature T0.

We assume for simplicity that the driving is weak, hence
Te ≈ Tph ≈ T , and linearize all the nonlinear dependencies in
the vicinity of T . The spatial dependence of local tempera-
tures in a macroscopic system is governed by the following

diffusion-type heat transfer equations:

(Ce∂t − κe∇2)Te = − γ (Te − Tph) − aδ(r)(Te − Tph)

+ E2
∞σ0[1 + bδ(r)], (48)

(Cph∂t − κph∇2)Tph = γ (Te − Tph) + aδ(r)(Te − Tph)

− γ0(Tph − T0). (49)

Here Ce,ph are the heat capacities of the electronic and phononic
subsystems, κe,ph are the corresponding heat conductivities,
and γ0 quantifies the coupling to the bath. Further, the parame-
ters γ and a control the homogenous and the local (induced by
the resonant impurity) parts of the energy exchange between
the electron and phonon systems, respectively. If the homo-
geneous exchange is controlled by supercollisions assisted by
weak impurities, the heat exchange rate γ is given by

γ = ∂IBorn(T )/∂T , T > T1, (50)

with IBorn(T ) given by Eq. (38), and thus scales with tempera-
ture as T 2. The temperature T1 where this regime [3] is realized
is given by

T1 =
√

kF l TBG. (51)

For lower temperatures, the background electron-phonon scat-
tering will be determined by processes that do not involve
impurities:

γ = ∂I0(T )/∂T , T < T1 (52)

(see Table I). This will not make any change in the theory
developed in this section, apart from a different scaling of γ .
The parameter a is obtained from Ires in Eq. (47) in a similar
way:

aδ(r) = ∂Ires(r,T )/∂T , (53)

where we use Eq. (39) and Eq. (45) at T > TBG and T < TBG,

respectively [where nimp is replaced with δ(r)].
The last term in Eq. (48) accounts for the Joule heat (with σ0

being the conductivity outside the region of the strong scatterer
and E∞ the electric field at r → ∞) modified by the presence
of resonant impurity. In this term, we describe the effect of
the strong scatterer by introducing phenomenologically a local
contribution bδ(r). We will discuss the microscopic origin and
the characteristic magnitude of this contribution in connection
with the physics of Landauer dipoles in the Appendix.

Let us now analyze the stationary solutions of Eqs. (48) and
(49) perturbatively in the local heat-flux and Joule-heat terms
induced by the resonant impurity. In the absence of the resonant
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impurity (a = b = 0), one obtains a homogeneous heating of
the two subsystems:

T
(0)

ph = T0 + γ −1
0 σ0E

2
∞ (54)

and

T (0)
e = T0 + (

γ −1 + γ −1
0

)
σ0E

2
∞. (55)

It is worth noticing that at this level, the phonon temperature
T

(0)
ph is not sensitive to the rate of the electron-phonon heat

exchange.
Next, we linearize Eqs. (48) and (49) around the homo-

geneous solutions,Tph(r) = T
(0)

ph + δTph(r) andTe(r) = T (0)
e +

δTe(r), and find corrections to the phonon and electron tem-
peratures induced by a single resonant impurity:

δTph(r) = T∗

[
F1(r) + γ η

γ̃
F2(r)

]
(56)

and

δTe(r) = T∗

[
κph(η − 1)

κe
F1(r) + (γ0 + γ )η − γ0

γ̃
F2(r)

]
.

(57)
Here, the characteristic temperature scale T∗ is given by

T∗ = σ0E
2
∞a

2πκphγ
, (58)

the dimensionless parameter

η = γ b

a
(59)

controls the relative importance of the local Joule heat at the
scatterer, and we have introduced

γ̃ = γ + (γ0 + γ )
κe

κph
. (60)

To simplify the further analysis, we will assume below that the
parameter η is small, |η| 	 1. The validity of this assumption
is supported by the microscopic analysis; see the Appendix.
The spatial temperature distributions, Eqs. (56) and (57), are
governed by the functions

F1(r) = q2
1 K0(q1r) − q2

2 K0(q2r)

q2
1 − q2

2

, (61)

F2(r) = (
q2

1 + q2
2

)K0(q2r) − K0(q1r)

q2
1 − q2

2

, (62)

with K0(z) the modified Bessel function and

q2
1,2 = γ̃

2κe
∓

√(
γ̃

2κe

)2

− γ γ0

κeκph
. (63)

Equation (63) defines the two spatial scales, q−1
2 < q−1

1 .
In the immediate vicinity of the impurity (r 	 q−1

2 ), the
functions F1 and F2 produce a logarithmic singularity of the
local temperatures which is cut off by the ultraviolet scale R.
Further simplification is possible due to separation of scales
in two limiting cases. First, when the electron-phonon heat
exchange is relatively weak in comparison to heat leakage to

FIG. 1. Spatial dependence of the phonon temperature δTph(r)
generated by supercollisions at a resonant impurity located at r = 0.

the substrate,

γ 	 γ0

1 + κph/κe
, (64)

we have

q1 =
√

γ /κe, q2 = √
γ0/κph , (65)

with q1 	 q2. In the opposite limit of a sufficiently strong
homogeneous electron-phonon heat exchange,

γ � γ0

1 + κph/κe
, (66)

we obtain

q1 =
√

γ0

κph + κe
, q2 =

√
γ

κph + κe

κeκph
, (67)

and again q1 	 q2.
In any of these limits, we then find for the temperature

profiles near the strong impurity

δTph
(
r 	 q−1

2

) � T∗ ln
1

q2r
, (68)

δTe
(
r 	 q−1

2

) � −T∗
κph

κe
ln

1

q2r
. (69)

Away from the impurity, the correction to the phonon temper-
ature changes its sign:

δTph
(
q−1

2 	 r 	 q−1
1

) = −T∗
q2

1

q2
2

K0(q1r), (70)

as illustrated in Fig. 1.
For the electron temperature (Fig. 2), the sign of the

correction away from the impurity differs in the two limiting
cases of small γ and small γ0:

δTe
(
q−1

2 	 r 	 q−1
1

)
= T∗K0(q1r) ×

{ − κph

κe
, γ → 0,

κph

κe+κp
η, γ0 → 0.

(71)

We have thus found that the presence of a single strong scat-
terer in a weakly disordered graphene leads to the local heating
(cooling) of the phonon (electron) subsystem in the vicinity of
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FIG. 2. Spatial dependence of the electron temperature δTe(r)
generated by supercollisions at a resonant impurity located at r = 0.

the scatterer, mediated by the “resonant supercollisions.” Away
from the resonant scatterer, the correction to the phonon tem-
perature changes its sign. The reason for this is essentially the
energy conservation. Indeed, the resonant supercollision leads
to a local enhancement of release of the Joule heat accumulated
by the electron system. This should be compensated by some
reduction of the energy released to phonons further away from
the scatterer. Below, we will estimate the magnitude of the
effect and discuss its experimental implications.

B. Estimates for the characteristic temperature
and length scales

In this section, we present estimates for the magnitude
of the effect of resonant supercollision cooling and for the
characteristic spatial scales of the temperature distribution
around a strong scatterer in graphene.

From Eq. (58), assuming that γ is dominated by processes
without supercollisions (clean samples, T < T1) and using
expressions for the electron-phonon heat exchange from Ta-
ble I, we write for the characteristic magnitude of temperature
variations

T∗ ∼ sin4 δ
j 2

0

σ0κphk
2
F

×
{

T
TBG

ln2 1
kF R

, T < TBG,(
T

TBG

)4
ln2 TBG

kF RT
, T > TBG,

(72)

where j0 = σ0E∞ is the current density far away from the
scatterer.

Below we will assume that the impurity is near resonance
and thus set sin δ ∼ 1 for estimates. A naive estimate for the
parameter b for a resonant impurity is b ∼ l/kF . A simple
way to obtain this estimate is to assume that the resistivity
is determined by a finite concentration of such resonant
impurities and dividing the dissipated heat by the number of
impurities. If this estimate would be correct, we would have η

comparable to unity for temperatures around TBG. It turns out,
however, that this naive estimate is incorrect in the 2D case, as
explained in the Appendix, and η is in fact much smaller. We
thus discard it in our estimates below.

For estimates, we use for the parameters entering Eq. (72)
representative values suggested by the experiment [8]:

l ≈ 1 μm, n ≈ 1012 cm−2. (73)

With these values, we estimate

kF = √
πn ≈ 1.8 × 108 m−1, σ0 = e2

πh̄
kF l ≈ 10−2 �−1.

(74)
For the bias current, we use j0 ≈ 1 A/m. With the above value
of carrier density, we have

TBG ≈ 27 K, T1 ≈ 360 K, W ≈ 0.05
W

m2 K3 . (75)

Below we perform estimates for two values of temperature,
corresponding to different regimes of temperature: T = 10 K
(T < TBG) and T = 50 K (T > TBG).

Let us estimate the homogenous electron-phonon exchange
rate γ and the phonon-substrate [23–25] cooling rate γ0.
At T ∼ 50 K 	 T1, the homogeneous electron-phonon heat
exchange is dominated by I0 rather than by supercollisions with
weak impurities, see Eqs. (51) and (52), and can be estimated
according to Eq. (36):

γ ≈ 2.3 × 104 W

m2 K
, γ0 ≈ 5 × 107 W

m2 K
. (76)

At T = 10 K, we have the low-temperature regime (T < TBG),
so that electron-phonon heat exchange is given by Eq. (46):

γ ≈ 0.9 × 103 W

m2 K
, γ0 ≈ 5 × 106 W

m2 K
. (77)

Next, we estimate the homogenous overheating of phonons
and electrons from the base temperature T0:

δT
(0)

el,ph = T
(0)

el,ph − T0. (78)

The Joule heat is found to be σ0E
2
∞ = 100 W/m2. This,

together with above estimates for the cooling rates, gives

δT
(0)

el = 5 μK, δT
(0)

ph = 2 μK (79)

for T = 50 K and

δT
(0)

el = 0.1 mK, δT
(0)

ph = 20 μK (80)

for T = 10 K.
For a quantitative estimate of the magnitude of the impurity-

induced overheating of phonons and respective spatial scales,
we need to estimate the phonon and electron thermal conduc-
tivities. For phonons, considering the graphene layer and the
boron-nitride substrate (of 40 nm thickness) as a combined 2D
system, we use the results for boron nitride from Refs. [26] and
[27]. The electronic heat conductivity can be estimated from
the Wiedemann-Franz law,

κe = π2k2
B

3e2
σ0T .

As a result, we get

κph ≈ 4 × 10−7 W

K
, κe ≈ 1.2 × 10−8 W

K
(81)

at T = 50 K and

κph ≈ 7 × 10−9 W

K
, κe ≈ 2.4 × 10−9 W

K
(82)
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at T = 10 K. The characteristic magnitude of the temperature
variation induced by the scatterer can be quantified by the
following parameter:

α∗ = T∗
δT

(0)
ph

= a

2πκph

γ0

γ
. (83)

Above, we have already estimated all relevant quantities apart
from a, characterizing the impurity-assisted electron-phonon
cooling rate. It can be written as follows:

a = 5Ares

k2
F

W T 4

T 2
BG

ln2 TBG

kF R max{T ,TBG} . (84)

At 50 K it becomes (with Ares ≈ 600 for long-range impuri-
ties)

a ≈ 4 × 10−10 W

K
(85)

and at 10 K

a ≈ 10−12 W

K
. (86)

Combining all the above estimates, we find

α∗ ≈
{

0.4, T = 50 K,

0.2, T = 10 K.
(87)

The absolute values of the magnitude of the local temperature
change read

T∗(50 K) ≈ 1 μK, T∗(10 K) ≈ 4 μK. (88)

We proceed now with the analysis of the characteristic
spatial scales. At T = 50 K we are in the regime (64), in which
the spatial scales are given by Eq. (65). Combining the above
values, we estimate the two spatial scales in the temperature
profile at 50 K as

q−1
1 ≈ 7 × 10−7 m, q−1

2 ≈ 10−7 m. (89)

At T = 10 K, the condition (64) is still fulfilled and we
estimate

q−1
1 ≈ 1.5 × 10−6 m, q−1

2 ≈ 4 × 10−8 m. (90)

It is worth mentioning that our quasi-2D approximation for
the 40-nm-thick slab of graphene and boron nitride turns out
to be at the border of applicability, since the slab thickness is
comparable to the characteristic size q−1

2 of the temperature
variation. This, in particular, implies that the actual value of T∗
may be a few times larger than that given by our estimates (88),
while the size of the overheated region as seen at the surface of
the quasi-2D slab is expected to be somewhat larger than our
2D value of q−1

2 .
Finally, let us compare our results with experimental find-

ings of Ref. [8]. First, the overall magnitude and sign of the
effect are shown in Fig. S5 of Ref. [8], with δT > 0 and
δT ∼ 5 μK, which is in rough agreement with our estimates;
see Eq. (88). Next, the dependence of the excess temperature
on the electrical current (illustrated in Fig. S9C of Ref. [8])
is quadratic, consistent with our Eq. (72). Finally, according
to our Eqs. (89), (90) the size of the overheated region q−1

2
is about a few tens of nanometers. The distances between the
tip and the impurity at which an enhancement of temperature
was detected in Ref. [8] were on the order of or smaller than

100 nm, so that the measurement point was indeed located in
the “overheated” part in our Fig. 1.

IV. SUMMARY

In this work, we have studied the effect of strong (resonant)
impurities on the heat transfer in a coupled electron-phonon
system in disordered graphene. Our key results can be summa-
rized as follows.

First, we have investigated in detail how a strong impurity
modifies locally the electron-phonon heat exchange through
the “resonant-supercollision” mechanism. The result is given
by Eqs. (34) and (39) and in Table I. For strong impurities, the
contribution of supercollisions to the function I (T ) describing
the energy flow between electrons and phonon scales with
temperature as T 5, in contrast to the T 3 behavior found for
weak impurities.

Second, we have explored the local modification of heat
transfer induced by a resonant scatterer in a weakly disordered
graphene and calculated the spatial temperature profile around
the scatterer under electrical driving. The characteristic profiles
of the phonon and electron temperature around the scatterer
are illustrated in Figs. 1 and 2. The sign, magnitude, and
characteristic spatial scale of the local temperature distribution
of phonons are consistent with the recent experimental findings
on imaging resonant dissipation from individual atomic defects
reported in Ref. [8].

Recently Refs. [8,28] appeared with theoretical results that
partly overlap our analysis of “resonant supercollisions.”
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APPENDIX: EFFECT OF A SCATTERER
ON LOCAL JOULE HEAT

In this appendix, we discuss the local effect of a scatterer
on the Joule heat. For transparency, we first calculate the
distribution of the Joule heat in a model system, where a
spherical region with radius R and conductivity σin is inserted
at the origin of coordinate (r = 0) into an infinite medium
with the conductivity σout to which a homogeneous electric
field E∞ is applied in the x direction. Then we extend
the result to the case of an arbitrary scatterer inserted in a
homogeneous medium. Although the present paper focusses
on a 2D system, it turns out to be instructive to consider also
the three-dimensional (3D) case. While the analysis is quite
similar in both situations, we will see that there is an important
peculiarity for the case of 2D geometry. We start the discussion
with the 3D case and then pass to the 2D case.
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1. 3D case

As stated above, we consider first a spherical region with
radius R, center r = 0, and conductivity σin inserted into an
infinite medium with the conductivity σout. Away from the
scatterer, the electric field is E∞ and points in x direction.
The distribution of electrical current j(r) obeys the condition

div j = 0.

With the local relation between the current density and the
electric field j(r) = σE(r), this condition is equivalent to
div E = 0 both inside and outside the spherical region. This
implies that electric charges can appear only at the sphere
surface. We search for the distribution of electric field outside
the spherical region as a sum of the field E∞ at r → ∞ and
the field of dipole emerged at the boundary r = R. We also
assume that the field is homogeneous for r < R. The electrical
potential is written as

�(r) =
{−Einr cos θ, for r < R,

−E∞r cos θ − d3
r2 cos θ, for r > R,

(A1)

where θ is the angle between the direction of E∞ and r, and
d3 characterizes the strength of a 3D dipole. The matching
conditions for the potentials and currents at the boundary read

EinR = d3

R2
+ E∞R, (A2)

σinEin = σout

(
E∞ − 2d3

R3

)
,

yielding

Ein = E∞
3σout

σin + 2σout
, (A3)

d3 = E∞R3 σout − σin

σin + 2σout
. (A4)

Next, we calculate the Joule heat dissipated inside and outside
the spherical region. The heat dissipated in the region r < R

is given by

Pin = σinE
2
in

4πR3

3
= 12πE2

∞R3σ 2
outσin

(σin + 2σout)2
. (A5)

The heat dissipated outside the ball,

Pout =
∫

r>R

d3rσE2,

contains a contribution from homogeneous external field
∝E2

∞, a dipole contribution ∝d2
3 , and the cross term ∝E∞d3.

The first term diverges at large r , so that we introduce a large
finite volume V � R3 of the whole system. The cross term
cancels out after integration over angles. Then, after integration
of the dipole contribution, we obtain

Pout = σoutE
2
∞

(
V − 4πR3

3

)
+ 4πσ∞d2

3

3R3

= σoutE
2
∞

(
V − 4πR3

3

)
+ 8πE2

∞R3σout(σout − σin)2

3(σin + 2σout)2
.

(A6)

Now, we can find the total change of the dissipated power
induced by the insertion of the spherical region with the
conductivity σin �= σout:

δP = Pin + Pout − σoutE
2
∞V

= 4πR3

3
σoutE

2
∞

σin − σout

σin + 2σout
. (A7)

We thus see that the total correction to the Joule heat is
proportional to the product of the current density at infinity,
j0 = σoutE∞, and the “Landauer dipole” strength d3:

δP = c3j0d3, (A8)

with

c3 = −4π

3
. (A9)

When the local inhomogeneity is created by an individual
impurity (not characterized by the conductivity σin), it gives
rise to the Landauer dipole of the magnitude [13,15–17]

d3 = 3πh̄j0str

4e2k2
F

, (A10)

where str is the transport scattering cross section of the
impurity. The local variation of the Joule heat due to insertion
of the scatterer can be still expressed in terms of this dipole
moment via Eq. (A8). A transparent derivation of this result is
given below in Sec. A 3.

2. 2D case

Let us now turn to the explicit calculation of the Joule heat in
a 2D electronic system with a disk of radius R characterized by
the conductivity σin distinct from the background conductivity.
In a 2D case, the electron charge distribution n(r) around the
disk is no longer homogeneous and the electric potential is
related to n(r) by

�(r) =
∫

d2r ′ n(r′)
|r − r′| . (A11)

For the electrical current one has to take into account the
“diffusive contribution” determined by the gradient of the
concentration:

j(r) = σ (r)E(r) − D(r)∇n(r),

= σ (r)Eec(r), (A12)

where D(r) is the local diffusion coefficient. The second
line of Eq. (A12) expresses the current in terms of the
“electrochemical field” Eec(r) = −e∇�ec(r), where �ec(r) is
the electrochemical potential (below, we drop the subscript
“ec”). In a full analogy with the 3D case, the electrochemical
potential has the form

�(r) =
{−Einr cos θ, for r < R,

−E∞r cos θ − d2
r

cos θ, for r > R,
(A13)

with the correction introduced by the inhomogeneous conduc-
tivity having a form of a “2D dipole” characterized by d2. The
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matching conditions at the disk boundary read

EinR = d2

R
+ E∞R, (A14)

σinEin = σout

(
E∞ − d2

R2

)
,

yielding

Ein = E∞
2σout

σin + σout
, (A15)

d2 = E∞R2 σout − σin

σin + σout
. (A16)

The heat dissipated inside the disk, r < R, is given by

Pin = σinE
2
inπR2 = 4πE2

∞R2σ 2
outσin

(σin + σout)2
. (A17)

The heat dissipated outside the disk reads

Pout =
∫

r>R

d2rσoutE
2 = σoutE

2
∞

(
S − πR2

) + πσoutd
2
2

R2

= σoutE
2
∞

(
S − πR2

) + πR2σoutE
2
∞(σout − σin)2

(σin + σout)2
,

(A18)

where S is total area of the system. Remarkably, in contrast to
the 3D case, the total change of the dissipated power induced
by the insertion of the disk equals zero:

δP = Pin + Pout − σoutE
2
∞S ≡ 0. (A19)

For an individual scatterer, the strength of the 2D dipole
was calculated in Refs. [15,16]:

d2 = 2h̄j0str

e2kF

. (A20)

Naively, one would expect, in analogy with Eq. (A8),

δP = c2j0d2. (A21)

It turns out, however, that in the 2D case the numerical
coefficient c2 vanishes,

c2 = 0. (A22)

A general reason for this result is given below.

3. General analysis of the Joule heat

Below we present a more general derivation of a relation
between the strength of the dipole and the local change δP

of the dissipated power. This will allow us to see that the
difference between 3D and 2D cases that we have observed
for a model of a macroscopic spherical obstacle is in fact of
general character. To this end, we write the expression for total
dissipated power as follows:

P =
∫

d2rEec(r)j(r) = −
∫

d2rj∇�(r)

=
∫

d2r[−div (�j) + � divj]. (A23)

Since divj = 0 in the stationary case, we find the total Joule
heat as a surface integral:

P = σout

∮
dS �(r) n · ∇�(r). (A24)

Here, n is the normal vector to this surface and we took into
account that j = −σout∇� away from the scatterer. We see that
the Joule heat can be fully expressed in terms of the asymptotics
of the electric potential at large r . Let us assume that the
integration surface in Eq. (A24) is spherical with the radius
R′ much larger than the size of the scatterer. Using Eqs. (A1),
(A13), and (A24), we get

P =
{

σout
4πR′3

3

(
E∞ − 2d3

R′3
)(

E∞ + d3

R′3
)
, 3D case;

σoutπR′2(E∞ − d2

R′2
)(

E∞ + d2

R′2
)
, 2D case.

(A25)
Now we send R′ to infinity. The term proportional to E2

∞
yields the Joule heat in the absence of the obstacle. The term
proportional to the square of the dipole tends to zero. Hence,
only the cross terms (those proportional to E∞ and to the dipole
strength) may give a correction δP to the homogeneous Joule
heat in the limit R′ → ∞. For the 3D case, we reproduce
Eqs. (A8), (A9). For the 2D case, the cross terms mutually
cancel and we find δP = 0, in agreement with Eq. (A22).

Importantly, this derivation is quite general as it only
uses the dipole form of the potential at large distances as
well as locality of the conductivity and the homogeneity of
the system away from the scatterer. One can expect that
fluctuations in positions of impurities surrounding a considered
scatterer (including associated quantum interference effects)
will produce a finite δP also in the 2D case. This effect should
be, however, parametrically small in the case of a good metallic
system.
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